Теплопроводность бетона таблица: Теплопроводность бетона таблица
- Теплопроводность бетона таблица
- Теплопроводность бетона, от чего зависит и как измеряется теплопередача
- Теплопроводность бетона: особенности, определение коэффициента
- Как влияет теплопроводность бетона на микроклимат внутри помещения
- Кирпич как изолятор
- Теплопроводность железобетона и тепловое сопротивление – знакомимся с понятиями
- Влажность
- Коэффициент теплопроводности бетона для различных видов монолита
- Зависимость от различных показателей
- Какие факторы влияют на коэффициент теплопроводности железобетона
- Способность материалов проводить тепло
- Теплопроводность бетона и утепление зданий
- Методы определения
- Как производится расчет с учетом коэффициента теплопроводности бетона
- Таблица – выражение основных параметров теплопроводности песка
- Перегородки из пенобетонных блоков
- Свойства различных типов блоков
- Таблица теплопроводности строительных материалов: коэффициенты
- Таблица теплопроводности строительных материалов, рекомендации
- Коэффициент теплопроводности материалов таблица, формулы
- Теплопроводность бетона: коэффициент, расчеты
- Влияние суррогатных заполнителей на теплопроводность бетона при температуре окружающей среды и повышенных температурах
- 1. Введение
- 2. Материалы и методы
- 2.1. Материалы
- 2.2. Подготовка образцов
- 2.3. Измерение теплопроводности
- 2.4. Процедуры испытаний
- 2.5. Термогравиметрический анализ (ТГА)
- 3. Результаты и обсуждение
- 3.1. Теплопроводность
- 3.2. Влияние размера заполнителя
- 3.3. Зависимая от температуры теплопроводность
- 4. Выводы
- Конфликт интересов
- Благодарности
- Сравнительное исследование теплопроводности бетона с зольным остатком угля при различных условиях сушки
- 1. Введение
- 2. Материалы
- 3. Экспериментальная программа
- 3.1. Пропорции смешивания
- 3.2. Отверждение и сушка бетона
- 3.3. Измерение тепловых свойств
- 3.4. Измерение свойств материала
- 4. Результаты испытаний и обсуждение
- 4.1. Теплопроводность бетона СВА
- 4.2. Удельный вес бетона CBA
- 4.3. Прочность на сжатие бетона CBA
- 4.4. Ультразвуковая скорость бетона CBA
- 5. Взаимосвязь между теплопроводностью и свойствами материала
- условия на теплопроводность и свойства материала бетона СВА.
- Доступность данных
- Конфликт интересов
- Благодарности
- Теплопроводность и ее влияние на характеристики покрытий PCC в MEPDG
- Эффективное прогнозирование теплопроводности бетона с использованием метода нейронной сети | International Journal of Concrete Structures and Materials
- IRJET-Страница, которую вы запрашивали, не найдена на нашем сайте , март 2022 г. Выполняется публикация…
- Границы | Исследование теплопроводности теплоизоляционного цемента в геотермальной скважине
- 1 Введение
- 2 Материалы и методы
- 3 Результаты и обсуждение
- 4 Заключение
- Заявление о доступности данных
- Вклад автора
- Финансирование
- Конфликт интересов
- Примечание издателя
- Благодарности
- Ссылки
- Теплопроводность распространенных материалов
Теплопроводность бетона таблица
Теплопроводность материалов. Таблица
Очень часто домашнему мастеру приходится выбирать, какой материал выбрать для той или иной работы. Одним из основных параметров материалов, в том числе и строительных, является их теплопроводность.
Чтобы быстро найти ответ, какой теплопроводностью обладает конкретный материал, или сравнить между собой различные материалы, очень удобно воспользоваться таблицей теплопроводности материалов.
В таблице собраны, конечно, далеко не все материалы. Но по большинству самых распространенных материалов вы с можете найти в ней значение теплопроводности.
Плотность (для сыпучих – насыпная плотность), кг/м3 | Коэффициент теплопроводности, Вт/ (м*К) | |
Алюминий | 2600-2700 | 203,5-221 растет с ростом плотности |
Асбест | 600 | 0,151 |
Асфальтобетон | 2100 | 1,05 |
АЦП асбесто-цементные плиты | 1800 | 0,35 |
Бетон см.![]() |
2300-2400 | 1,28-1,51 растет с ростом плотности |
Битум | 1400 | 0,27 |
Бронза | 8000 | 64 |
Винипласт | 1380 | 0,163 |
Вода при температурах выше 0 градусов С | ~1000 | ~0,6 |
Войлок шерстяной | 300 | 0,047 |
Гипсокартон | 800 | 0,15 |
Гранит | 2800 | 3,49 |
Дерево, дуб — вдоль волокон | 700 | 0,23 |
Дерево, дуб — поперек волокон | 700 | 0,1 |
Дерево, сосна или ель — вдоль волокон | 500 | 0,18 |
Дерево, сосна или ель — поперек волокон | 500 | 0,10—0,15 растет с ростом плотности и влажности |
ДСП, ОСП; древесно- или ориентированно-стружечная плита | 1000 | 0,15 |
Железобетон | 2500 | 1,69 |
Картон облицовочный | 1000 | 0,18 |
Керамзит | 200 | 0,1 |
Керамзит | 800 | 0,18 |
Керамзитобетон | 1800 | 0,66 |
Керамзитобетон | 500 | 0,14 |
Кирпич керамический пустотелый (брутто1000) | 1200 | 0,35 |
Кирпич керамический пустотелый (брутто1400) | 1600 | 0,41 |
Кирпич красный глиняный | 1800 | 0,56 |
Кирпич, силикатный | 1800 | 0,7 |
Кладка из изоляционного кирпича | 600 | 0,116—0,209 растет с ростом плотности |
Кладка из обыкновенного кирпича | 600–1700 | 0,384—0,698—0,814 растет с ростом плотности |
Кладка из огнеупорного кирпича | 1840 | 1,05 (при 800—1100°С) |
Краска масляная | — | 0,233 |
Латунь | 8500 | 93 |
Лед при температурах ниже 0 градусов С | 920 | 2,33 |
Линолеум | 1600 | 0,33 |
Литье каменное | 3000 | 0,698 |
Магнезия 85% в порошке | 216 | 0,07 |
Медь | 8500-8800 | 384-407 растет с ростом плотности |
Минвата | 100 | 0,056 |
Минвата | 50 | 0,048 |
Минвата | 200 | 0,07 |
Мрамор | 2800 | 2,91 |
Накипь, водяной камень | — | 1,163—3,49 растет с ростом плотности |
Опилки древесные | 230 | 0,070—0,093 растет с ростом плотности и влажности |
Пакля сухая | 150 | 0,05 |
Пенобетон | 1000 | 0,29 |
Пенобетон | 300 | 0,08 |
Пенопласт | 30 | 0,047 |
Пенопласт ПВХ | 125 | 0,052 |
Пенополистирол | 100 | 0,041 |
Пенополистирол | 150 | 0,05 |
Пенополистирол | 40 | 0,038 |
Пенополистирол экструдированый | 33 | 0,031 |
Пенополиуретан | 32 | 0,023 |
Пенополиуретан | 40 | 0,029 |
Пенополиуретан | 60 | 0,035 |
Пенополиуретан | 80 | 0,041 |
Пеностекло | 400 | 0,11 |
Пеностекло | 200 |
0,07 |
Песок сухой | 1600 | 0,35 |
Песок влажный | 1900 | 0,814 |
Полимочевина | 1100 | 0,21 |
Полиуретановая мастика | 1400 | 0,25 |
Полиэтилен | 1500 | 0,3 |
Пробковая мелочь | 160 | 0,047 |
Ржавчина (окалина) | — | 1,16 |
Рубероид, пергамин | 600 | 0,17 |
Свинец | 11400 | 34,9 |
Совелит | 450 | 0,098 |
Сталь | 7850 | 58 |
Сталь нержавеющая | 7900 | 17,5 |
Стекло оконное | 2500 | 0,698—0,814 |
Стеклянная вата (стекловата) | 200 | 0,035—0,070 растет с ростом плотности |
Текстолит | 1380 | 0,244 |
Торфоплиты | 220 | 0,064 |
Фанера клееная | 600 | 0,12 |
Фаолит | 1730 | 0,419 |
Чугун | 7500 | 46,5—93,0 |
Шлаковая вата | 250 | 0,076 |
Эмаль | 2350 | 0,872—1,163 |
postrojka. pp.ua
Стройдокс: Таблица теплопроводности строительных материалов
Теплопроводность — это процесс переноса энергии от теплой части материала к холодной частицами этого материала (т.е. молекулами). Надо помнить, что это только один из «источников» потерь тепла: хотя, например, вакуум имеет нулевую теплопроводность, энергия может передаваться излучением.
Основные значения коэффициентов теплопроводности я взял из СНиП II-3-79* (приложение 2) и из СП 50.13330.2012 СНиП 23-02-2003. Таблицу я дополнил значениями теплопроводности, которые взял с сайтов производителей строительных материалов (например, для ККБ, пеностекла и других).
Теплопроводность некоторых (но не всех) строительных материалов может значительно меняться в зависимости от их влажности. Первое значение в таблице — это значение для сухого состояния. Второе и третье значения — это значения теплопроводности для условий эксплуатации А и Б согласно приложению С СП 50.13330.2012. Условия эксплуатации зависят от климата региона и влажности в помещении. Проще говоря А — это обычная «средняя» эксплуатация, а Б — это влажные условия.
Материал | Коэффициент теплопроводности, Вт/(м·°C) | ||
В сухом состоянии | Условия А («обычные») | Условия Б («влажные») | |
Пенополистирол (ППС) | 0,036 — 0,041 | 0,038 — 0,044 | 0,044 — 0,050 |
Пенополистирол экструдированный (ЭППС, XPS) | 0,029 | 0,030 | 0,031 |
Войлок шерстяной | 0,045 | ||
Цементно-песчаный раствор (ЦПР) | 0,58 | 0,76 | 0,93 |
Известково-песчаный раствор | 0,47 | 0,7 | 0,81 |
Гипсовая штукатурка обычная | 0,25 | ||
Минеральная вата каменная, 180 кг/м3 | 0,038 | 0,045 | 0,048 |
Минеральная вата каменная, 140-175 кг/м3 | 0,037 | 0,043 | 0,046 |
Минеральная вата каменная, 80-125 кг/м3 | 0,036 | 0,042 | 0,045 |
Минеральная вата каменная, 40-60 кг/м3 | 0,035 | 0,041 | 0,044 |
Минеральная вата каменная, 25-50 кг/м3 | 0,036 | 0,042 | 0,045 |
Минеральная вата стеклянная, 85 кг/м3 | 0,044 | 0,046 | 0,05 |
Минеральная вата стеклянная, 75 кг/м3 | 0,04 | 0,042 | 0,047 |
Минеральная вата стеклянная, 60 кг/м3 | 0,038 | 0,04 | 0,045 |
Минеральная вата стеклянная, 45 кг/м3 | 0,039 | 0,041 | 0,045 |
Минеральная вата стеклянная, 35 кг/м3 | 0,039 | 0,041 | 0,046 |
Минеральная вата стеклянная, 30 кг/м3 | 0,04 | 0,042 | 0,046 |
Минеральная вата стеклянная, 20 кг/м3 | 0,04 | 0,043 | 0,048 |
Минеральная вата стеклянная, 17 кг/м3 | 0,044 | 0,047 | 0,053 |
Минеральная вата стеклянная, 15 кг/м3 | 0,046 | 0,049 | 0,055 |
Пенобетон и газобетон на цементном вяжущем, 1000 кг/м3 | 0,29 | 0,38 | 0,43 |
Пенобетон и газобетон на цементном вяжущем, 800 кг/м3 | 0,21 | 0,33 | 0,37 |
Пенобетон и газобетон на цементном вяжущем, 600 кг/м3 | 0,14 | 0,22 | 0,26 |
Пенобетон и газобетон на цементном вяжущем, 400 кг/м3 | 0,11 | 0,14 | 0,15 |
Пенобетон и газобетон на известняковом вяжущем, 1000 кг/м3 | 0,31 | 0,48 | 0,55 |
Пенобетон и газобетон на известняковом вяжущем, 800 кг/м3 | 0,23 | 0,39 | 0,45 |
Пенобетон и газобетон на известняковом вяжущем, 600 кг/м3 | 0,15 | 0,28 | 0,34 |
Пенобетон и газобетон на известняковом вяжущем, 400 кг/м3 | 0,13 | 0,22 | 0,28 |
Сосна, ель поперек волокон | 0,09 | 0,14 | 0,18 |
Сосна, ель вдоль волокон | 0,18 | 0,29 | 0,35 |
Дуб поперек волокон | 0,10 | 0,18 | 0,23 |
Дуб вдоль волокон | 0,23 | 0,35 | 0,41 |
Медь | 382 — 390 | ||
Алюминий | 202 — 236 | ||
Латунь | 97 — 111 | ||
Железо | 92 | ||
Олово | 67 | ||
Сталь | 47 | ||
Стекло оконное | 0,76 | ||
Свежий снег | 0,10 — 0,15 | ||
Вода жидкая | 0,56 | ||
Воздух (+27 °C, 1 атм) | 0,026 | ||
Вакуум | 0 | ||
Аргон | 0,0177 | ||
Ксенон | 0,0057 | ||
Арболит (подробнее здесь) | 0,07 — 0,17 | ||
Пробковое дерево | 0,035 | ||
Железобетон плотностью 2500 кг/м3 | 1,69 | 1,92 | 2,04 |
Бетон (на гравии или щебне) плотностью 2400 кг/м3 | 1,51 | 1,74 | 1,86 |
Керамзитобетон плотностью 1800 кг/м3 | 0,66 | 0,80 | 0,92 |
Керамзитобетон плотностью 1600 кг/м3 | 0,58 | 0,67 | 0,79 |
Керамзитобетон плотностью 1400 кг/м3 | 0,47 | 0,56 | 0,65 |
Керамзитобетон плотностью 1200 кг/м3 | 0,36 | 0,44 | 0,52 |
Керамзитобетон плотностью 1000 кг/м3 | 0,27 | 0,33 | 0,41 |
Керамзитобетон плотностью 800 кг/м3 | 0,21 | 0,24 | 0,31 |
Керамзитобетон плотностью 600 кг/м3 | 0,16 | 0,2 | 0,26 |
Керамзитобетон плотностью 500 кг/м3 | 0,14 | 0,17 | 0,23 |
Крупноформатный керамический блок (тёплая керамика) | 0,14 — 0,18 | ||
Кирпич керамический полнотелый, кладка на ЦПР | 0,56 | 0,7 | 0,81 |
Кирпич силикатный, кладка на ЦПР | 0,70 | 0,76 | 0,87 |
Кирпич керамический пустотелый (плотность 1400 кг/м3 с учетом пустот), кладка на ЦПР | 0,47 | 0,58 | 0,64 |
Кирпич керамический пустотелый (плотность 1300 кг/м3 с учетом пустот), кладка на ЦПР | 0,41 | 0,52 | 0,58 |
Кирпич керамический пустотелый (плотность 1000 кг/м3 с учетом пустот), кладка на ЦПР | 0,35 | 0,47 | 0,52 |
Кирпич силикатный, 11 пустот (плотность 1500 кг/м3), кладка на ЦПР | 0,64 | 0,7 | 0,81 |
Кирпич силикатный, 14 пустот (плотность 1400 кг/м3), кладка на ЦПР | 0,52 | 0,64 | 0,76 |
Гранит | 3,49 | 3,49 | 3,49 |
Мрамор | 2,91 | 2,91 | 2,91 |
Известняк, 2000 кг/м3 | 0,93 | 1,16 | 1,28 |
Известняк, 1800 кг/м3 | 0,7 | 0,93 | 1,05 |
Известняк, 1600 кг/м3 | 0,58 | 0,73 | 0,81 |
Известняк, 1400 кг/м3 | 0,49 | 0,56 | 0,58 |
Туф, 2000 кг/м3 | 0,76 | 0,93 | 1,05 |
Туф, 1800 кг/м3 | 0,56 | 0,7 | 0,81 |
Туф, 1600 кг/м3 | 0,41 | 0,52 | 0,64 |
Туф, 1400 кг/м3 | 0,33 | 0,43 | 0,52 |
Туф, 1200 кг/м3 | 0,27 | 0,35 | 0,41 |
Туф, 1000 кг/м3 | 0,21 | 0,24 | 0,29 |
Песок сухой строительный (ГОСТ 8736-77*), 1600 кг/м3 | 0,35 | ||
Фанера клееная | 0,12 | 0,15 | 0,18 |
ДСП, ДВП, 1000 кг/м3 | 0,15 | 0,23 | 0,29 |
ДСП, ДВП, 800 кг/м3 | 0,13 | 0,19 | 0,23 |
ДСП, ДВП, 600 кг/м3 | 0,11 | 0,13 | 0,16 |
ДСП, ДВП, 400 кг/м3 | 0,08 | 0,11 | 0,13 |
ДСП, ДВП, 200 кг/м3 | 0,06 | 0,07 | 0,08 |
Пакля | 0,05 | 0,06 | 0,07 |
Гипсокартон (листы гипсовые обшивочные), 1050 кг/м3 | 0,15 | 0,34 | 0,36 |
Гипсокартон (листы гипсовые обшивочные), 800 кг/м3 | 0,15 | 0,19 | 0,21 |
Линолеум из ПВХ на теплоизолирующей подоснове, 1800 кг/м3 | 0,38 | 0,38 | 0,38 |
Линолеум из ПВХ на теплоизолирующей подоснове, 1600 кг/м3 | 0,33 | 0,33 | 0,33 |
Линолеум из ПВХ на тканевой подоснове, 1800 кг/м3 | 0,35 | 0,35 | 0,35 |
Линолеум из ПВХ на тканевой подоснове, 1600 кг/м3 | 0,29 | 0,29 | 0,29 |
Линолеум из ПВХ на тканевой подоснове, 1400 кг/м3 | 0,2 | 0,23 | 0,23 |
Эковата | 0,037 — 0,042 | ||
Перлит вспученный, песок, плотность 75 кг/м3 | 0,043 — 0,047 | ||
Перлит вспученный, песок, плотность 100 кг/м3 | 0,052 | ||
Перлит вспученный, песок, плотность 150 кг/м3 | 0,052 — 0,058 | ||
Перлит вспученный, песок, плотность 200 кг/м3 | 0,07 | ||
Пеностекло, насыпное, плотность 100 — 150 кг/м3 | 0,043 — 0,06 | ||
Пеностекло, насыпное, плотность 151 — 200 кг/м3 | 0,06 — 0,063 | ||
Пеностекло, насыпное, плотность 201 — 250 кг/м3 | 0,066 — 0,073 | ||
Пеностекло, насыпное, плотность 251 — 400 кг/м3 | 0,085 — 0,1 | ||
Пеностекло, блоки, плотность 100 — 120 кг/м3 | 0,043 — 0,045 | ||
Пеностекло, блоки, плотность 121 — 170 кг/м3 | 0,05 — 0,062 | ||
Пеностекло, блоки, плотность 171 — 220 кг/м3 | 0,057 — 0,063 | ||
Пеностекло, блоки, плотность 221 — 270 кг/м3 | 0,073 | ||
Керамзит, гравий, плотность 250 кг/м3 | 0,099 — 0,1 | 0,11 | 0,12 |
Керамзит, гравий, плотность 300 кг/м3 | 0,108 | 0,12 | 0,13 |
Керамзит, гравий, плотность 350 кг/м3 | 0,115 — 0,12 | 0,125 | 0,14 |
Керамзит, гравий, плотность 400 кг/м3 | 0,12 | 0,13 | 0,145 |
Керамзит, гравий, плотность 450 кг/м3 | 0,13 | 0,14 | 0,155 |
Керамзит, гравий, плотность 500 кг/м3 | 0,14 | 0,15 | 0,165 |
Керамзит, гравий, плотность 600 кг/м3 | 0,14 | 0,17 | 0,19 |
Керамзит, гравий, плотность 800 кг/м3 | 0,18 | ||
Гипсоплиты, плотность 1350 кг/м3 | 0,35 | 0,50 | 0,56 |
Гипсоплиты, плотность 1100 кг/м3 | 0,23 | 0,35 | 0,41 |
Перлитобетон, плотность 1200 кг/м3 | 0,29 | 0,44 | 0,5 |
Перлитобетон, плотность 1000 кг/м3 | 0,22 | 0,33 | 0,38 |
Перлитобетон, плотность 800 кг/м3 | 0,16 | 0,27 | 0,33 |
Перлитобетон, плотность 600 кг/м3 | 0,12 | 0,19 | 0,23 |
Пенополиуретан (ППУ), плотность 80 кг/м3 | 0,041 | 0,042 | 0,05 |
Пенополиуретан (ППУ), плотность 60 кг/м3 | 0,035 | 0,036 | 0,041 |
Пенополиуретан (ППУ), плотность 40 кг/м3 | 0,029 | 0,031 | 0,04 |
Пенополиэтилен сшитый | 0,031 — 0,038 |
Если в таблице у материала нет значений для условий А и Б, значит в СП 50. 13330.2012 или на сайтах производителей нет соответствующих значений либо для этого материала это не имеет смысла.
Теплопроводность некоторых (но не всех) строительных материалов может значительно меняться в зависимости от их влажности.
Если в таблице у материала нет значений для условий А и Б, значит в СП 50.13330.2012 или на сайтах производителей нет соответствующих значений либо для этого материала это не имеет смысла.
Обратите внимание на рост теплопроводности в зависимости от условий влажности. Например, у пенобетона значительно растёт теплопроводность при росте влажности, а, например, у ППС такого не наблюдается.
stroydocs.ru
Коэффициент теплопроводности материала. Теплопроводность строительных материалов: таблица
Процесс передачи энергии от более нагретой части тела к менее нагретой называется теплопроводностью. Числовое значение такого процесса отражает коэффициент теплопроводности материала. Это понятие является очень важным при строительстве и ремонте зданий. Правильно подобранные материалы позволяют создать в помещении благоприятный микроклимат и сэкономить на отоплении существенную сумму.
Понятие теплопроводности
Теплопроводность – процесс обмена тепловой энергией, который происходит за счет столкновения мельчайших частиц тела. Причем этот процесс не прекратится, пока не наступит момент равновесия температур. На это уходит определенный промежуток времени. Чем больше времени затрачивается на тепловой обмен, тем ниже показатель теплопроводности.
Данный показатель выражают как коэффициент теплопроводности материалов. Таблица содержит уже измеренные значения для большинства материалов. Расчет производится по количеству тепловой энергии, прошедшей сквозь заданную площадь поверхности материала. Чем больше вычисленное значение, тем быстрее объект отдаст все свое тепло.
Факторы, влияющие на теплопроводность
Коэффициент теплопроводности материала зависит от нескольких факторов:
- Плотность материала. При повышении данного показателя взаимодействие частиц материала становится прочнее.
Соответственно, они будут передавать температуру быстрее. А это значит, что с повышением плотности материала улучшается передача тепла.
- Пористость вещества. Пористые материалы являются неоднородными по своей структуре. Внутри них находится большое количество воздуха. А это значит, что молекулам и другим частицами будет сложно перемещать тепловую энергию. Соответственно, коэффициент теплопроводности повышается.
- Влажность также оказывает влияние на теплопроводность. Мокрые поверхности материала пропускают большее количество тепла. В некоторых таблицах даже указывается расчетный коэффициент теплопроводности материала в трех состояниях: сухом, среднем (обычном) и влажном.
Выбирая материал для утепления помещений, важно учитывать также условия, в которых он будет эксплуатироваться.
Понятие теплопроводности на практике
Теплопроводность учитывается на этапе проектирования здания. При этом берется во внимание способность материалов удерживать тепло. Благодаря их правильному подбору жильцам внутри помещения всегда будет комфортно. Во время эксплуатации будут существенно экономиться денежные средства на отопление.
Утепление на стадии проектирования является оптимальным, но не единственным решением. Не составляет трудности утеплить уже готовое здание путем проведения внутренних или наружных работ. Толщина слоя изоляции будет зависеть от выбранных материалов. Отдельные из них (к примеру, дерево, пенобетон) могут в некоторых случаях использоваться без дополнительного слоя термоизоляции. Главное, чтобы их толщина превышала 50 сантиметров.
Особенное внимание следует уделить утеплению кровли, оконных и дверных проемов, пола. Сквозь эти элементы уходит больше всего тепла. Зрительно это можно увидеть на фотографии в начале статьи.
Конструкционные материалы и их показатели
Для строительства зданий используют материалы с низким коэффициентом теплопроводности. Наиболее популярными являются:
- Бетон. Его теплопроводность находится в пределах 1,29-1,52Вт/м*К.
Точное значение зависит от консистенции раствора. На этот показатель также влияет плотность исходного материала, которая составляет 500-2500 кг/м3. Используют данный материал в виде раствора для фундаментов, в виде блоков – для возведения стен и фундамента.
- Железобетон, значение теплопроводности которого составляет 1,68Вт/м*К. Плотность материала достигает 2400-2500 кг/м3.
- Древесина, издревле использующаяся как строительный материал. Ее плотность и теплопроводность в зависимости от породы составляют 150-2100 кг/м3 и 0,2-0,23Вт/м*К соответственно.
Еще один популярный строительный материал – кирпич. В зависимости от состава он обладает следующими показателями:
- саманный (изготовленный из глины): 0,1-0,4 Вт/м*К;
- керамический (изготовленный методом обжига): 0,35-0,81 Вт/м*К;
- силикатный (из песка с добавлением извести): 0,82-0,88 Вт/м*К.
Материалы из бетона с добавлением пористых заполнителей
Коэффициент теплопроводности материала позволяет использовать последний для постройки гаражей, сараев, летних домиков, бань и других сооружений. В данную группу можно отнести:
- Пенобетон. Производится с добавлением пенообразующих веществ, за счет которых характеризуется пористой структурой с плотностью 500-1000 кг/м3. При этом способность передавать тепло определяется значением 0,1-0,37Вт/м*К.
- Керамзитобетон, показатели которого зависят от его вида. Полнотелые блоки не имеют пустот и отверстий. С пустотами внутри изготавливают пустотелые блоки, которые менее прочные, нежели первый вариант. Во втором случае теплопроводность будет ниже. Если рассматривать общие цифры, то плотность керамзитобетона составляет 500-1800кг/м3. Его показатель находится в интервале 0,14-0,65Вт/м*К.
- Газобетон, внутри которого образуются поры размером 1-3 миллиметра. Такая структура определяет плотность материала (300-800кг/м3). За счет этого коэффициент достигает 0,1-0,3 Вт/м*К.
Показатели теплоизоляционных материалов
Коэффициент теплопроводности теплоизоляционных материалов, наиболее популярных в наше время:
- пенопласт, который обладает плотностью 15-50кг/м3, при теплопроводности – 0,031-0,033Вт/м*К;
- пенополистирол, плотность которого такая же, как и у предыдущего материала.
Но при этом коэффициент передачи тепла находится на уровне 0,029-0,036Вт/м*К;
- стекловата. Характеризуется коэффициентом, равным 0,038-0,045Вт/м*К;
- каменная вата с показателем 0,035-0,042Вт/м*К.
Таблица показателей
Для удобства работы коэффициент теплопроводности материала принято заносить в таблицу. В ней кроме самого коэффициента могут быть отражены такие показатели как степень влажности, плотность и другие. Материалы с высоким коэффициент теплопроводности сочетаются в таблице с показателями низкой теплопроводности. Образец данной таблицы приведен ниже:
Использование коэффициента теплопроводности материала позволит возвести желаемую постройку. Главное: выбрать продукт, отвечающий всем необходимым требованиями. Тогда здание получится комфортным для проживания; в нем будет сохраняться благоприятный микроклимат.
Правильно подобранный изоляционный материал снизит потери тепла, по причине чего больше не нужно будет «отапливать улицу». Благодаря этому финансовые затраты на отопление существенно снизятся. Такая экономия позволит в скором времени вернуть все деньги, которые будут затрачены на приобретение теплоизолятора.
fb.ru
Сравнительная таблица теплопроводности современных строительных материалов
- Дата: 11-04-2018
- Просмотров: 263
- Комментариев:
- Рейтинг: 64
Оглавление: [скрыть]
- Понятие теплопроводности
- Факторы, влияющие на величину теплопроводности
- Практическое применение значения теплопроводности строительных материалов
- Теплопроводность материалов: параметры
- Теплопроводность при строительстве
Строительство любого дома, будь то коттедж или скромный дачный домик, должно начинаться с разработки проекта. На этом этапе закладывается не только архитектурный облик будущего строения, но и его конструктивные и теплотехнические характеристики.
Схема теплопроводности и толщины материалов.
Основной задачей на этапе проекта будет не только разработка прочных и долговечных конструктивных решений, способных поддерживать наиболее комфортный микроклимат с минимальными затратами. Помочь определиться с выбором может сравнительная таблица теплопроводности материалов.
Понятие теплопроводности
В общих чертах процесс теплопроводности характеризуется передачей тепловой энергии от более нагретых частиц твердого тела к менее нагретым. Процесс будет идти до тех пор, пока не наступит тепловое равновесие. Другими словами, пока не сравняются температуры.
Коэффициент теплопроводности кирпичей.
Применительно к ограждающим конструкциям дома (стены, пол, потолок, крыша) процесс теплопередачи будет определяться временем, в течение которого температура внутри помещения сравняется с температурой окружающей среды.
Чем более продолжителен по времени будет этот процесс, тем помещение будет более комфортным по ощущениям и экономичным по эксплуатационным расходам.
Численно процесс переноса тепла характеризуется коэффициентом теплопроводности. Физический смысл коэффициента показывает, какое количество тепла за единицу времени проходит через единицу поверхности. Т.е. чем выше значение этого показателя, тем лучше проводится тепло, значит, тем быстрее будет происходить процесс теплообмена.
Соответственно, на этапе проектных работ необходимо спроектировать конструкции, теплопроводность которых должна иметь по возможности наименьшее значение.
Вернуться к оглавлению
Теплопроводность материалов, используемых в строительстве, зависит от их параметров:
Зависимость теплопроводности газобетона от плотности.
- Пористость – наличие пор в структуре материала нарушает его однородность. При прохождении теплового потока часть энергии передается через объем, занятый порами и заполненный воздухом. Принято за отсчетную точку принимать теплопроводность сухого воздуха (0,02 Вт/(м*°С)). Соответственно, чем больший объем будет занят воздушными порами, тем меньше будет теплопроводность материала.
- Структура пор – малый размер пор и их замкнутый характер способствуют снижению скорости теплового потока. В случае использования материалов с крупными сообщающимися порами в дополнение к теплопроводности в процессе переноса тепла будут участвовать процессы передачи тепла конвекцией.
- Плотность – при больших значениях частицы более тесно взаимодействуют друг с другом и в большей степени способствуют передаче тепловой энергии. В общем случае значения теплопроводности материала в зависимости от его плотности определяются либо на основе справочных данных, либо эмпирически.
- Влажность – значение теплопроводности для воды составляет (0,6 Вт/(м*°С)). При намокании стеновых конструкций или утеплителя происходит вытеснение сухого воздуха из пор и замещение его каплями жидкости или насыщенным влажным воздухом. Теплопроводность в этом случае значительно увеличится.
- Влияние температуры на теплопроводность материала отражается через формулу:
λ=λо*(1+b*t), (1)
где, λо – коэффициент теплопроводности при температуре 0 °С, Вт/м*°С;
b – справочная величина температурного коэффициента;
t – температура.
Вернуться к оглавлению
Из понятия теплопроводности напрямую вытекает понятие толщины слоя материала для получения необходимого значения сопротивления теплового потока. Тепловое сопротивление – нормируемая величина.
Упрощенная формула, определяющая толщину слоя, будет иметь вид:
Таблица теплопроводности утеплителей.
H=R/λ, (2)
где, H – толщина слоя, м;
R – сопротивление теплопередаче, (м2*°С)/Вт;
λ – коэффициент теплопроводности, Вт/(м*°С).
Данная формула применительно к стене или перекрытию имеет следующие допущения:
- ограждающая конструкция имеет однородное монолитное строение;
- используемые стройматериалы имеют естественную влажность.
При проектировании необходимые нормируемые и справочные данные берутся из нормативной документации:
- СНиП23-01-99 – Строительная климатология;
- СНиП 23-02-2003 – Тепловая защита зданий;
- СП 23-101-2004 – Проектирование тепловой защиты зданий.
Вернуться к оглавлению
Принято условное разделение материалов, применяемых в строительстве, на конструкционные и теплоизоляционные.
Конструкционные материалы применяются для возведения ограждающих конструкций (стен, перегородок, перекрытий). Они отличаются большими значениями теплопроводности.
Значения коэффициентов теплопроводности сведены в таблицу 1:
Таблица 1
Материал | Коэффициент теплопроводности, Вт/(м*°С). |
Пенобетон | (0,08 – 0,29) – в зависимости от плотности |
Древесина ели и сосны | (0,1 – 0,15) – поперек волокон 0,18 – вдоль волокон |
Керамзитобетон | (0,14-0,66) – в зависимости от плотности |
Кирпич керамический пустотелый | 0,35 – 0,41 |
Кирпич красный глиняный | 0,56 |
Кирпич силикатный | 0,7 |
Железобетон | 1,29 |
Подставляя в формулу (2) данные, взятые из нормативной документации, и данные из Таблицы 1, можно получить требуемую толщину стен для конкретного климатического района.
При выполнении стен только из конструкционных материалов без использования теплоизоляции их необходимая толщина (в случае использования железобетона) может достигать нескольких метров. Конструкция в этом случае получится непомерно большой и громоздкой.
Допускают возведение стен без использования дополнительного утепления, пожалуй, только пенобетон и дерево. И даже в этом случае толщина стены достигает полуметра.
Теплоизоляционные материалы имеют достаточно малые величины значения коэффициента теплопроводности.
Основной их диапазон лежит в пределах от 0,03 до 0,07 Вт/(м*°С). Наиболее распространенные материалы – это экструдированный пенополистирол, минеральная вата, пенопласт, стекловата, утепляющие материалы на основе пенополиуретана. Их использование позволяет значительно снизить толщину ограждающих конструкций.
Вернуться к оглавлению
Схема сравнения теплопроводности стен из газобетона и кирпича.
При проектировании и производстве строительных работ необходимо учитывать возможные пути теплопотерь:
- 30-40% потерь тепла приходится на поверхность стен;
- 20-30% – через межэтажные перекрытия и крышу;
- около 20% потерь приходится на поверхность, занимаемую оконными и дверными проемами;
- приблизительно 10% тепла уходит из помещения через плохо утепленные полы.
Важным фактором при учете теплопроводности в строительстве является обеспечение надлежащей ветро- и пароизоляции. В наибольшей степени это справедливо для пористых утеплителей. Т.е. при ограничении доступа влаги внутрь конструкций (как извне, так и снаружи) сопротивление теплопередачи будет выше. Утеплитель будет более эффективно работать, соответственно, потребуется меньшая толщина конструкций.
В идеале стены и перекрытия должны выполняться из теплоизоляционных материалов. Однако они обладают низкой конструкционной прочностью, что ограничивает широту их применения. Возникает необходимость выполнять основные несущие конструкции из кирпича, дерева, пенобетонных блоков и т.п.
Наиболее распространенным вариантом конструкций домов, встречающимся на практике, является комбинация несущей конструкции и теплоизоляции.
Здесь можно различить:
Сравнение теплопроводности соломобетонных блоков с другими материалами.
- Каркасный вариант строительства – основной каркас, обеспечивающий пространственную жесткость, выполняется из деревянных досок или брусьев.
Утеплитель укладывается в межстоечное пространство. В некоторых случаях для достижения требуемых показателей по энергоэффективности осуществляется дополнительное утепление снаружи каркаса.
- Возведение стен дома из кирпича, пористых бетонных блоков, дерева – утепление осуществляется по наружной поверхности. Слой утеплителя компенсирует избыточную теплопроводность основного стенового материала. С другой стороны материал основной стены несет на себе нагрузки, компенсируя малую механическую прочность утеплителя.
Аналогичные закономерности будут справедливы при возведении межэтажных перекрытий и кровельных конструкций.
Таким образом, используя комбинацию материалов с требуемыми значениями коэффициентов теплопроводности, можно получить оптимальные по свойствам и толщине ограждающие конструкции здания.
ostroymaterialah.ru
Теплопроводность бетона, от чего зависит и как измеряется теплопередача
Теплопроводность — это характерная особенность материала передавать тепло от одной своей части другой. Данное свойство является одним из доминирующих при проектировании и возведении объектов. Оно напрямую зависит от состава бетонного раствора и его плотности. Изменение коэффициента теплопроводности может стать причиной потери прочности конструкции.
Что такое теплопроводность и на что она влияет?
Стройматериалы, используемые при сооружении объектов, должны иметь низкую теплопередачу.
1. Определяется количеством тепловой энергии, проходящим за 1 ч через поверхность в 1 м3, способной изменить t воздуха на 1 °С. Метрическая единица измерения — Вт/мК.
2. На данный коэффициент влияет вид используемого заполнителя. Передача тепла у сплошного бетона равна 1,75:
- с щебнем — 1,3;
- у пористого — 1,4;
- у теплоизоляционного — 0,18.
3. Зависит от нескольких условий:
Основные | Второстепенные |
состав бетонной смеси;
плотность материала; качество; наличие теплоизоляционных заполнителей. |
влажность конструкции;
качественное состояние монолита; температура окружающей среды. |
4. Чем больше вес наполнителя и плотность монолита, тем быстрее происходит теплопередача. Если при возведении здания используется состав с высоким содержанием щебня или гравия, то требуется дополнительное утепление.
Вид | Коэффициент, Вт/м*°С | Характеристика |
Газобетонный кирпич | 0,12-0,14 | Имеет низкий показатель, полученный за счет усиленной поризации раствора. |
Пенобетон | 0,30 | Сочетает небольшую теплопроводность бетона с хорошими прочностными качествами. Кирпич используется при возведении несущих стен в малоэтажном строительстве.![]() |
Керамзитобетон | 0,23-0,40 | Сопротивление теплопередаче и прочность позволяют применять при создании зданий в несколько этажей. |
Коэффициент проводимости тепла у бетона — величина не постоянная. Зависит от температурно-влажностных параметров окружающей среды, имеет тенденцию к увеличению и уменьшению.
Как измерить, сравнение по теплопроводности с деревом и кирпичом
Определение коэффициента теплопередачи — активный метод контроля путем воздействия на объект тепловым потоком заданной интенсивности.
Производится при помощи специальных приборов:
- стационарный применяется при лабораторном изучении образцов ограниченного размера;
- зондовый используют в полевых условиях и для обследования крупногабаритных конструкций из бетона.
Тепломер является работающим в цифровом режиме высокотехнологичным микропроцессорным прибором, позволяющим выполнять обработку данных с привлечением соответствующего программного обеспечения.
![]()
Измерения проводятся следующим образом:
1. В контрольном образце на расстоянии не менее 7,5 см от края сверлится отверстие, по длине и диаметру не превышающее размеры зонда более чем на 15-20 %.
2. Стержень тепломера для усиления термического контакта с изделием смазывается глицерином или техническим вазелином.
3. Опытную модель со вставленным в нее зондом термостатируют на протяжении 2-4 ч.
4. Устройство подключают к сети, прогревают около 5 мин:
- фиксируют показания температуры среды в начале испытания;
- одновременно запускают секундомер и нагревательный элемент тепломера;
- регистрируют температурные показания в таблицу через 2; 2,5; 3; 4; 5; 6 мин;
- отключают прибор и повторяют процедуру через 30-40 минут.
5. Для достоверности проводится не менее 3 повторов снятия данных.
Каждый материал имеет свой коэффициент теплопередачи, который самостоятельно замерить сложно. Для бетона М200-300, предприятия вообще не указывают данные. Сравнительная таблица теплопроводности дерева, кирпича и бетона может оказать незаменимую помощь при выборе сырья.
Стройматериал | Коэффициент, Вт/м*К | |
Кирпич | Кремнеземный | 0,15 |
Пустотелый | 0,44 | |
Силикатный | 0,81 | |
Сплошной | 0,67 | |
Шлаковый | 0,58 | |
Пенобетон | 0,05-0,3 | |
Легкий бетон М300 (200) | 0,25-0,51 | |
Древесина | Липа, дуб, клен, ель, пихта | 0,15 |
Доски, фанера | 0,15 | |
Сосна | 0,23 | |
Твердые породы древесины и ДСП | 0,2 | |
Камень | 1,4 |
Значения указываются для толщины в 1 метр. Чтобы вычислить данные для других размеров, надо заданный в таблице параметр разделить на нужную величину, выраженную в метрах.
Теплопроводность бетона: особенности, определение коэффициента
При выполнении мероприятий по строительству зданий или ремонту ранее возведенных построек важно надежно теплоизолировать стены строения. Для уменьшения объема тепловых потерь и снижения затрат на поддержание комфортной температуры важно ответственно подойти к выбору теплоизоляционных материалов и выполнению тепловых расчетов. Решая задачи, связанные с обеспечением энергоэффективности бетонных строений, необходимо учитывать теплопроводность бетона. Этот показатель характеризует способность проводить тепло и является одной из наиболее важных характеристик.
Теплопроводность бетонного массива
Как влияет теплопроводность бетона на микроклимат внутри помещения
Из множества строительных материалов, применяемых для возведения зданий, одним из наиболее распространенных является бетон. Среди главных рабочих характеристик материала выделяется коэффициент теплопроводности бетона. На этапе проектирования необходимо предусмотреть применение в процессе строительства теплоизоляционных материалов, позволяющих превратить возведенную железобетонную конструкцию в жилое строение. Ведь важно возвести не только устойчивое, экологически чистое и оригинальное здание, но и создать благоприятные условия для проживания.
Зная теплопроводность бетонного массива, и правильно выбрав теплоизоляционные материалы, можно добиться значительных результатов:
- существенно сократить тепловые потери;
- снизить затраты на обогрев помещения;
- обеспечить внутри здания комфортный микроклимат.
Влияние уровня теплопроводности на внутренний микроклимат выражается простой зависимостью:
- при возрастании коэффициента, интенсивность тепловой передачи возрастает, и строение, возведенное из материала с такими характеристиками, быстрее остывает и, соответственно, ускоренными темпами нагревается;
- снижение способности бетонного массива передавать тепло позволяет на протяжении увеличенного периода времени сохранять внутри помещения комфортную температуру, с соответственным уменьшением тепловых потерь.
Зная теплопроводность бетонного массива можно обеспечить внутри здания комфортный микроклимат
Если подытожить, то степень теплопроводимости бетона является определяющим фактором, влияющим на комфортность жилища. Различные виды бетона отличаются структурой массива, свойствами применяемого наполнителя и, соответственно, степенью теплопроводности. Важно использовать такие марки бетона совместно с утеплителями, чтобы обеспечить надежное удержание бетонным массивом тепла в помещении. Выбор применяемых для строительства материалов производится на проектной стадии.
Кирпич как изолятор
Для сопоставления свойств теплопроводности можно сравнить бетон и кирпич. По прочностным свойствам кирпич ничуть не уступает своему собрату, а иногда и превосходит его. То же самое можно сказать и про плотность. Современные виды кирпича, используемые в строительных работах, можно разделить на силикатный и керамический. Те, в свою очередь, могут быть полнотелыми, пустотелыми и щелевыми.
Таким образом, теплоизоляция кирпича и бетона идентична. Что силикатный кирпич, что керамический держат тепло довольно слабо. Это значит, что сооружения необходимо дополнительно утеплять. Изоляторами как в кирпичных, так и бетонных зданиях служат чаще всего пенополистирол и минеральная вата.
Теплопроводность железобетона и тепловое сопротивление – знакомимся с понятиями
Принимая решение об использовании для строительства здания определенной марки бетона или другого строительного материала, следует обращать внимание на следующие характеристики, обеспечивающие энергоэффективность строения:
- коэффициент теплопроводности железобетона или бетона. Это специальный показатель, характеризующий объем тепловой энергии, которая может пройти через различные стройматериалы за определенный промежуток времени. При снижении величины коэффициента, способность материала проводить тепло уменьшается, а при возрастании показателя – скорость отвода тепла возрастает;
- тепловое сопротивление строительных конструкций.
Этот параметр характеризует свойства стройматериалов препятствовать потерям тепловой энергии. Тепловое сопротивление является обратным показателем, если сравнивать со степенью теплопроводности. При повышенном значении показателя теплового сопротивления стройматериал может применяться для теплоизоляционных целей, а при пониженном – для ускоренного отвода тепла.
Разрабатывая проект будущего здания, и выполняя тепловые расчеты, необходимо учитывать указанные показатели.
Коэффициент теплопроводности материалов
Влажность
На способность передавать тепло влияет влажность. Повышенная влажность уменьшает способность конструкций сохранять тепло. При заполнении пор материала водой, а не воздухом, составляющая сохранения тепла понижается, а в зимний период увеличивается вероятность промерзания стен.
Например, пористый бетон обладает способностью проводить тепло на 0,14 Вт, а пропитанный водой материал — 1,1 — 2,9 Вт.
Выбирая материал для строительства будущего дома, стоит ориентироваться на инструкции по теплопроводности, сетки с указанием коэффициентов. Для предварительного проектирования учитывают не только способность стен удержать тепло, а температуру окружающей среды, систему отопления, которая будет использоваться в доме.
Коэффициент теплопроводности бетона для различных видов монолита
Определяясь с видом бетона, который будет использоваться для постройки жилого дома, следует оценить, как изменяется теплопроводность монолита для разновидностей этого строительного материала. Поможет сравнить теплопроводность бетона таблица, которая охватывает характеристики всех типов бетона. Рассмотрим, как изменяется уровень теплопроводности бетонного массива, который выражается в Вт/м2х ºC для наиболее распространенных разновидностей материала.
Наименьшее значение коэффициента у бетонных композитов с ячеистой структурой:
- для сухого пенобетона и газонаполненного бетона величина показателя небольшая, по сравнению с другими видами. Она возрастает при повышении плотности материала. При удельном весе 0,6 т/м3 коэффициент равен 0,14, а при плотности 1 т/м3 уже составляет 0,31.
При базовой влажности значения возрастают от 0,22 до 0,48, а при повышенной от 0,26 до 0,55;
- керамзитонаполненный бетон, в зависимости от плотности массива, также имеет различную величину коэффициента, который изменяется пропорционально возрастанию удельного веса. Так керамзитобетон с плотностью 0,5 т/м3 имеет низкий коэффициент, равный 0,14, а при возрастании плотности до 1,8 т/м3 параметр теплопроводности возрастает до 0,66.
Величина коэффициента определяется также используемым для приготовления бетонной смеси наполнителем:
- для тяжелого бетона плотностью 2,4 т/м3, содержащего щебеночный наполнитель, показатель составляет 1,51;
- бетон, где в качестве наполнителя используются шлаки, характеризуется уменьшенной величиной теплопроводности, составляющей 0,3–0,7;
- керамзитобетон, содержащий кварцевый или перлитовый песок, имеет плотность 0,8–1 и, соответственно, уровень теплопроводности, равный 0,22–0,41.
Коэффициент теплопроводности бетона
надежно теплоизолируют возводимое строение. При сооружении стен зданий из бетона, имеющего пористую структуру и пониженный уровень теплопроводности, необходим тонкий слой теплоизолятора. Применение тяжелых марок бетона требует усиленного утепления строения. Для этого укладывается толстый слой теплоизолятора. При подборе материала следует учитывать, что с возрастанием плотности увеличивается теплопроводность бетонного массива.
Зависимость от различных показателей
Теплоизоляционные характеристики бетона, кирпича, гипсокартона, дерева и многих других стройматериалов зависят от ряда параметров. Например:
- Влаги.
- Пористости.
- Плотности.
Чем больше пор в детали, тем она теплее, а тяжелый стройматериал — прочнее. В современных условиях строительства используются различные типы материала. Но их условно можно поделить на два основных — это тяжелые и легкие пенистые типы.
Тяжелый сорт бетона тоже можно разделить на два вида: тяжелые и особо тяжелые. Для усиления прочности во второй вид добавляют различные наполнители — магнетит, металлический скреп, барит и др. Особо тяжелый бетон применяется при строительстве объектов, нуждающихся в защите от радиации. Плотность материала в этой категории начинается от 2500 кг/куб. м.
Обычный тяжелый бетон изготавливают с добавлением гранита, диабаза, известняка, на основе горного щебня. Плотность материала здесь варьируется от 1500 до 2500 кг/куб. м.
Легкий сорт бетона тоже можно поделить на две группы. Довольно часто в строительных работах используют виды на базе пористого наполнителя, в роли которого выступают шлак, керамзит, пемза и др.
Для изготовления второй группы применяется обычный наполнитель, который вспенивается в процессе замеса. В итоге получается материал с очень большим количеством пор.
Теплоизоляция легкого бетона, конечно же, высокая, но вот прочность гораздо ниже тяжелого. Применяются такие стройматериалы при сооружении зданий, которые не подвергаются серьезным перегрузкам.
Ячеистый бетон можно разделить по назначению:
- Теплоизолирующий (плотностью до 800 кг/куб.м).
- Конструкционно-теплоизолирующий (плотность до 1350 кг/куб. м).
- Конструкционный (до 1850 кг/куб.м).
Теплоизоляционные блоки чаще всего применяют для утепления стен, которые возводили из кирпича или цементного раствора. Кроме того, из такого бетона можно соорудить небольшие ограждающие конструкции.
К конструкционно-теплоизолирующим и просто конструкционным видам можно отнести керамзитобетон, шлакопемзобетон, пенобетон и др. Их можно использовать в качестве теплоизоляционного и строительного материала.
Какие факторы влияют на коэффициент теплопроводности железобетона
Уровень теплопроводимости бетона, независимо от его марки и наличия в массиве стальной арматуры, зависит от комплекса факторов. Рассмотрим показатели, каждый из которых оказывает определенное влияние на данную характеристику:
- структура бетонного массива.
При создании внутри монолита воздушных полостей процесс передачи тепла через ячеистый массив осуществляется на небольшой скорости и с минимальными потерями. Если подытожить, то увеличенная концентрация ячеек позволяет снизить потери тепла;
- удельный вес материала. Плотность бетонного массива влияет на его структуру и, соответственно, на интенсивность процесса теплообмена. При возрастании плотности материала увеличивается степень теплопередачи и возрастает объем тепловых потерь;
- концентрация влаги в бетонных стенах. Бетонный массив, имеющий пористую структуру, гигроскопичен. Частицы влаги, которые по капиллярам просачиваются вглубь бетона, заполняют воздушные поры и ускоряют тем самым процесс теплопередачи.
Выполняя расчеты необходимо учитывать, что с уменьшением влажности материала снижается степень теплопроводимости, и теряется меньшее количество тепла. Применение пористого заполнителя позволяет снизить потери тепла и обеспечить комфортный микроклимат помещения. Стройматериалы с низкой теплопроводностью целесообразно использовать для теплоизоляционных целей. Зная зависимость теплопроводности бетона от его характеристик можно выбрать оптимальный вид материала для постройки стен.
Коэффициент теплопроводности железобетона
Способность материалов проводить тепло
По сути, это свойство любого материала пропускать через свою структуру тепло. И чем больше тепловой энергии проходит, тем выше теплопроводность. Для того чтобы сохранить температуру внутри дома, необходимы стройматериалы с низким коэффициентом.
Критерии зависимости
К второстепенным относят влажность бетонной конструкции, температуру окружающей среды, качественное состояние самого бетона.
Теплопроводность бетона и утепление зданий
Решение о теплоизоляции стен возводимых зданий принимается в зависимости от того, из каких видов бетона производится сооружение стен. Бетонные изделия делятся на следующие виды:
- конструкционные, применяемые для капитальных стен.
Отличаются повышенной нагрузочной способностью, увеличенной плотностью, а также способностью ускоренными темпами проводить тепло;
- теплоизоляционные, используемые в ненагруженных конструкциях. Характеризуются уменьшенным удельным весом, ячеистой структурой, благодаря которой снижается теплопроводность стен.
Таблица теплопроводности строительных материалов: коэффициенты
Для поддержания комфортной температуры в помещении можно возводить стены из различных видов бетона. При этом толщина стен будет существенно изменяться. Одинаковый уровень теплопроводности капитальных стен обеспечивается при следующей толщине:
- пенобетон – 25 см;
- керамзитобетон – 50 см;
- кирпичная кладка – 65 см.
Для поддержания благоприятного микроклимата, в рамках мероприятий по энергосбережению, выполняется теплоизоляция строительных конструкций. На стадии разработки проекта специалисты определяют возможные пути потери тепла и выбирают оптимальный вариант утеплителя.
Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей
Основной объем тепловых потерь происходит из-за недостаточно эффективной теплоизоляции следующих частей здания:
- поверхности пола;
- капитальных стен;
- кровельной конструкции;
- оконных и дверных проемов.
При профессиональном подходе и выборе эффективных утеплителей можно сделать свой дом более комфортным, а также сэкономить значительный объем денежных средств на отоплении.
Методы определения
Эту информацию получают в ходе процесса измерения термического сопротивления с помощью специального оборудования. Сама процедура и используемые технические средства регламентируются государственным стандартом 7076-99. Он описывает требования к образцу, прибору, градуировке и допускает проведение испытаний лишь по двум схемам – ассиметричной и симметричной.
Сущность обоих методов заключается в том, что создается стационарный тепловой поток, который проходит через образец плоской формы. Толщина образца известна, а направление потока выбирается перпендикулярно наибольшим граням. В ходе процесса исследования производится измерение величины плотности теплового потока, а также температуры противоположных граней.
Число образцов, которое необходимо использовать для чистоты эксперимента, регламентируется для каждого конкретного вида бетона. Как правило, подобная информация содержится в государственном стандарте на конкретный материал. В том случае, когда ГОСТ не содержит подобных данных, число образцов выбирают равным пяти.
В ходе испытания в помещении должны поддерживаться определенные условия: уровень относительной влажности воздуха должен находиться в пределах 10% от 50-процентной отметки. Абсолютная температура в процессе испытаний должна находиться в пределах 290-300 К.
Как производится расчет с учетом коэффициента теплопроводности бетона
Для поддержания комфортной температуры и снижения теплопотерь несущие стены современных зданий выполняются многослойными и включают капитальные конструкции, теплоизоляционные материалы, отделочные покрытия. Каждый слой сэндвича имеет определенную толщину.
Решая задачу по расчету толщины теплоизолятора, необходимо использовать формулу расчета теплового сопротивления – R=p/k, которая расшифровывается следующим образом:
- R – величина температурного сопротивления;
- p – значение толщины слоя, указанное в метрах;
- k – коэффициент теплопроводности железобетона, бетона или другого материала, из которого изготовлены стены.
Используя данную зависимость можно самостоятельно выполнить расчет, используя обычный калькулятор. Для этого необходимо разделить толщину строительной конструкции на коэффициент теплопроводимости бетона или другого материала. Рассмотрим пример расчета для стен толщиной 0,3 метра, возведенных из газобетона с удельным весом 1000 т/м3 и степенью теплопроводности, равной 0,31.
Алгоритм вычислений:
- Рассчитайте термосопротивление, разделив толщину стен на коэффициент теплопроводности – 0,3:0,31=0,96.
- Отнимите полученный результат от предельно допустимого для определенной климатической зоны – 3,28-0,96=2,32.
Перемножив коэффициент теплопроводности утеплителя на величину термического сопротивления, получим в результате требуемый размер слоя. Например, толщина листового пенопласта с коэффициентом теплопроводности 0,037 составит – 0,037х2,32=0,08 м.
Таблица – выражение основных параметров теплопроводности песка
Данная таблица поможет как начинающим строителям, так и тем, кто не новичок в этом деле, быстро и точно рассчитать необходимое количество песочного материала для будущей застройки.
Таблица теплопроводности
Если используется строительный вид песка стандартного ГОСТ образца, то при массе 1600 кгм3 теплопроводность будет составлять 0,35 Вт м*град., а теплоемкость 840 Джкг*град.
Если используется влажный речной песок, то параметры будут такие: масса от 1900 кгм3 имеет теплопроводность 0,814 Вт м*град, а теплоемкость 2090 Джкг*град.
Все эти данные взяты из различных пособий о физических величинах и теплотехнических таблиц, где приведены многие показатели именно для строительных материалов. Так что полезным будет иметь такую книжечку у себя.
Перегородки из пенобетонных блоков
Рисунок 3 — монтаж перегородки из пенобетонных блоков
На внутренние перегородки из пенобетона показатель теплопроводности практически не влияет. Но при повышенной пористости структуры улучшаются звукоизоляционные свойства материала, что положительно сказывается на эксплуатационных характеристиках.
Перегородки лучше строить из теплоизоляционного пенобетона используя марки D300, D400 и D500.
Узнать недостатки пенобетона и рассчитать сколько в 1 кубе пеноблоков можно перейдя по ссылкам.
Свойства различных типов блоков
Красный керамический
Пористость увеличивает теплосопротивление стройматериалов, поэтому у полнотелого кирпича теплопроводность выше.
- прочность;
- морозостойкость;
- огнеупорность;
- звукоизоляция.
Вернуться к оглавлению
Клинкерный
Характеристика шамотного
- огнеупорность;
- устойчивость к перепадам температуры;
- высокая теплопроводность;
- легкий вес;
- устойчивость к воздействию щелочей и ряда кислот;
- прочность;
- эстетичность.
Вернуться к оглавлению
Силикатный
Таблица теплопроводности строительных материалов: коэффициенты
ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ
Любое строительство независимо от его размера всегда начинается с разработки проекта. Его цель – спроектировать не только внешний вид будущего строения, еще и просчитать основные теплотехнические характеристики. Ведь основной задачей строительства считается сооружение прочных, долговечных зданий, способных поддерживать здоровый и комфортный микроклимат, без лишних затрат на отопление. Несомненную помощь при выборе сырья, используемого для возведения постройки, окажет таблица теплопроводности строительных материалов: коэффициенты.
Тепло в доме напярямую зависит от коэффициента теплопроводности строительных материалов
Что такое теплопроводность?
Теплопроводность – это процесс передачи энергии тепла от нагретых частей помещения к менее теплым. Такой обмен энергией будет происходить, пока температура не уравновесится. Применяя это правило к ограждающим системам дома, можно понять, что процесс теплопередачи определяется промежутком времени, за который происходит выравнивание температуры в комнатах с окружающей средой. Чем это время больше, тем теплопроводность материала, применяемого при строительстве, ниже.
Отсутствие теплоизоляции дома скажется на температуре воздуха внутри помещения
Для характеристики проводимости тепла материалами используют такое понятие, как коэффициент теплопроводности. Он показывает, какое количество тепла за одну единицу временного промежутка пройдет через одну единицу площади поверхности. Чем выше подобный показатель, тем сильнее теплообмен, значит, постройка будет остывать значительно быстрее. То есть при сооружении зданий, домов и прочих помещений необходимо использовать материалы, проводимость тепла которых минимальна.
Сравнительные характеристики теплопроводности и термического сопротивления стен, возведенных из кирпича и газобетонных блоков
Что влияет на величину теплопроводности?
Тепловая проводимость любого материала зависит от множества параметров:
- Пористая структура. Присутствие пор предполагает неоднородность сырья. При прохождении тепла через подобные структуры, где большая часть объема занята порами, охлаждение будет минимальным.
- Плотность. Высокая плотность способствует более тесному взаимодействию частиц друг с другом. В результате теплообмен и последующее полное уравновешивание температур происходит быстрее.
- Влажность. При высокой влажности окружающего воздуха или намокании стен постройки, сухой воздух вытесняется капельками жидкости из пор. Теплопроводность в подобном случае значительно увеличивается.
Теплопроводность, плотность и водопоглощение некоторых строительных материалов
Применение показателя теплопроводности на практике
В строительстве все материалы условно подразделяются на теплоизоляционные и конструкционные. Конструкционное сырье отличается наибольшими показателями теплопроводности, но именно его применяют для постройки стен, перекрытий, прочих ограждений. Согласно таблице теплопроводности строительных материалов, при возведении стен из железобетона, для низкого теплообмена с окружающей средой толщина конструкции должна быть около 6 метров. В таком случае строение получится огромным, громоздким и потребует немалых затрат.
Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым
Поэтому при возведении постройки следует отдельное внимание уделять дополнительным теплоизолирующим материалам. Слой теплоизоляции может не понадобиться только для построек из дерева или пенобетона, но даже при использовании подобного низкопроводного сырья толщина конструкции должна быть не менее 50 см.
Нужно знать! У теплоизоляционных материалов значения показателя теплопроводности минимальны.
Теплопроводность готового здания. Варианты утепления конструкций
При разработке проекта постройки необходимо учесть все возможные варианты и пути потери тепла. Большое его количество может уходить через:
- стены – 30%;
- крышу – 30%;
- двери и окна – 20%;
- полы – 10%.
Теплопотери неутепленного частного дома
При неверном расчете теплопроводности на этапе проектирования, жильцам остается довольствоваться только 10% тепла, получаемого от энергоносителей. Именно поэтому дома, возведенные из стандартного сырья: кирпича, бетона, камня рекомендуют дополнительно утеплять. Идеальная постройка согласно таблице теплопроводности строительных материалов должна быть выполнена полностью из теплоизолирующих элементов. Однако малая прочность и минимальная устойчивость к нагрузкам ограничивает возможности их применения.
Нужно знать! При обустройстве правильной гидроизоляции любого утеплителя высокая влажность не повлияет на качество теплоизоляции и сопротивление постройки теплообмену будет значительно выше.
Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей
Самым распространенным вариантом сочетание несущей конструкции из высокопрочных материалов с дополнительным слоем теплоизоляции. Сюда можно отнести:
- Каркасный дом. При его постройке каркасом из древесины обеспечивается жесткость всей конструкции, а укладка утеплителя производится в пространство между стойками. При незначительном уменьшении теплообмена в некоторых случая может потребоваться утепление еще и снаружи основного каркаса.
- Дом из стандартных материалов. При выполнении стен из кирпича, шлакоблоков, утепление должно проводиться по наружной поверхности конструкции.
Необходимая тепло- и гидроизоляция для сохранения тепла в частном доме
Таблица теплопроводности строительных материалов: коэффициенты
В этой таблице собраны показатели теплопроводности самых распространенных строительных материалов. Пользуясь подобными справочниками, можно без проблем рассчитать необходимую толщину стен и применяемого утеплителя.
Таблица коэффициента теплопроводности строительных материалов:
Таблица теплопроводности строительных материалов: коэффициенты
Теплопроводность строительных материалов (видео)
ОЦЕНИТЕ
МАТЕРИАЛ
Загрузка…
ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ
СМОТРИТЕ ТАКЖЕ
REMOO В ВАШЕЙ ПОЧТЕ
Таблица теплопроводности строительных материалов, рекомендации
Комфорт и уют в доме во многом зависят от грамотно рассчитанного теплообмена ещё на этапе строительства. Для этого учитывают всё. Чтобы расчёты были более точными, а сделать их было гораздо легче, применяется таблица теплопроводности строительных материалов. С её помощью можно рассчитать, насколько тепло будет в доме и насколько экономнее получится его отопление. Рассмотрим основные параметры теплопроводности различных материалов и методику вычисления подобной величины общей конструкции.
Чем ниже теплопроводность строительных материалов, тем теплее в доме
Содержание статьи
Что такое теплопроводность, термическое сопротивление и коэффициент теплопроводности
Что же за «зверь» − теплопроводность? Если «расшифровать» сложное физическое определение, то можно получить следующее пояснение. Теплопроводность – свойство, которым обладают все строительные материалы. Характеризуется способностью отдавать тепло от нагретого предмета более холодному. Чем быстрее и интенсивнее это происходит, тем холоднее сам материал, соответственно, и строение из него нуждается в более интенсивном обогреве. Что не очень эффективно, особенно в денежном плане.
Для оценки величины теплопроводности используются специальные коэффициенты, которые уже заранее выявлены. ГОСТ 30290-94 контролирует методы определения подобной характеристики. Последняя нераздельно связана с термическим сопротивлением, которое означает сопротивление слоя теплоотдачи. В случае многослойного материала оно рассчитывается как сумма термических сопротивлений отдельных слоёв. Сама же эта величина равна отношению толщины слоя к коэффициенту.
ИСТ-1 – прибор для определения теплопроводности
Внимание! Для упрощённого расчёта теплосопротивления стены в сети можно найти калькулятор с доступным и понятным интерфейсом.
Как видите, в определении теплопроводности нет ничего сложного и непонятного. Зная все подобные характеристики будущих материалов, можно составить «энергоэффективный бутерброд», но только при условии учёта всех обстоятельств, которые будут влиять на теплоэффективность каждого слоя конструкции.
Основные параметры, от которых зависит величина теплопроводности
Не все строительные материалы одинаково теплоэффективны. На это влияют следующие факторы:
- Пористая структура материала говорит о том, что подобное строение неоднородно, а поры наполнены воздухом. Тепловые массы, перемещаясь через такие прослойки, теряют минимум своей энергии. Поэтому пенобетон именно с замкнутыми порами считается хорошим теплоизолятором.
Замкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизолятором
- Повышенная плотность материала гарантирует более тесную взаимосвязь частиц друг с другом. Соответственно, уравновешивание температурного баланса происходит намного быстрее. По этой причине плотный материал обладает большим коэффициентом проводимости тепла. Поэтому железобетон считается одним из самых «холодных» материалов.
Высокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностью
- Влажность – злокачественный фактор, повышающий скорость прохождения тепла. Поэтому так важно качественно произвести гидроизоляцию необходимых узлов здания, грамотно организовать вентиляцию и использовать максимально инертные к намоканию строительные материалы.
«Холодно, холодно и сыро. Не пойму, что же в нас остыло…» Даже Согдиана знает о том, что сырость и холод − вечные соседи, от которых не спрячешься в тёплом свитере
Зная, что такое проводимость тепла, и какие факторы на неё влияют, можно смело пробовать применять свои знания для расчётов будущих строительных конструкций. Для этого нужно знать коэффициенты используемых материалов.
Коэффициент теплопроводности строительных материалов – таблицы
Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.
Таблица коэффициентов теплоотдачи материалов. Часть 1Проводимость тепла материалов. Часть 2Таблица теплопроводности изоляционных материалов для бетонных полов
Но эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.
Таблица теплопроводности кирпича
Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.
Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)
Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4−0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.
Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.
Теплопроводность разных видов кирпичей
Таблица теплопроводности металлов
Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.
Теплоэффективность разных видов металлов. Часть 1Теплоэффективность разных видов металлов. Часть 2Теплоэффективность разных видов металлов. Часть 3
Таблица теплопроводности дерева
Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.
Проводимость тепла дереваПрочность разных пород древесины
Таблица проводимости тепла бетонов
Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.
Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов
Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.
Какой коэффициент теплопроводности у воздушной прослойки
В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу. Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины.
Таблица проводимости тепла воздушных прослоек
Калькулятор расчёта толщины стены по теплопроводности
На практике подобные данные применяют часто и не только профессиональными проектировщиками. Нет ни одного закона, запрещающего самостоятельно создавать проект своего будущего дома. Главное, чтобы тот соответствовал всем нормативам и СНиПам. Чтобы рассчитать теплопроводность стены, можно воспользоваться специальным калькулятором. Подобное «чудо прогресса» можно как установить к себе на компьютер в качестве приложения, так и воспользоваться услугой онлайн.
Окно расчёта калькулятора
В нём нет премудростей. Просто выбираешь необходимые данные и получаешь готовый результат.
Расчёт толщины стен с использованием глиняного обыкновенного кирпича на цементно-песчаном растворе
Существуют и более сложные калькуляторы расчёта, где учитываются все слои стен, пример подобного расчётного «механизма» показан на фото ниже.
Расчёт проводимости тепла всех прослоек стен
Конечно, теплоэффективность будущего здания – это вопрос, требующий пристального внимания. Ведь от него зависит, насколько тепло будет в доме и насколько экономно будет его отапливать. Для каждого климатического региона существуют свои нормы коэффициентов теплопроводности ограждающих конструкций. Можно рассчитать самостоятельно теплоэффективность, но если возникают проблемы, лучше обратиться за помощью к специалистам.
Предыдущая
Строительные материалыИз чего делают цемент: от теории к практике
Следующая
Строительные материалыКрепкий пол в каждый дом: ламинат или линолеум — что лучше
Понравилась статья? Сохраните, чтобы не потерять!
Коэффициент теплопроводности материалов таблица, формулы
Термин «теплопроводность» применяется к свойствам материалов пропускать тепловую энергию от горячих участков к холодным. Теплопроводность основана на движении частиц внутри веществ и материалов. Способность передавать энергию тепла в количественном измерении – это коэффициент теплопроводности. Круговорот тепловой энергопередачи, или тепловой обмен, может проходить в любых веществах с неравнозначным размещением разных температурных участков, но коэффициент теплопроводности зависим от давления и температуры в самом материале, а также от его состояния – газообразного, жидкого или твердого.
Эквивалентная теплопроводимость строительных материалов и утеплителей
Физически теплопроводность материалов равняется количеству тепла, которое перетекает через однородный предмет установленных габаритов и площади за определенный временной отрезок при установленной температурной разнице (1 К). В системе СИ единичный показатель, который имеет коэффициент теплопроводности, принято измерять в Вт/(м•К).
Как рассчитать теплопроводность по закону Фурье
В заданном тепловом режиме плотность потока при передаче тепла прямо пропорциональна вектору максимального увеличения температуры, параметры которой изменяются от одного участка к другим, и по модулю с одинаковой скоростью увеличения температуры по направлению вектора:
q → = − ϰ х grad х (T), где:
- q → – направление плотности предмета, передающего тепло, или объем теплового потока, который протекает по участку за заданную временную единицу через определенную площадь, перпендикулярный всем осям;
- ϰ – удельный коэффициент теплопроводности материала;
- T – температура материала.
Перенос тепла в неравновесной термодинамической системе
Знак «-» в формуле перед «ϰ» указывает, что тепло движется в противоположном направлении от вектора grad х (T)/ – в направлении уменьшения температуры предмета. Эта формула отражает закон Фурье. В интегральном выражении коэффициент теплопередачи согласно закону Фурье будет выглядеть как формула:
- P = − ϰ х S х ΔT / l, выражается в (Вт/(м•К) х (м2•К) / м = Вт/(м•К) х (м•К) = Вт), где:
- P – общая мощность потерь теплоотдачи;
- S – сечение предмета;
- ΔT – разница температуры по стыкам сторон предмета;
- l – расстояние между стыками сторон предмета – длина фигуры.
Связь коэффициента теплопроводимости с электропроводностью материалов
Электропроводность и коэффициент теплопередачи
Собственно, коэффициент теплопроводности металлов «ϰ» связан с их удельной электропроводимостью «σ» согласно закону Видемана-Франца, в соответствии с которым коэффициент теплопроводности металлов зависит от удельной электропроводимости прямо пропорционально температуре:
Κ / σ = π2 / 3 х (К / e)2 х T, где:
- К – постоянный коэффициент Больцмана, устанавливающий закономерность между тепловой энергией тела и его температурой;
- e – заряд электрона;
- T – термодинамическая температура предмета.
Коэффициент теплопроводности газовой среды
В газовой среде коэффициент теплопроводности воздуха может рассчитываться по приблизительной формуле:
ϰ ~ 1/3 х p х cv х Λλ х v–, где:
- pv – плотность газовой среды;
- cv – удельная емкость тепловой энергии при одном и том же объеме тела;
- Λλ – расстояние свободного перемещения молекул в газовой среде;
- v– – скорость передачи тепла.
Что такое теплопроводимость
Или:
ϰ = I x К / 3 x π3/3 x d2 √ RT / μ, где:
- i – результат суммирования уровней свободы прямого движения и вращения молекул в газовой среде (для 2-атомных газов i=5, для 1-атомных i=3;
- К – коэффициент Больцмана;
- μ – отношение массы газа к количеству молей газа;
- T – термодинамическая температура;
- d – ⌀ молекул газа;
- R – универсальный коэффициент для газовой среды.
Согласно формуле минимальная теплопроводность материалов существует у тяжелых инертных газов, максимально эффективная теплопроводность строительных материалов – у легких.
Теплопроводимость в газовой разреженной среде
Газовая среда и теплопроводность
Результат по выкладкам выше, по которым делают расчет теплопроводности для газовой среды, от давления не зависит. Но в очень разреженной газовой среде расстояние свободного перемещения молекул зависит не от столкновений частиц, а от препятствий в виде стен резервуара. При этом ограничение перемещения молекул в соответствующих единицах измерения называют высоковакуумной средой, при которой степень теплообмена уменьшается в зависимости от плотности материала и прямо пропорциональна значению давления в резервуаре:
ϰ ~ 1/3 х p х cv х l х v–, где:
i – объем резервуара;
Р – уровень давления в резервуаре.
Согласно этой формуле теплопроводность в вакуумной среде стремится к нулевой отметке при глубоком вакууме. Это объясняется тем, что в вакууме частицы, которые передают тепловую энергию, имеют низкую плотность на единицу площади. Но тепловая энергия в вакуумной среде перетекает посредством излучения. В качестве примера можно привести обычный термос, в котором для уменьшения потерь тепловой энергии стенки должны быть двойными и посеребренными, без воздуха между ними.
Что такое тепловое излучение
При применении закона Фурье не принимают во внимание инерционность перетекания тепловой энергии, а это значит, что имеется в виду мгновенная передача тепла из любой точки на любое расстояние. Поэтому формулу нельзя использовать для расчетов передачи тепла при протекании процессов, имеющих высокую частоту повторения. Это ультразвуковое излучение, передача тепловой энергии волнами ударного или импульсного типа и т.д. Существует решение по закону Фурье с релаксационным членом:
τ х ∂q / ∂t = − (q + ϰ х ∇T) .
Если релаксация τ мгновенная, то формула превращается в закон Фурье.
Ориентировочная таблица теплопроводности материалов:
Основа | Значение теплопроводности, Вт/(м•К) |
Жесткий графен | 4840 +/– 440 – 5300 +/– 480 |
Алмаз | 1001-2600 |
Графит | 278,4-2435 |
Бора арсенид | 200-2000 |
SiC | 490 |
Ag | 430 |
Cu | 401 |
BeO | 370 |
Au | 320 |
Al | 202-236 |
AlN | 200 |
BN | 180 |
Si | 150 |
Cu3Zn2 | 97-111 |
Cr | 107 |
Fe | 92 |
Pt | 70 |
Sn | 67 |
ZnO | 54 |
Черная сталь | 47-58 |
Pb | 35,3 |
Нержавейка | Теплопроводность стали – 15 |
SiO2 | 8 |
Высококачественные термостойкие пасты | 5-12 |
Гранит
(состоит из SiO2 68-73 %; Al2O3 12,0-15,5 %; Na2O 3,0-6,0 %; CaO 1,5-4,0 %; FeO 0,5-3,0 %; Fe2O3 0,5-2,5 %; К2О 0,5-3,0 %; MgO 0,1-1,5 %; TiO2 0,1-0,6 %) |
2,4 |
Бетонный раствор без заполнителей | 1,75 |
Бетонный раствор со щебнем или с гравием | 1,51 |
Базальт
(состоит из SiO2 – 47-52%, TiO2 – 1-2,5%, Al2O3 – 14-18%, Fe2O3 – 2-5%, FeO – 6-10%, MnO – 0,1-0,2%, MgO – 5-7%, CaO – 6-12%, Na2O – 1,5-3%, K2O – 0,1-1,5%, P2O5 – 0,2-0,5 %) |
1,3 |
Стекло
(состоит из SiO2, B2O3, P2O5, TeO2, GeO2, AlF3 и т. |
1-1,15 |
Термостойкая паста КПТ-8 | 0,7 |
Бетонный раствор с наполнителем из песка, без щебня или гравия | 0,7 |
Вода чистая | 0,6 |
Силикатный
или красный кирпич |
0,2-0,7 |
Масла
на основе силикона |
0,16 |
Пенобетон | 0,05-0,3 |
Газобетон | 0,1-0,3 |
Дерево | Теплопроводность дерева – 0,15 |
Масла
на основе нефти |
0,125 |
Снег | 0,10-0,15 |
ПП с группой горючести Г1 | 0,039-0,051 |
ЭППУ с группой горючести Г3, Г4 | 0,03-0,033 |
Стеклянная вата | 0,032-0,041 |
Вата каменная | 0,035-0,04 |
Воздушная атмосфера (300 К, 100 кПа) | 0,022 |
Гель
на основе воздуха |
0,017 |
Аргон (Ar) | 0,017 |
Вакуумная среда | 0 |
Приведенная таблица теплопроводности учитывает теплопередачу посредством теплового излучения и теплообмена частиц. Так как вакуум не передает тепло, то оно перетекает при помощи солнечного излучения или другого типа генерации тепла. В газовой или жидкой среде слои с разной температурой смешиваются искусственно или естественным способом.
Таблица теплопроводимости стройматериалов
Проводя расчет теплопроводности стены, необходимо принимать во внимание, что теплопередача сквозь стеновые поверхности меняется от того, что температура в здании и на улице всегда разная, и зависит от площади всех поверхностей дома и от теплопроводности стройматериалов.
Чтобы количественно оценить теплопроводность, ввели такое значение, как коэффициент теплопроводности материалов. Он показывает, как тот или иной материал способен передавать тепло. Чем выше это значение, например, коэффициент теплопроводности стали, тем эффективнее сталь будет проводить тепло.
- При утеплении дома из древесины рекомендуется выбирать стройматериалы с низким коэффициентом.
- Если стена кирпичная, то при значении коэффициента 0,67 Вт/(м2•К) и толщине стены 1 м при ее площади 1 м2 при разнице наружной и внутридомовой температуры 10С кирпич будет пропускать 0,67 Вт энергии.
При разнице температур 100С кирпич будет пропускать 6,7 Вт и т.д.
Стандартное значение коэффициента теплопроводимости теплоизоляции и других строительных материалов верно для толщины стены 1 м. Чтобы провести расчет теплопроводности поверхности другой толщины, следует коэффициент поделить на выбранное значение толщины стены (метры).
Ориентировочные показатели коэффициентов теплопроводимости
В СНиП и при проведении расчетов фигурирует термин «тепловое сопротивление материала», он означает обратную теплопроводность. То есть при теплопроводности листа пенопласта 10 см и его теплопроводности 0,35 Вт/(м2•К) тепловое сопротивление листа – 1 / 0,35 Вт/(м2•К) = 2,85 (м2•К)/Вт.
Ниже – таблица теплопроводности для востребованных строительных материалов и теплоизоляторов:
Стройматериалы | Коэффициент теплопроводимости, Вт/(м2•К) |
Плиты из алебастра | 0,47 |
Al | 230 |
Шифер асбоцементный | 0,35 |
Асбест (волокно, ткань) | 0,15 |
Асбоцемент | 1,76 |
Асбоцементные изделия | 0,35 |
Асфальт | 0,73 |
Асфальт для напольного покрытия | 0,84 |
Бакелит | 0,24 |
Бетон с заполнителем щебнем | 1,3 |
Бетон с заполнителем песком | 0,7 |
Пористый бетон – пено- и газобетон | 1,4 |
Сплошной бетон | 1,75 |
Термоизоляционный бетон | 0,18 |
Битумная масса | 0,47 |
Бумажные материалы | 0,14 |
Рыхлая минвата | 0,046 |
Тяжелая минвата | 0,05 |
Вата – теплоизолятор на основе хлопка | 0,05 |
Вермикулит в плитах или листах | 0,1 |
Войлок | 0,046 |
Гипс | 0,35 |
Глиноземы | 2,33 |
Гравийный заполнитель | 0,93 |
Гранитный или базальтовый заполнитель | 3,5 |
Влажный грунт, 10% | 1,75 |
Влажный грунт, 20% | 2,1 |
Песчаники | 1,16 |
Сухая почва | 0,4 |
Уплотненный грунт | 1,05 |
Гудроновая масса | 0,3 |
Доска строительная | 0,15 |
Фанерные листы | 0,15 |
Твердые породы дерева | 0,2 |
ДСП | 0,2 |
Дюралюминиевые изделия | 160 |
Железобетонные изделия | 1,72 |
Зола | 0,15 |
Известняковые блоки | 1,71 |
Раствор на песке и извести | 0,87 |
Смола вспененная | 0,037 |
Природный камень | 1,4 |
Картонные листы из нескольких слоев | 0,14 |
Каучук пористый | 0,035 |
Каучук | 0,042 |
Каучук с фтором | 0,053 |
Керамзитобетонные блоки | 0,22 |
Красный кирпич | 0,13 |
Пустотелый кирпич | 0,44 |
Полнотелый кирпич | 0,81 |
Сплошной кирпич | 0,67 |
Шлакокирпич | 0,58 |
Плиты на основе кремнезема | 0,07 |
Латунные изделия | 110 |
Лед при температуре 00С | 2,21 |
Лед при температуре -200С | 2,44 |
Лиственное дерево при влажности 15% | 0,15 |
Медные изделия | 380 |
Мипора | 0,086 |
Опилки для засыпки | 0,096 |
Сухие опилки | 0,064 |
ПВХ | 0,19 |
Пенобетон | 0,3 |
Пенопласт марки ПС-1 | 0,036 |
Пенопласт марки ПС-4 | 0,04 |
Пенопласт марки ПХВ-1 | 0,05 |
Пенопласт марки ФРП | 0,044 |
ППУ марки ПС-Б | 0,04 |
ППУ марки ПС-БС | 0,04 |
Лист из пенополиуретана | 0,034 |
Панель из пенополиуретана | 0,024 |
Облегченное пеностекло | 0,06 |
Тяжелое вспененное стекло | 0,08 |
Пергаминовые изделия | 0,16 |
Перлитовые изделия | 0,051 |
Плиты на цементе и перлите | 0,085 |
Влажный песок 0% | 0,33 |
Влажный песок 0% | 0,97 |
Влажный песок 20% | 1,33 |
Обожженный камень | 1,52 |
Керамическая плитка | 1,03 |
Плитка марки ПМТБ-2 | 0,035 |
Полистирол | 0,081 |
Поролон | 0,04 |
Раствор на основе цемента без песка | 0,47 |
Плита из натуральной пробки | 0,042 |
Легкие листы из натуральной пробки | 0,034 |
Тяжелые листы из натуральной пробки | 0,05 |
Резиновые изделия | 0,15 |
Рубероид | 0,17 |
Сланец | 2,100 |
Снег | 1,5 |
Хвойная древесина влажностью 15% | 0,15 |
Хвойная смолистая древесина влажностью 15% | 0,23 |
Стальные изделия | 52 |
Стеклянные изделия | 1,15 |
Утеплитель стекловата | 0,05 |
Стекловолоконные утеплители | 0,034 |
Стеклотекстолитовые изделия | 0,31 |
Стружка | 0,13 |
Тефлоновое покрытие | 0,26 |
Толь | 0,24 |
Плита на основе цементного раствора | 1,93 |
Цементно-песчаный раствор | 1,24 |
Чугунные изделия | 57 |
Шлак в гранулах | 0,14 |
Шлак зольный | 0,3 |
Шлакобетонные блоки | 0,65 |
Сухие штукатурные смеси | 0,22 |
Штукатурный раствор на основе цемента | 0,95 |
Эбонитовые изделия | 0,15 |
Влажность и теплопроводимость – зависимость
Кроме того, необходимо учитывать теплопроводность утеплителей из-за их струйных тепловых потоков. В плотной среде возможно «переливание» квазичастиц из одного нагретого стройматериала в другой, более холодный или более теплый, через поры субмикронных размеров, что помогает распространять звук и тепло, даже если в этих порах будет абсолютный вакуум.
Теплопроводность бетона: коэффициент, расчеты
Важную роль при строительстве дома играет теплопроводность бетона. Это свойство указывает на способность строения удерживать тепловую энергию. Показатель изменяется в зависимости от вида и влажности материала. Стройматериал с высокой способностью удерживать тепло позволяет сэкономить на утеплении помещения. Пористые виды бетона чаще используют в качестве утеплителя, но при этом учитывают, что с повышением объема пор в материале происходит ухудшение устойчивости к механическим нагрузкам.
Что это такое?
При строительстве конструкций и домов со значительной нагрузкой на стены лучше выбрать конструкционный вид материала, а потом утеплить его с помощью полистирола.
Коэффициент теплопроводности бетона служит основной характеристикой при выборе теплоизоляционного сырья. Этот показатель указывает на способность стройматериала удерживать тепло внутри помещения. Высокое значение способствует более оперативному охлаждению дома в зимнее время и нагреванию летом. Блоки повышенной плотности быстрее передают тепло, в то время как поросодержащий материал задерживает нагретый воздух внутри сооружения. Поэтому материалы с более пористой структурой чаще всего применяют в качестве утеплителя.
Что влияет на показатель?
Пористая смесь обладает хорошими теплоизоляционными свойствами, чего не скажешь про материал высокой плотности.
От теплопроводности материала, из которого построен дом, зависит микроклимат в нем. При выборе сырья для сооружения стен учитывают все факторы, влияющие на изоляционные способности. Выбрав бетон, как основной стройматериал, рекомендуется учитывать такие показатели:
- Плотность. Высокое значение свидетельствует о близком расположении молекул материала друг к другу, что способствует более быстрой передаче тепла. Такой бетон является более прочным, но в то же время малоэффективен для утепления помещения. Плотный вид стройматериала требует дополнительных расходов на теплоизоляцию.
- Пористость. Поризованная структура бетона делает материал неоднородным, что препятствует быстрой передачи тепла. Поэтому большое количество пустот свидетельствует о хороших теплоизоляционных свойствах. Теплопроводность керамзитобетона меньше чем у жестких бетонов в 5 раз. Минусом такого сырья является низкая прочность, что препятствует использованию материала при возведении несущих конструкций.
- Влажность. Мокрые стены лучше проводят тепло, поэтому дома, построенные на влажном фундаменте без хорошей гидроизоляции склонны к повышению теплоотдачи.
Коэффициент теплопроводности
Значение показателя указывает на объем тепловой энергии, которую материал толщиной 1 м и площадью 1 м2 может провести за 1 секунду. При этом разница температур по обе стороны стройматериала составляет 1 °C. Значение показателя характеризует способность помещения из этого бетона удерживать тепло в зимнее время. Правильно подобранный материал при строительстве жилья позволит сэкономить на оплате за услуги тепла.
Посмотреть «ГОСТ 7076–99» или cкачать в PDF (1.2 MB)
Как проводятся расчеты?
Коэффициент теплопроводности рассчитывается для сухого, и для бетона с влажностью — отдельно.
Чтобы определить этот показатель пользуются такими формулами:
- Кауфмана. Применяется для определения коэффициента на сухом бетоне. Выглядит так: λ = 0,0935*(m)0,5*2,28m + 0,025;
- Некрасова. При изменении влажности и показатель меняется. Поэтому для бетона с влажностью более 3% используют такую формулу: λ = (0,196 + 0,22 m2)0,5—0,14.
Для расчета нужно иметь сведения об исследуемых экземплярах. Знак m обозначает объемную массу объекта, а λ — непосредственно искомый коэффициент. Так как вес различных видов бетона при одинаковом объеме меняется, то и значение показателя также изменяется. Коэффициент теплопроводности керамзитобетона имеет одно из самых низких значений. Поэтому этот материал чаще всего применяют в качестве утеплителя.
Важную роль в строительстве играет влажность бетона, которая сказывается не только на теплопроводности стройматериала, но и его прочностных показателях. Гидроизоляционные мероприятия помогут предупредить такие побочные эффекты.
Утепление и показатели теплопроводности бетона
Сравнительная таблица теплопроводности различных видов материала:
В зависимости от вида стройматериала, используемого при строительстве дома, проводятся дополнительные изоляционные работы. Это приводит к повышению способности стен к удерживанию тепла. Бетон выступает, как самостоятельный стройматериал, который требует утепления, или утеплитель. Во втором случае материал не подходит для строительства несущих конструкций, так как имеет низкую прочность. Как видно из таблицы, теплопроводность монолитного железобетона самая высокая, поэтому из него строят ответственные объекты, а при необходимости повышения теплоизоляционных способностей здания применяют пенополистирол, минвату или керамзитобетон. Поэтому перед строительством дома оценивают возможные пути потери тепла и проводят утепление помещения.
Влияние суррогатных заполнителей на теплопроводность бетона при температуре окружающей среды и повышенных температурах
Точная оценка теплопроводности бетона является важной частью проектирования зданий с точки зрения тепловой эффективности и тепловых характеристик материалов при различных температурах. Мы представляем экспериментальную оценку теплопроводности пяти образцов теплоизолированного бетона, изготовленных с использованием легких заполнителей и стеклянных пузырьков вместо обычных заполнителей.Для оценки надежности тепловых данных и оценки влияния различных типов датчиков используются четыре различных метода измерения. Образцы бетона также оценивают через каждые 100°С при нагреве до ~800°С. Показано, что обычный бетон имеет теплопроводность ~ 2,25 Вт м -1 К -1 . Замещающие агрегаты эффективно снижают проводимость до ~ 1,25 Вт м -1 К -1 при комнатной температуре. Показано, что размер заполнителя не влияет на теплопроводность: мелкие и крупные заполнители дают одинаковые результаты.Методы оценки поверхностного контакта, как правило, занижают теплопроводность, предположительно из-за высокого теплового сопротивления между преобразователями и образцами. Термогравиметрический анализ показывает, что стадии потери массы цементного теста соответствуют эволюции теплопроводности при нагреве.
1. Введение
Новые корейские стандарты энергосбережения для новых зданий и домов, вступившие в силу с сентября 2013 года, направлены на повышение энергоэффективности жилых и офисных зданий, занимающих 19.6% от общего энергопотребления в 2007 г. [1, 2]. Они направлены на снижение годового потребления энергии домохозяйствами на отопление с уровня 120 кВт·ч·м 90 003 −2 в 2005 году до менее 30 кВт·ч·м 90 003–2 к 2017 году. мм полистироловой изоляции или более толстых бетонных стен [1], меры, которые ранее считались слишком дорогостоящими [3]. Использование недорогого напольного отопления и внутреннего утепления в быстровозводимых высотных домах Кореи, возводимых с 1980-х годов, привело к образованию поверхностного конденсата и плесени из-за разницы температур между бетонными стенами и внутренней изоляционной плитой.
Внешняя изоляция может решить эту проблему, но ее установка будет дорогостоящей и трудоемкой и может быть затруднена правовыми нормами. Разработка бетона с высокой термостойкостью, возможно, является более практичной альтернативой. Теплопроводность бетонов можно легко снизить, заменив один или несколько его компонентов теплоизоляционными материалами, такими как легкие крупные заполнители или стеклянные пузырьки [4]. Легкие заполнители использовались, например, в жилых домах в Японии, экономя 20% потребления тепловой энергии для поддержания комнатной температуры ~ 20°C по сравнению с обычным бетоном [5]. Стеклянные пузырьки также нашли широкое применение в качестве теплоизоляции при изготовлении изолированных труб и теплоотражающих красок [6]. Бетоны, как сложные смеси различного состава, могут иметь широкий диапазон теплопроводности (например, 0,6~3,6 Вт м -1 К -1 ) в зависимости от используемых заполнителей и условий влажности, а также от диапазона температур. и метод испытаний [7–9]. Оценка теплопроводности бетонов, смешанных с различными синтетическими материалами, и ее изменение при повышенной температуре является сложной и сложной задачей, чем оценка обычного бетона.Поэтому разработка методов точной оценки теплопроводности при различных температурах бетона с обычным или легким заполнителем (LWA) является важной частью проектирования теплоэффективной инфраструктуры.
Предыдущие экспериментальные и численные исследования сообщали о тепловых свойствах (например, теплопроводность, удельная теплоемкость и термическая деформация) конструкционного бетона и теплоизолированного бетона, содержащего LWA и добавки, такие как волокно, переработанное стекло и метакаолин, при температуре окружающей среды и повышенных температурах. [10–13].Плотность и теплопроводность бетона часто уменьшаются при нагреве. Однако эволюция при нагреве микроструктуры цементного теста в бетонах как с нормальным, так и с легким заполнителем изучена недостаточно. Роль легких заполнителей и других добавок также остается до конца не выясненной. Кроме того, надежность измерения теплопроводности зависит не только от метода измерения в стационарном или переходном режимах, но и от типа преобразователя (например,г., термозащитная пластина, горячий бокс, игольчатые термозонды) [4, 9, 14, 15]. Важнейшими микроструктурными компонентами гидратированного цементного камня являются гидраты силиката кальция (C–S–H), составляющие до 67 % продуктов гидратации, и гидроксид кальция [16]. Эти компоненты определяют механические свойства пасты [17–19]. Дегидратация гидратов силиката кальция и дегидроксилирование гидроксида кальция объясняют потерю массы, наблюдаемую при нагревании. Зависимость между теплопроводностью и потерей массы микроструктурных компонентов гидратированного цементного камня четко не установлена [19, 20].
В работе представлено исследование теплопроводности различных теплоизолированных бетонов. Образцы, содержащие различные агрегаты и стеклянные пузырьки, сравнивают при комнатной и повышенной температурах. Контрольный образец, содержащий обычный заполнитель, сравнивают с пятью различными образцами теплоизолированного бетона. Роли суррогатных агрегатов исследуются путем измерения теплопроводности образцов с использованием четырех различных методов испытаний: два с использованием встроенных зондов (тепловой игольчатый зонд и нагрев с плоским источником) и два с использованием методов контактной горячей проволоки.Одним из методов горячей проволоки является стандартный метод ASTM C1113 для оценки температурно-зависимой теплопроводности [21]. Также оценивается влияние мелких и крупных заполнителей на теплопроводность. Термогравиметрический анализ (ТГА) используется для сравнения последовательности потери веса при нагревании с соответствующим изменением теплопроводности. Затем оценивается взаимосвязь между микроструктурным составом цементных паст и их теплопроводностью.
2. Материалы и методы
2.1. Материалы
Различные комбинации обычного портландцемента (ASTM Type I), мелкого заполнителя, нормального крупного заполнителя, двух типов легких крупных заполнителей и стеклянных пузырьков используются для изготовления образцов для испытаний. Мелкие и крупнозернистые заполнители происходят из раздробленных пород одинакового происхождения: они имеют один и тот же минералогический состав; отличается только размер зерна (в Корее нет отдельного природного источника мелких заполнителей, такого как очищенный прибрежный песок).Стеклянные пузырьки микрометрового размера (3 M, Ltd.) тестируются в качестве частичной замены крупного заполнителя и для создания искусственных пор в бетоне. Два типа LWA (Argex от Argex NV, Ltd. и Asanolite от Taiheiyo Cement, Ltd.) испытывались в качестве заменителей оставшегося крупного заполнителя. Физические свойства различных агрегатов и стеклянных пузырьков перечислены в таблице 1.
|
2.2. Подготовка образцов
Теплоизолированные бетоны получают путем замены крупного заполнителя стеклянными пузырьками и легкими заполнителями.Подробные пропорции смешивания приведены в таблице 2. K обозначает образец со стеклянными пузырьками; добавленное число представляет собой объемную долю добавленных стеклянных пузырьков по отношению к общему объему заполнителя. Влияние размера заполнителя и объемной доли заполнителя на теплопроводность исследуется с использованием другой группы образцов: пасты, раствора и бетона (табл. 3).
|