Кабель для прогрева бетона без трансформатора: Можно ли, подключить ПНСВ 1х1.2 mm2, в сеть 220 В и 380 В для прогрева бетона?

Содержание

Прогрев бетона от 220В греющим кабелем КДБС

Строительство бетонных конструкций в зимний период предполагает преодоление разного рода проблем, связанных с низкой температурой окружающей среды. Одной из этих проблем, безусловно, является обогрев бетона. Для обеспечения набора прочности бетона в холодное время года строители часто прибегают к утеплению и использованию нагревателей бетонных масс, залитых в опалубку. Важным фактором организации процесса является возможность обеспечить прогрев бетона от 220В.

Процесс застывания бетона представляет собой химическую реакцию, в результате которой происходит гидратация цементной смеси и образование цементного камня. Этот процесс может протекать несколько недель и зависит от климатических условий. Прочность бетона во многом обеспечивается за счет содержащейся в нем воды, однако, при низких температурах вода может замерзать до того, как произойдет набор необходимой прочности.

Одним из наиболее эффективных методов прогрева бетонных конструкций является применение нагревательного кабеля и провода. Впервые в отечественном строительстве нагревательные кабели для обогрева бетонных конструкций были применены в 1974 г. Также ЗАО «ЦНИИОМТП» Госстроя СССР разработало основные технологические рекомендации, при обогреве бетонных конструкций нагревательным проводом:

  • При температуре окружающей среды +5 °С и ниже, необходимо принимать меры по утеплению бетонных конструкций и использованию дополнительных источников обогрева
  • Температура прогрева бетона в любой его точке должна быть не ниже +8 °С (оптимальная от 40 до 50 °С)
  • Температура поверхности кабеля должна быть не выше 80 °С, для предотвращения перегрева бетона
  • При прогреве бетона обязателен контроль температуры
  • Прогрев осуществляется на протяжении от 5 до 7 дней
  • Работы по сооружению бетонных конструкций должны производится при температуре не ниже -30 °С

С тех пор кабельными заводами была освоена технология производства нагревательного провода ПНСВ и других марок, который широко применялся для решения данной задачи. Однако, наряду с положительными факторами, использование провода ПНСВ имеет определенные недостатки, среди которых следует выделить необходимость применения станций прогрева бетона либо других средств понижения напряжения, поскольку провод не рассчитан на питание 220В, а также сложности, связанные с контролем температуры провода. Перегрев бетона в зоне прокладки нагревательного провода в процессе отвердевания приводит к ухудшению его качества и так же нежелателен, как и переохлаждение.

Кабель для обогрева бетона КДБС

В 2014 году одним из крупнейших мировых производителей оборудования для электрообогрева был разработан кабель для прогрева бетона марки КДБС, сочетающий в себе оптимальные технические характеристики (Таблица 1), позволяющие сохранять необходимые свойства бетонных конструкций при производстве работ в зимний период. Обеспечивающий прогрев бетона от 220В.

Таблица 1. Технические характеристики кабеля КДБС

Напряжение питания

220 – 240В

Линейная мощность

40 Вт/м

Сопротивление изоляции

103 Мом*м

Минимальная температура монтажа

-30°С

Минимальный радиус изгиба при хранении

150 мм

Диаметр нагревательного кабеля

5-7 мм

Длина установочного провода

2 м

Минимальный шаг укладки (расстояние между нитками кабеля)

60 мм

Степень защиты

IP67

 

Нагревательный кабель КДБС поставляется готовыми секциями, длиной от 10 до 150 метров. Предлагаемые к поставке длины приведены в Таблице 2. Нагревательные секции на основе кабеля КДБС оснащены установочным проводом сечением от 1,5 мм² до 4 мм² в зависимости от мощности. Важной особенностью нагревательного кабеля КДБС является одинаковая удельная установленная мощность по всей длине секции, которая составляет 40 Вт/м. За счет этого происходит равномерный прогрев и затвердевание бетонной конструкции. Для подключения и подачи питания на нагревательный кабель нет необходимости использовать понижающий трансформатор, поскольку кабель КДБС обеспечит прогрев бетона от 220В.

Таблица 2. Характеристики нагревательных секции на основе кабеля КДБС

Наименование нагревательной секцииДлина нагревательного кабеля, мСтартовая мощность секции, ВтНоминальная мощность секции, ВтСопротивление секции при +20 °С, Ом
40КДБС-1010,0440400104,5 – 121,0
40КДБС-2020,091080050,5 – 58,5
40КДБС-5454,002250212019,9 – 23,1
40КДБС-8282,004080328011,3 – 13,1
40КДБС-100100,00512040009,0 – 10,4
40КДБС-150150,00768060006,0 – 6,9

Кабель КДБС имеет бинарное строение, что позволяет производить подключение электропитания с одной стороны. Соединительная и концевая муфты изготовлены на основе адгезивных термоусаживаемых трубок с повышенной толщиной стенки, что обеспечивает необходимую герметичность, механическую прочность и надежность соединений.

Использование кабеля КДБС на объектах строительства

Основываясь на опыте применения нагревательного кабеля КДБС на объектах строительства, инженеры компании «Кабельные Системы и Технологии» установили, что наиболее эффективным решением как с экономической точки зрения, так и с точки зрения наиболее рациональной организации труда является применение данного кабеля при заливке большого количества небольших бетонных конструкций, особенно сложных конфигураций.

При заливке небольших объемов бетона часто невозможно применение обогреваемой опалубки, а большая относительная площадь поверхности сужает возможность применения специальных добавок. При этом возможность подключения кабелей к сети электропитания, уже имеющейся на строительной площадке, позволяет использовать стандартные решения по применению защитных аппаратов, не требующие проведения расчетов и принятия проектно-конструкторских решений с привлечением квалифицированного инженерно-технического персонала. Это позволяет, кроме того, выполнять заливку, не отвлекая основную бригаду по монолиту, не требует привлечения квалифицированного дежурного персонала для обеспечения необходимых мероприятий по обеспечению электробезопасности прогрева в зоне его применения, а также измерений температуры и регулировок в соответствии с графиком прогрева. Кроме того, исключается необходимость привлечения большого количества станций прогрева бетона одновременно. Поскольку использование кабеля КДБС обеспечивает прогрев бетона от 220В.

основные виды, применение и укладка провода ПНСВ

При заливке бетона в зимнее время могут возникнуть определенные сложности. Если вода в структуре материала замерзнет, то технологическая прочность не будет достигнута. Медленная скорость затвердевания состава также делает работы с ним нерентабельными. Поддерживать оптимальную температуру материала позволяет кабель для прогрева бетона.

Применение нагревательных элементов

Отрицательные температуры кристаллизуют воду в бетоне, и гидратация материала прекращается. В замерзшем состоянии жидкость расширяется и разрушает связи, образовавшиеся в цементе. Даже если температура повысится, материал уже не достигнет необходимой прочности.

При температуре 20 °C происходит оптимальное и равномерное затвердевание состава, сохраняются его важные характеристики. Чтобы поддержать нужные технические условия в зимнее время, используются греющий кабель для бетона ПНСВ и его аналоги. Он может пригодиться в следующих ситуациях:

  • теплоизоляция опалубки и монолита не обеспечена в полной мере;
  • монолит имеет крупные габариты и не может равномерно прогреться;
  • работы проводятся при отрицательной температуре, и вода замерзает в растворе.

Виды и характеристики кабелей

Существует несколько разновидностей греющего кабеля для прогрева бетона, наиболее востребованным является ПНСВ. В его основе — жила из стали с сечением 0,6−4 кв. мм и 1,2−3 мм в диаметре. Некоторые модели подвергаются оцинковке, защищающей компоненты провода от агрессивных составляющих строительных смесей.

Термоустойчивость кабелю дает изоляция из полиэстера или ПВХ. Она также не боится агрессивных компонентов, истирания и перегибов, имеет повышенное удельное сопротивление и прочную структуру. Технические показатели кабеля ПНСВ:

  • около 60 м провода хватает на 1 кубометр раствора;
  • удельное сопротивление 0,15 Ом/м;
  • применение элемента до -25 °C;
  • возможность монтажа до -15 °C;
  • стабильные показатели работы при температуре от -60 °C до +50 °C.

Подключение кабеля к холодным концам производится при помощи алюминиевого провода АПВ.

Для питания подходит сеть трехфазного типа 380 В, возможно подсоединение к трансформатору. Если длина кабеля более 120 м и расчеты проведены правильно, то может также использоваться сеть бытового назначения в 220 В. Рабочий ток, проходящий в толще бетона, должен составлять 14−16 А.

Альтернативным элементом для подогрева строительных смесей может выступать кабель ПНСП. Его изоляция состоит из полипропилена, немного повышающего силу тепловыделения по сравнению с изделиями ПНСВ. Эти виды кабелей также могут применяться для оборудования теплого пола.

Для правильной работы нагревательного элемента нужно точно рассчитать длину кабеля. Мелкие недочеты можно корректировать поступающим напряжением от трансформатора, регулируя его уровень.

Провода ПНСП и ПНСВ могут работать только вместе с оборудованием для настраивания мощности теплоотдачи. Это может усложнять задачу. Выходом из ситуации являются секционные двужильные термокабели с саморегуляцией ВЕТ и КДБС. Их можно подключать к сети 220 В напрямую. Линейная мощность составляет 40 Вт/м у провода КДБС и 35−45 Вт/м — для ВЕТ. Допустимый радиус изгиба равен 35 мм у первой модели и 25 мм — для второй соответственно.

Технология прогрева

Места проведения коммуникаций и расположение отверстий в бетонной поверхности нужно продумать до начала заливки состава. После установки системы и покрытия ее цементной смесью, любые работы с поверхностью могут повредить провода. Например, перед выполнением алмазного бурения материала нужно убедиться, что отверстие не будет проходить через кабель для обогрева бетона.

Правила укладки системы

Перед размещением обогревающей системы устанавливаются арматура и опалубка. Затем проводится раскладка ПНСВ, между витками проводов должен быть интервал 8−20 см. Величина промежутка зависит от ветра, температуры снаружи и влажности.

Кабель прицепляется зажимами к арматуре, без натяжения. Оптимальный радиус изгибов — больше 25 см. Ведущие ток жилы не должны пересекаться, расстояние промежутков между ними — 1,5 см, такое расположение позволяет избежать короткого замыкания.

Чаще всего провод для прогрева бетона ПНСВ укладывают по схеме «змейка», которая используется для монтажа теплых полов. Этот метод экономит кабель и позволяет охватить максимальную область бетонного основания.

Необходимо проверить следующие моменты перед заливкой раствора:

  • температура подготовленной смеси выше +5 °C;
  • в опалубке нет льда;
  • схема правильно подключена;
  • холодные концы имеют оптимальную длину.

К кабелю ПНСВ прилагается инструкция, которую важно соблюдать при установке системы обогрева. Существуют два варианта подключения через шинопровода — по схемам «звезда» и «треугольник». При первом способе три однотипных кабеля объединяются в узел, затем свободная тройка контактов подсоединяется к трансформатору. Устройство питания размещается на расстоянии до 25 м от места соединения. Участок материала, который будет нагреваться, защищается ограждением.

Подключение системы производится только после окончания заливки раствора. Использование прогревочного кабеля для бетона ПНСВ включает следующие этапы:

  1. Ведется разогрев, в час температура должна повышаться на 10 °C. Большая скорость нарушит равномерность прогревания материала.
  2. Нагревание осуществляется при постоянном значении температуры. Бетону необходимо набрать половину от показателя технологической прочности. Оптимальная температура 60 °C, максимально возможная — 80 °C.
  3. Материал медленно остывает. Скорость его охлаждения не должна превышать 5 °C в час, иначе произойдет растрескивание структуры.

Если все работы были проведены правильно, то бетон достигнет соответствующей марки прочности. После проведения нагрева кабель остается в материале и играет роль вспомогательной армирующей конструкции.

Кабели ВЕТ и КДБС можно подключать через розетку или щитовую к сети 220 В, они также имеют деление на секции, что предотвращает перегрузки. Но их стоимость значительно выше, чем проводов ПНСВ.

Для постройки больших объектов такие затраты невыгодны, поэтому чаще используется дешевый аналог.

Прогревать бетон также можно с применением трубчатого электронагревателя (ТЭН) и электродов. В раствор вставляется арматура и подключается к источнику питания — сварочному аппарату или другому понижающему трансформатору. Для этого варианта нагревательный кабель не нужен, но потребуются значительные затраты энергии. Проводником в бетоне выступает вода, а при затвердевании материала сопротивление будет возрастать.

Расчет длины ПНСВ

На определение длины кабеля ПНСВ влияет несколько факторов. Большое значение имеет количество тепла, которое будет подаваться на материал для затвердевания. На этот показатель влияют теплоизоляция, температура воздуха, форма и размеры конструкции, влажность.

Длина петли должна составлять в среднем 28−36 м. Если температура выше -5 °C, то укладка делается с шагом 20 см. При охлаждении, через каждые 5 градусов промежуток между жилами сокращается на 4 см. На отметке -15 °C он будет равен 12 см.

Важна также потребляемая мощность кабеля ПНСВ, она зависит от диаметра:

  • 1,2 мм — 0,015 Ом/м;
  • 2 мм — 0,044 Ом/м;
  • 3 мм — 0,02 Ом/м.

Рабочий ток не может превышать показателя в 16 А. Необходимо рассчитать потребляемую мощность на один метр провода.

Для этого сила тока в квадрате умножается на удельное сопротивление. Суммарная мощность находится из произведения полученного значения и общей длины провода. Напряжение трансформатора рассчитывается аналогично. Сила тока умножается на сопротивление, чтобы получить величину рабочего напряжения.

Провод ПНСВ — наиболее дешевый вариант для нагревания бетонной смеси. Но для его использования необходимы специальное оборудование и соответствующие знания. Теплоизоляция также снижает затраты на обогрев материала и позволяет повысить качество бетона благодаря равномерному остыванию.

Провод для прогрева бетона: виды, монтаж

В настоящее время бетон используется не только для возведения фундамента, но и при строительстве различных перекрытий и опор.

Полное затвердевание после заливки происходит через 28 дней при условии плюсовой температуры.

В холодный же период года вода, входящая в состав бетона, не вступает в химическую реакцию с остальными компонентами и превращается в лед, что приводит к более медленному затвердеванию бетона и потере его прочности. Лучший способ избежать этого – использовать специальный провод для прогрева бетона.

Зачем нужен прогрев бетона

Процессы, происходящие в бетоне во время его застывания, зависят от температуры окружающей среды. В зимнее время, когда температура опускается ниже нуля, происходит замерзание воды, из-за чего появляются проблемы с гидратацией бетона. При этом растров застывает не полностью, так как в некоторых местах проходит лишь его замерзание. Когда же температура окружающей среды начнет повышаться, вода растает, а монолитность раствора нарушится. Данный процесс приведет к нарушению целостности конструкции после застывания и снижению ее долговечности.

Для предотвращения описанных выше последствий необходим электропрогрев бетона проводами различного типа.

При этом посторонних процессов в смеси не происходит, а значит, структура остается однородной, что положительно отражается на долговечности и прочности бетона.

Виды нагревательных проводов и кабелей

В большинстве случаев электропрогрев бетона в зимнее время осуществляется проводом ПНСВ (расшифровка: провод нагревательный, материал жилы – сталь, изоляция – ПВХ), так как среди всех видов он отличается минимальной ценой и максимально простым монтажом.

На втором месте по частоте использования – кабель ПНСП для прогрева бетона. Его основное различие с проводом, представленным выше – изоляция из полипропилена (в отличие от ПНСВ с изоляцией ПВХ). Данный материал позволяет немного повысить теплопроводность кабеля. Однако его стоимость выше, поэтому применяется он только в случаях, когда длина используемого кабеля имеет определяющее значение. Чаще такой провод монтируется как теплый пол.

Провода данного типа сложно монтировать, так как необходим точный расчет их длины. Если на стадии проектирования были допущены незначительные ошибки, исправить это можно регулировкой подающего напряжения.

Разновидности и особенности кабелей КДБС и ВЕТ

Если планируется электропрогрев бетона в зимнее время проводом ПНСВ или ПНСП, необходимо включение в систему дополнительного регулирующего оборудования, с помощью которого можно менять мощность в сети для регулирования тепловыделения. Для упрощения системы путем исключения из нее дополнительного оборудования можно использовать двухжильные термокабели, которые регулируют теплоотдачу самостоятельно: финский ВЕТ или российский КДБС.

Кабели данного типа подключаются напрямую к сети 220 вольт, установка дополнительных приборов для регулировки не требуется.

По конструкции кабели обоих производителей не отличаются, однако некоторые их технические характеристики различны:

  1. Линейная мощность, Вт/м (ВЕТ – 35-45, КДБС – 40).
  2. Рекомендованный радиус изгиба, мм (ВЕТ – 25, КДБС – 35).
  3. Номинальный диаметр, мм (ВЕТ – 6, КДБС – 7).
  4. Размеры секций, м (ВЕТ – 3,3-85, КДБС – 10-150).

Плюсы и минусы ПНСВ

Электропрогрев бетона проводом пнсв – наиболее экономически выгодный вариант. Связано это с дешевизной самого провода, а также сравнительно низким потреблением электрической мощности.  Кроме того, кабель данного типа отличается устойчивостью к воздействию щелочной и кислотной среды, благодаря чему его можно использовать в различных сложных условиях окружающей среды.

Кабель для прогрева бетона ПНСВ обладает и существенными недостатками:

  1. Сложность проектных работ из-за необходимости точного расчета длины кабеля.
  2. Необходимость включения в систему понижающей подстанции.

Стоимость таких подстанций (ПТ) достаточно велика. Их функционирование требуется постоянно, поэтому брать оборудование в аренду не целесообразно, ведь за это нужно будет отдать не менее 10% от общей стоимости. В некоторых случаях возможно использование сварочных аппаратов. Однако подходят они только для небольших объектов строительства, так как при интенсивной работе быстро выходят из строя.

Технология прогрева с использованием ПНСВ

Многие считают, что для того чтобы осуществить прогрев бетона проводом ПНСВ, достаточно уложить кабели и подключить их к электрической сети. Данный подход в корне не верен. Для правильного прогрева проводами необходимо четкое регулирование мощности, при котором учитывается много факторов. Как недостаточная, так и излишне высокая температура раствора приведет к разрушению конструкции.

Бетонный раствор, конечно, не закипит, так как оболочка провода начинает плавиться при 80 градусах. Однако в случае, когда она полностью исчезнет, провод может соприкоснуться с металлической арматурой, что приведет к короткому замыканию.

Схема подключения греющего провода должна быть тщательно продумана. Ниже приведен один из наиболее эффективных вариантов под названием «звезда».

Подключение проходит в три этапа:

  1. На данном этапе большая часть от всего объема воды в растворе поглощается, после чего происходит формирование кристаллической структуры. При этом температура бетонной массы достигает 55 градусов (продолжительность нагрева зависит от температуры окружающей среды). Чтобы процесс прогрева был непрерывным и равномерным, необходимо поддержание напряжения 95 вольт.
  2. На данном этапе уменьшается величина подаваемого напряжения до 75 вольт для кристаллизации бетонного раствора. Температура внутри поддерживается такая же (55 градусов) за счет инертности раствора. Важно отметить, что если на данном этапе температура окружающей среды резко понизится, необходимо увеличить величину подаваемого напряжения на 10 вольт.
  3. Данный этап можно назвать остыванием. При этом провод для прогрева бетона ПНСВ нагрет не более чем на 20 градусов. На последнем этапе бетонный раствор набирает до 80% своей прочности.

Расчет длины

Если планируется прогрев смеси бетона проводом ПНСВ, в первую очередь необходимо рассчитать его длину в зависимости от нескольких параметров. Главный определяющий фактор – расчетное количество тепловой энергии, необходимой для нагрева бетонной массы до требуемой температуры. Количество тепла зависит от окружающей температуры, относительной влажности воздуха, размера объекта.

При расчете длины важно знать основные характеристики ПНСВ, а именно — потребляемую мощность. Для самого популярного диаметра 1,2 мм она равна 0,015 Ом/м, у кабелей большего сечения сопротивление ниже, диаметр 2 мм соответствует сопротивлению 0,044 Ом/м, а 3 мм – 0,02 Ом/м. Для окончательного расчета необходимой мощности нужно полученный показатель умножить на протяженность кабеля.

Подобным образом рассчитываются и понижающие трансформаторы. Если уложено 100 м ПНСВ диаметром 1,2 мм, то его общее сопротивление составит 15 Ом. Учитывая, что сила тока не более 16 А, находим рабочее напряжение, равное произведению силы тока на сопротивление в данном случае оно будет равно 240 В.

Монтаж ПНСВ

Схема укладки провода ПНСВ должна быть продумана еще на этапе проектирования объекта. Главное – его монтаж в опалубке до того, как начинается заливка бетонного раствора. В большинстве случаев для прикрепления провода к арматуре используется проволока из алюминия.

Чтобы прогрев бетонной смеси был максимально равномерным, секции монтируются на равном расстоянии друг от друга как по вертикали, так и по горизонтали. Расстояние между соседними должно составлять около 15 сантиметров.

Важно отметить, что если в сети напряжение 380 вольт, длина сегмента должна составлять 31 погонный метр, если 220 – 17 метров.  Только в таком случае прогрев смеси будет проходить равномерно, а значит, он достигнет максимально возможной прочности. В случае, если секция будет смонтирована более длинной, тепловая энергия не будет доходить до самых удаленных участков.

Важно помнить, что включение провода в сеть  необходимо проводить за пределами опалубки.

В большинстве случаев это достигается путем присоединения кабеля с жилами из алюминия и его плотной обмотки. Когда бетонная смесь полностью застыла, провод не вытаскивается из него, он навсегда остается внутри и впоследствии может быть использован как «теплый пол».

Монтаж секционного обогревочного кабеля

Кабель для прогрева бетона данного типа поставляется на объект не в бухте, а в виде готовой секции. Данный факт несколько упрощает процесс монтажа, так как нет необходимости в обрезке провода. Сбор системы после следующих подготовительных работ:

  1. Расчет необходимой мощности одного сегмента в зависимости от объема бетонной смеси.
  2. Выбор длины провода.

Процесс монтажа системы достаточно простой, однако требует определенных знаний и навыков.

Ниже представлены общие рекомендации, придерживаясь которых, можно быстро и правильно смонтировать провод секционного типа для прогрева бетона:

  • Для обогрева одного кубического метра бетонной смеси в зависимости от состава необходимо 500-1500 Вт (в зависимости от температуры окружающей среды). Сократить расход электрической энергии можно путем добавления специальных присадок для понижения температуры застывания смеси или утеплив опалубку.
  • Если бетонной смесью заливается перекрытие или какая-либо балка, расчет электропроводки проводится  с учетом следующих начальных данных: 4 метра провода на 1 квадратный метр поверхности элемента.
  • Провод надежно защищен, поэтому его можно крепить к арматуре.
  • Провода всегда должны соприкасаться с опалубкой.
  • В процессе монтажа важно следить за расстоянием между кабелями, в противном случае электропрогрев бетона греющим проводом будет неравномерным.
  • Необходимо выдерживать минимум 4 сантиметра между соседними контурами.

В процессе монтажа необходимо следить за тем, чтобы провода не пересекались.

Преимущества и особенности сегментированного кабеля

Главное достоинство сегментированного кабеля – отсутствие необходимости во включении дополнительного оборудования в систему. Данный способ прогрева бетона максимально безопасен (в отличие от случаев, когда используются электроды), так как вероятность поражения электричеством практически сведена к нулю. Еще одно достоинство – простота монтажа и расчетов при использовании нагревательной секции. Материал уже разбит на сегменты, остается лишь высчитать необходимую мощность.

Прогрев бетона в зимнее время проводом ПНСВ значительно дешевле, поэтому сегментированный кабель, который разбит на секции шинопроводов, применяется лишь на небольших объектах, когда в приоритете скорость возведения и точность проводимых работ.

Прогревочный кабель для бетона КДБС без трансформатора

Греющий кабель для прогрева бетона КДБС, мощностью 40 Вт/м.пог, предотвращает замерзание отвердевающего состава при минусовых температурах. Его использование позволяет работать зимой: закладывать фундамент, возводить стены.

Выбор длины и мощности кабеля для прогрева бетона: 3м (120Вт) | 10м (400Вт) | 20м (800Вт) | 35м (1400Вт) | 53м (2120Вт) | 78м (3120Вт) 82м (3280Вт) | 97м (3880Вт) | 100м (4000Вт) | 145м (5800Вт) | 150м (6000Вт) Нагревательный кабель 40КДБС — доступный и недорогой способ прогрева бетона. Такая система обогрева обходится без трансформатора, потребляет небольшое количество электроэнергии, позволяет сэкономить на покупке или аренде топлива и генератора.

Прогрев бетона кабелем КДБС: особенности Кабели могут греть бетон, питаясь от электросети с напряжением 220-240 В. Мощность обогрева и сопротивления резистивного кабеля не меняется при смене погодных условий. Минимальная температура монтажа — минус 30°С. Время прогрева — 5-7 дней. В течение них важно следить за температурой на поверхности кабеля.Структура кабеля Секция 40КДБС состоит из двужильного нагревательного кабеля. С одной стороны у него соединительный провод, с другой — концевая муфта.

Количество кабеля на квадратный метр Прокладка кабеля в бетоне происходит из расчета 4 погонных метра на 1 м². Ориентировочная мощность подогрева — 0,4-1,5 кВт на м³.

Монтаж кабеля Нагревательный кабель раскладывают на арматуре объекта, который будет залит бетоном. После заливки кабель подключают к сети, и начинается зимний прогрев бетона. Его продолжительность зависит от условий использования и площади, размеров конструкции. Высушенный кабель отключают от сети, далее — обрезают его концы. В таком виде он остается внутри конструкции.

Возник вопрос? Звоните! Мы подробно проконсультируем и подберем подходящий вариант. 

«АйТепло-Север», тел: 8 (812) 611-30-34

Прогрев бетона проводом — пошаговое руководство, схема програва

Ни одно строительство не обходится без такого материала, как бетон. Иногда он требует прогрева, а это процесс достаточно серьезный. Здесь важно знать в точности всю технологию процесса. От этого напрямую зависит прочность и долговечность изготавливаемого материала. Самый распространенный способ – прогрев бетона проводом.

Зачем прогревают бетон?

Строительство зданий, сооружений и прочих конструкций с использованием раствора в зимнее время не обходится без обогрева. Как правило, гидратация раствора при отрицательных температурах полностью не проходит. А еще вы можете прочитать про марку бетона для ленточного фундамента, его типы, технология заливки, самостоятельный расчет. Он затвердевает не целиком, некоторые участки смеси замерзают. После оттаивания связь смеси будет нарушена, что непременно скажется на качестве и долговечности сооружения.

Зимой электрический прогрев конструкции обязателен. Процесс затвердевания смеси ускоряется в определенных (плюсовых) температурных условиях. При этом не нарушается структура связующей смеси, и не страдает прочность непосредственно самой конструкции. Вот зачем прогревают бетон проводом в холодное время года.

Каким материалом воспользоваться?

Самым распространенным материалом для этого является провод нагревательный ПНСВ. Он прост в применении, к тому же сравнительно недорогой. Состоит из оцинкованной или стальной однопроволочной жилы, имеющей круглую форму, и полиэтиленовой или ПВХ пластикатовой изоляции. Такой материал используют для прогрева в температурных условиях от + 5 градусов и ниже. На этой странице вы сможете узнать про пропорции для приготовления бетона, его компоненты и параметры.

Способ прогрева бетона проводом ПНСВ достаточно прост. ПНСП сильно нагреваются и передают тепло конструкции. Для проведения процедуры одного нагревательного элемента не достаточно. Понадобится трансформаторная подстанция (понижающая), которая имеет систему, отвечающую за регулировку тепловой силы. Исходя из внешних изменений температурного режима, устройство регулирует тепловую мощность. Именно от такой подстанции и будет происходить нагрев. Такая установка позволяет нагревать смесь до 30 куб.м.

Как рассчитать обогрев конструкции?

Расчет прогрева бетона проводом заключается в следующем: на один кубический метр смеси понадобится примерно 60 метров ПНСВ. Учитывается так же площадь, вид конструкции, необходимая электрическая мощность. Необходимая длина секции нагревательного элемента также может завесить от напряжения трансформаторной подстанции. То есть чем ниже ее напряжение, тем меньше нужна длина. Перед тем как приступать к расчету, прочитайте про бетон для фундамента: состав, пропорции, основные марки. А так же про то, какой расход цемента в бетонной смеси: основные качества составляющих, пропорции цемента в различных марках бетона, допустимые погрешности.

Провод ПНСВ, будучи погруженным в раствор, нормально функционирует при рабочем токе в 14-16 Ампер. Поэтому преимущественно выбирать именно такой показатель рабочего тока. При этом на открытом воздухе с таким показателем нагревательный элемент достаточно быстро выходит из строя. Вследствие этого его холодные концы (часть, которая должна остаться за пределами конструкции) должны состоять из другого провода – АПВ. Их длина обычно составляет от полуметра до метра. Оптимальным напряжением будет третья ступень трансформаторной подстанции – 75 Вольт.

Перед тем как прогреть бетон проводом, следует разработать субъективную для конкретной конструкции технологическую карту и составить схему укладки нагревательного элемента. Схема прогрева бетона проводом обычно выглядит так: чертеж конструкцией с обозначениями мест укладки провода. Он обычно укладывается змейкой, не соприкасаясь друг с другом. На чертеже обязательно следует определить точки выхода (холодных концов) нагревательного элемента.

Технология прогрева: пошаговое руководство

После того, как произведены все расчеты, составлена технологическая карта и схема, можно приступать к процессу прогрева:

  1.  Нагревательный элемент следует уложить равномерно в места заливки. Он не должен соприкасаться с другими своими частями. Так же следует следить, чтобы нагревательный элемент не выходил за пределы конструкции и не касался опалубки.
  2.  Прежде чем вывести концы кабеля за пределы обогрева, следует соединить холодные концы с нагревательными выходами, спаяв их. Для того, что бы тепловое поле хорошо сохранялось, рекомендуется участки пайки обвернуть металлической фольгой.
  3.  При помощи мегомметра следует провести тест-проверку для того, чтобы обеспечить размеренную нагрузку тока по фазам.
  4.  Заливают конструкцию раствором бетона.
  5.  На этом этапе через трансформаторную подстанцию (понижающую) можно подавать ток.

Это один из самых простых способов, как осуществить прогрев бетона проводом. Видео по теме поможет лучше разобраться и понять, что собой представляет технологический прогрев бетона.

Обогрев конструкции без трансформатора

Прогрев бетона проводом без трансформатора осуществляется при помощи специального финского кабеля «БЕТ» или электрической резиновой кабельной греющей секции. И «БЕТ», и греющий кабель работают от обычной розетки питания с напряжением 220 Вольт. Так же как и прогрев бетона проводом ПНСВ, процесс его прогрева без трансформатора прост: материал укладывается в места заливки по соответствующей схеме, бетонируется, а выведенные концы подключаются к сети.

Из всего вышесказанного, следует вывод, что технология прогрева бетона проводом не представляет особой сложности. Главное в этом деле – правильный расчет и точная схема, по которой следует максимально точно распределить нагревательный элемент по бетонной конструкции. А здесь вы сможете узнать про бетон марки М200.

Потери тепла при передаче через элементы здания

Передача тепла через стену здания или аналогичную конструкцию может быть выражена как:

H t = UA dt (1)

, где

H t = тепловой поток (БТЕ / час, Вт, Дж / с)

U = общий коэффициент теплопередачи, «U-значение» (БТЕ / час фут 2 o F, Вт / м 2 K)

A = площадь стены (футы 2 , м 2 )

dt = разница температур ( o F, K)

Общий коэффициент теплопередачи — коэффициент теплопередачи — описывает, насколько хорошо строительный элемент проводит тепло, или скорость передачи тепла (в ваттах или БТЕ / час) через одну единицу площади (м 2 или фут 2 ). ул. структура, деленная на разницу температур в конструкции.

Онлайн-калькулятор тепловых потерь

U-значение (БТЕ / час фут 2 o F, Вт / м 2 K)

Площадь стены (футы 2 , м 2 ) )

Разница температур ( o F, o C, K)

Общие коэффициенты теплопередачи некоторых распространенных строительных элементов

гофрированный металл — неизолированный

Строительный элемент Коэффициент теплопередачи
U-значение
(БТЕ / (час фут 2 o F)) (Вт / (м 2 K))
Двери Одиночный лист — металл 1.2 6,8
1 дюйм — дерево 0,65 3,7
2 дюйма — дерево 0,45 2,6
Кровля
1 дюйм дерева — неизолированный 0,5 2,8
2 дюйма дерева — неизолированный 0,3 1,7
1 дюйм дерева — изоляция 1 дюйм 0.2 1,1
Дерево 2 дюйма — изоляция 1 дюйм 0,15 0,9
2 дюйма — бетонная плита 0,3 1,7
2 дюйма — бетонная плита — изоляция 1 дюйм 0,15 0,9
Окна Вертикальное одинарное остекление в металлической раме 5,8
Вертикальное одинарное остекление в деревянной раме 4.7
Вертикальное окно с двойным остеклением, расстояние между стеклами 30-60 мм 2,8
Вертикальное окно с тройным остеклением, расстояние между стеклами 30-60 мм 1,85
Герметичное вертикальное окно с двойным остеклением , расстояние между стеклами 20 мм 3,0
Вертикальное герметичное тройное остекление, расстояние между стеклами 20 мм 1,9
Вертикальное герметичное двойное остекление с покрытием Low-E 0.32 1,8
Вертикальное окно с двойным остеклением с покрытием Low-E и заполнением тяжелым газом 0,27 1,5
Вертикальное окно с двойным остеклением с 3 пластиковыми пленками (с покрытием Low-E) и заправка тяжелым газом 0,06 0,35
Горизонтальное одинарное стекло 1,4 7,9
Стены 6 дюймов (150 мм) — заливной бетон 80 фунтов / фут 3 0.7 3,9
10 дюймов (250 мм) — кирпич 0,36 2,0 ​​

U и R-значения

U-значение (или U-фактор) является мерой скорости потеря или получение тепла из-за конструкции материалов. Чем ниже коэффициент U, тем выше сопротивление материала тепловому потоку и тем лучше изоляционные свойства. Значение U — это величина, обратная значению R.

Общее значение U для конструкции, состоящей из нескольких слоев, может быть выражено как

U = 1 / ∑ R (2)

, где

U = коэффициент теплопередачи (БТЕ / hr ft 2 o F, Вт / м 2 K)

R = «R-value» — сопротивление тепловому потоку в каждом слое (hr ft 2 o F / Btu, м 2 K / Вт)

R-значение одного слоя может быть выражено как:

R = 1 / C = s / k (3)

, где

C = проводимость слоя (БТЕ / час фут 2 o F, Вт / м 2 K)

k = теплопроводность материала слоя (БТЕ в / час фут 2 o F, Вт / м · К)

с = толщина слоя (дюймы, м)

Примечание! — в дополнение к сопротивлению в каждом строительном слое — существует сопротивление внутренней и внешней поверхности окружающей среде.Если вы хотите добавить поверхностное сопротивление к вычислителю U ниже — используйте один — 1 — для толщины — l t — и поверхностное сопротивление для проводимости — K .

Онлайн Значение U Калькулятор

Этот калькулятор можно использовать для расчета общего значения U для конструкции с четырьмя слоями. Добавьте толщину — л т — и удельную проводимость слоя — К — для каждого слоя.Если количество слоев меньше четырех, замените толщину одного или нескольких слоев нулем.

1. с (дюйм, м) k (британских тепловых единиц / час фут 2 o F, Вт / м · K)

2. с (дюйм, м) k (британских тепловых единиц дюйм / час фут 2 o F, Вт / м · К)

3. с (дюйм, м) k (БТЕ дюйм / час фут 2 o F, Вт / м · К)

4. с (дюйм, м) k (БТЕ дюйм / час фут 2 o F, Вт / м · К)

Пример — значение U Бетонная стена

Бетонная стена толщиной 0.25 (м) и проводимость 1,7 (Вт / мК) используются для значений по умолчанию в калькуляторе выше. Сопротивление внутренней и внешней поверхности оценивается в 5,8 (м 2 K / Вт) .

Значение U можно рассчитать как

U = 1 / (1 / (5,8 м 2 K / Вт) + (0,25 м) / (1,7 Вт / мK))

= 3,13 Вт / м 2 K

R-значения некоторых стандартных строительных материалов

Гипсокартон

um 5/8 «

-значения некоторых обычных стеновых конструкций

Материал Сопротивление
R-значение
(час фут 2 o F / Btu) 2 K / W)
Деревянный сайдинг со скосом 1/2 «x 8», внахлест 0.81 0,14
Деревянный сайдинг со скосом 3/4 «x 10», внахлест 1,05 0,18
Штукатурка (на дюйм) 0,20 0,035
Строительная бумага 0,01
Фанера 1/4 « 0,31 0,05
Фанера 3/8″ 0,47 0,08
Фанера 1/2 « 0.62 0,11
Оргалит 1/4 « 0,18 0,03
Мягкая плита, сосна или аналогичный материал 3/4″ 0,94 0,17
Мягкая плита, сосна или аналогичный 1 1 2 « 1,89 0,33
Мягкая плита, сосна или аналогичный 2 1/2″ 3,12 0,55
Гипсокартон 1/2 « 0,45 0,08
0.56 0,1
Стекловолокно 2 « 7 1,2
Стекловолокно 6″ 19 3,3
Обычный кирпич на дюйм 0.202 0.202 0.202
Материал Сопротивление
R-значение
(час фут 2 o F / BTU) 2 K / Вт )
Стенка с каркасом 2 x 4, неизолированная 5 0.88
Стена с каркасом 2 x 4 с изоляцией из войлока 3 1/2 « 15 2,6
Стена с каркасом 2 x 4 с жесткой панелью из полистирола 1″, изоляционным слоем 3 1/2 « 18 3,2
Стена с каркасом 2 x 4 с изоляционной панелью 3/4 «, изоляцией из войлока 3 1/2», изоляцией из полиуретана 5/8 « 22 3,9
Стена с каркасом 2 x 6 с Изоляционное покрытие 5 1/2 « 23 4
Стена с 2 х 6 стойками с изоляционной панелью 3/4″, изоляция из войлока 5 1/2 «, полиуретановая изоляция 5/8» 28 4 .9

Майк Холт Пейдж не найден

Меню


  • Дом
  • Насчет нас
  • Свяжитесь с нами
  • Отзывы
  • Продолжая
    Образование
  • Утвержденные курсы
  • Вход на курс
  • Электрические
    Инженер PDH
  • Прямые семинары CEU
  • NABCEP CEUs
  • Электрические
    Инженерное дело
  • Электрические
    Инженер PDH
  • Библиотека инженеров
  • Подготовка к экзамену
  • Экзамен штата Флорида
    Подготовить
  • Инспектор
    (Электрика)
  • Экзамен на подмастерье
    Подготовить
  • Подготовка к магистратуре
  • Государственное лицензирование
    Доски
  • Бесплатные вещи
  • Графики и
    Калькуляторы
  • Код Форум
  • Найти эксперта
  • Найти школу
  • Графика дня
  • Биржа труда
  • Ссылки
  • NEC
  • Информационные бюллетени
  • Публикации
  • Викторины
  • Технический
  • Ролики
  • Инструкторы и
    Школы
  • ISBN
  • Решения для обучения
  • Запрос цитаты

Что произойдет, если подключить прибор на 110 В к розетке 220 В?

Это зависит от характера устройства, но, как правило, если напряжение слишком высокое, он потребляет слишком много тока и перегорает, если напряжение слишком низкое, он потребляет слишком мало тока и / или не работает в соответствии со своими номинальными характеристиками.Математическая справка — закон Ома и треугольник мощности.

Если вы подключаете устройство на 110 В к розетке 220 В (то же, что и от 120 до 230 В, 240 В), вы можете только надеяться, что какое-то устройство защиты отключит питание устройства.
В противном случае:
Если это какое-либо нагревательное устройство (тостер, лампа накаливания, лампа, лампочка, обогреватель), оно будет выделять тепло, почти в четыре раза превышающее расчетное, и, вероятно, сгорит за минуты или секунды. Если это какой-то привод переменного тока, он, скорее всего, очень быстро сгорит.Если это универсальный привод (или DC), он может раскручиваться вдвое по сравнению с предполагаемой скоростью и быстро изнашиваться.

Если вы подключите устройство на 220 В к розетке на 110 В , оно обычно прослужит немного дольше, прежде чем умрет.
Но:
Механический привод переменного тока может не запуститься, или он может потреблять больше тока, чем он предназначен, и в конечном итоге сгореть.

Изоляция обычно не проблема, если нет серьезных недостатков в конструкции. Это ток — ваш враг, кусок провода, нагретый до 110 В (120 В), превратится в предохранитель на 220 В (230 В, 240 В) при прочих равных условиях.Определение мощности / нагрузки обычно выполняется инженером-проектировщиком для соответствия техническим характеристикам, установленным инженером-электриком.

Во всех случаях вы, вероятно, нарушаете местные правила, потому что в большинстве стран электрические розетки предназначены для подключения только определенных вилок, чтобы вы не допустили несоответствия напряжения прибора и напряжения розетки. В некоторых странах вас могут серьезно наказать, если что-то пойдет не так, потому что вы попробовали это сделать.

Вы можете просто купить преобразователь 110 В на 220 В, чтобы прибор работал бесперебойно.

Завод по производству нагревательных кабелей

, Производство нагревательных кабелей по индивидуальному заказу OEM / ODM

Всего найдено 893 фабрики и компании по производству контрольных нагревательных кабелей с 2 ​​679 продуктами. Закажите высококачественный контрольный нагревательный кабель из нашего огромного набора надежных заводов по производству контрольных нагревательных кабелей.

Бриллиантовый член

Тип бизнеса: Торговая компания
Основные продукты: Кабель PVC , кабель XLPE , гибкий кабель , кабель Data , термостойкий кабель
Mgmt.Сертификация:

ISO 9001, ISO 14001, OHSAS / OHSMS 18001

Собственность фабрики: Общество с ограниченной ответственностью
Объем исследований и разработок: OEM, собственный бренд
Расположение: Чжэнчжоу, Хэнань

Бриллиантовый член

Тип бизнеса: Производитель / Завод
Основные продукты: ПВХ кабель , электрический кабель , ПВХ изолированный провод
Mgmt.Сертификация:

ISO9001: 2008

Собственность фабрики: Общество с ограниченной ответственностью
Объем исследований и разработок: Собственный бренд
Расположение: Шэньчжэнь, Гуандун

Золотой член

Тип бизнеса: Торговая компания
Основные продукты: Плюшевые игрушки, плюшевые тапочки, мешки для стирки, ткань, сумки
Mgmt.Сертификация:

ISO 9001, ISO 9000, ISO 14001, ISO 14000, QC 080000

Собственность фабрики: Общество с ограниченной ответственностью
Объем исследований и разработок: OEM, ODM, собственный бренд
Расположение: Чучжоу, Аньхой

Бриллиантовый член

Тип бизнеса: Производитель / Завод
Основные продукты: Power Кабель , Control Кабель , с ПВХ изоляцией Кабель , Резина Кабель
Mgmt.Сертификация:

Сертификат ISO9001: 2015, ISO14001: 2015, ISO45001: 2018

Собственность фабрики: Общество с ограниченной ответственностью

Теплоемкость газа

Теплоемкость чего-либо говорит нам, сколько тепла требуется, чтобы поднять определенное его количество на один градус.Для газа мы можем определить молярную теплоемкость C — тепло, необходимое для повышения температуры 1 моля газа на 1 К.

Q = nCΔT

Значение теплоемкости зависит от того, добавляется ли тепло при постоянном объеме, постоянном давлении и т. Д. Вместо определения всего набора молярных теплоемкостей давайте сосредоточимся на C V , теплоемкости при постоянном объеме, и C P , теплоемкость при постоянном давлении.

Теплоемкость при постоянном объеме

Q = нКл В ΔT

Для идеального газа применение Первого закона термодинамики говорит нам, что тепло также равно:

Q = ΔE int + W, хотя W = 0 при постоянном объеме.

Для одноатомного идеального газа мы показали, что ΔE int = (3/2) nRΔT

Сравнение двух наших уравнений

Q = nC V ΔT и Q = (3/2) nRΔT

мы видим, что для одноатомного идеального газа:

С В = (3/2) R

Для двухатомных и многоатомных идеальных газов получаем:

двухатомный: C V = (5/2) R

многоатомный: C V = 3R

Это дополнительные 2 или 3 вклада во внутреннюю энергию от вращений.

Потому что Q = ΔE int
при постоянном объеме изменение внутренней энергии всегда можно записать:

ΔE внутр = n C V ΔT

Теплоемкость при постоянном давлении

Для идеального газа при постоянном давлении для достижения такого же изменения температуры требуется больше тепла, чем при постоянном объеме. При постоянном объеме все добавленное тепло идет на повышение температуры. При постоянном давлении часть тепла уходит на работу.

Q = нКл P ΔT

Для идеального газа применение Первого закона термодинамики говорит нам, что тепло также равно:

Q = ΔE внутр + W

При постоянном давлении W = PΔV = nRΔT

Для одноатомного идеального газа, где ΔE int = (3/2) nRΔT, получаем:

Q = (3/2) nRΔT + nRΔT = (5/2) nRΔT

Итак, для одноатомного идеального газа:

C P = (5/2) R

Для двухатомных и многоатомных идеальных газов получаем:

диатомный: C P = (7/2) R

многоатомный: C P = 4R

Соотношение C P / C V

Оказывается, соотношение удельных теплоемкостей является важным числом.Для обозначения отношения используется символ γ. Для одноатомного идеального газа имеем:

γ = C P / C V = [5R / 2] / [3R / 2] = 5/3

Измерительный трансформатор потенциала 1

БЛОК 1

Задание 1. Изучите новые слова и словосочетания

приложение [ˌæplɪ’keɪʃn]
наука [‘saɪəns]
феномен [fɪ’nɔmɪnən]
устройство [d’vaɪs]
поток электронов [fləu ov ɪ’lektrɔnz]
твердый [‘sɔlɪd]
жидкость [‘lɪkwɪd]
полупроводник [ˌsemɪkən’dʌktə]
недвижимость [‘prɔpətɪ]
закон [lo:]
строительство [kən’strʌkʃn]
движение [‘məuʃn]
электронная лампа [ɪ’lektrɔn tjuːb]
технологии [tek’nɔləʤɪ]
техник [tek’nɪʃn]
поле [поле]
промышленность [‘ɪndəstrɪ]
усилить [‘æmplɪfaɪə]
филиал [brɑːnʧ]
дизайн [dɪ’zaɪn], г.
физический [‘fɪzɪkl]
промышленные [ɪn’dʌstrɪəl]
описать [dɪ’skraɪb]
применить [ə’plaɪ]
излучать [‘mɪt]
исследование [‘stʌdɪ]
включают [ɪn’kluːd]
прибавка [‘nkriːs], [n’kriːs], г.
делить [dɪ’vaɪd]
процесс [‘prəuses], [prəu’ses], г.
сделка с [diːl wɪð]
мера [‘меняʒə]
разработать [dɪ’veləp]
содержат [kən’teɪn]

ЗАДАЧА 2.Изучите следующие суффиксы и используйте их для образования новых слов.

Глагол + ment : измерять, развивать, заменять.

Глагол + с / ция : конструировать, применять, перемещать, разделять, информировать, выделять, изобретать, соединять.

Глагол + er / или (человек, устройство): обрабатывать, конструировать, усиливать, содержать, исследовать.

Существительное + ist : наука, физика.

ЗАДАНИЕ 3. Измените правила образования множественного числа существительных и написания множественного числа существительных из таблицы выше:

1) + s: заявки

2) s, -sh, -tch, -ch, -o, -x + es: процессов

3) согласный + y → гг: этюдов

ЗАДАЧА 4.Изучите существующую форму глагола to be и переведите предложения с русского на английский. Сделайте их отрицательными и вопросительными.

Я Я Я Я не Я Я?

He это He is not Это он?

Она это Она это не Она ?

Это это Это это не Это это?

Мы — это Мы — это , а не Мы ли ?

Вы это Вы это не Вы ?

Они это Они это не Они ?

1.. 2.. 3. 4.. 5.. 6.. 7.. 8.. 9.. 10.. 11.. 12..

ЗАДАНИЕ 5. Изучите прошедшую форму глагола to be и переведите приведенные выше предложения с русского на английский. Сделайте их отрицательными и вопросительными.

Я был Я был не Был Я?

He был He был не Был он?

Она была Она была не Была она?

Это было Это было не Было это?

Мы были Мы были не Были мы?

Вы были Вы были не Были вы?

Они были Они были не Были они?

ЗАДАЧА 6.Изучите следующую таблицу Present Simple и правила ее использования. Заполните пробелы в предложениях ниже. Сделайте их отрицательными и вопросительными.

Мы используем , когда говорим о:

1) Привычки (каждый день играю в компьютерные игры)

2) Постоянные действия (изучаю Электронику.)

3) Законы и правила (Катод излучает электроны при нагревании.)

4) Спортивные комментарии (Сычев пасует на Аршавина, Аршавин забивает.)

5) Будущее: расписания (английский язык начинается в 8 утра завтра)

Временные ссылки : всегда, обычно, часто, редко, иногда, никогда, каждый день (неделя), один раз в неделю, время от времени и т. Д.

Настоящее простое

? +
Какие
когда
куда
Зачем
Как
Сколько
Как много
Как часто
Который
Делать
Do es
я
вы
мы
Oни
он
она
Это

играть?

я
Мы
Ты играешь
Oни
Он
Она играет с
Это
я
Мы
Ты не играешь
Oни
Он
Она делает es не играет
Это

1.Будущие радиоинженеры (учатся) на радиотехническом факультете. 2. Электроника (быть) молодой наукой. 3. Электронные устройства (играют) большую роль в радиоаппаратуре. 4. Станция приема (приема) радиоволн. 5. Передающие станции (излучать) радиоволны. 6. Передающая станция (иметь) радиопередатчик и антенну. 7. Радиопередатчик (быть) устройством для излучения электромагнитных волн. 8. Основные части передатчика (быть) высокочастотного генератора, заземления и антенны.9. Необходимые компоненты радиосвязи (быть) передатчиком и приемником. 10. Широкое применение радиоустройств (вести) для дальнейшего развития науки.

ЗАДАНИЕ 7. Прочитать первую часть текста.

ЭЛЕКТРОНИКА

Электроника — это наука об электронных явлениях, устройствах и системах. Он описывает и применяет поток электронов, испускаемых твердыми телами или жидкостями, проходящими через вакуум, газы или полупроводники.Электроника как наука изучает свойства электронов, законы их движения и законы преобразования различных видов энергии через среду электронов. Основными элементами электроники являются электронная лампа и транзистор.

Хотя электроника по праву считается только частью электротехники, электронные методы применяются во многих областях, включая промышленность, связь, оборону и развлечения. Из-за его универсальности становится все труднее провести четкие границы между электроникой и другими отраслями электронной техники.

В то время как физическая электроника — это наука об электронных процессах, промышленная электроника занимается технологиями проектирования, изготовления и применения электронных устройств. Промышленные применения электроники включают контрольно-измерительные приборы, счет и измерения, регулирование скорости и многие другие.

ЗАДАНИЕ 8. Ответьте на следующие вопросы, перескажите текст и составьте еще 5 вопросов.

1.Что такое электроника? 2. Что изучает? 3. Какие основные элементы в электронике? 4. Где применяются электронные методы? 5. Чем занимается промышленная электроника?

ЗАДАНИЕ 9. Прослушайте запись и заполните пробелы.

Электроника — это новая 1) физика, которая играет все более 2) роль в нашей жизни. Он связан с использованием 3) для производства 4) носителей информации и управления 5) таких как компьютеры.Эти устройства 6) электрические цепи, по которым проходит электрический ток 7). Управляющие части в цепи называются 8), а эти 9) диодами и транзисторами. Компоненты могут 10) токи, включать и выключать их или менять направление.

БЛОК 2

Задание 1. Изучите новые слова и словосочетания

изобретение [ɪn’venʃ (ə) n]
важно [ɪm’pɔːt (ə) nt]
разработка [dɪ’veləpmənt]
инженерное дело [ˌenʤɪ’nɪərɪŋ]
увеличить [ɪn’lɑːʤ], [en’lɑːʤ]
назначение [‘pɜːpəs], г.
вакуум [‘vækjuːm]
вещание [‘brɔːdkɑːstɪŋ]
телевещание [‘telɪˌkɑːstɪŋ]
исследования [rɪ’sɜːʧ]
радар [‘reɪdɑː]
заменить [rɪ’pleɪs]
уменьшить [rɪ’djuːs]
размер [сааз]
заранее [əd’vɑːn (t) s], г.
рассмотреть [kən’sɪdə], г.
подключить [kə’nekt]
внешний вид [ə’pɪər (ə) n (t) s]
использовать [juːz]
введение [ˌɪntrə’dʌkʃ (ə) n], г.
диапазон [reɪnʤ]
предположим [sə’pəuz]
микроэлектроника [ˌmaikrəiˌlek’troniks]
свинец [li: d]
крупномасштабная интегральная схема [lɑːʤ skeil integreitid ‘sɜːkɪt]
кв. [skwɛə]
дюйма [ɪnʧ]
магнитофон [‘teɪprɪˌkɔːdə]
инструмент [тюль]

ЗАДАЧА 2.Изучите следующие суффиксы и используйте их для образования новых слов.

СУЩЕСТВЕННЫЕ: Глагол + -ence, -ance : появляется → внешний вид: применять, сопротивляться, конденсатор.

НАКЛОНЕНИЯ: Прилагательное + — ly : обычный → обычно: возрастающий, вроде, недавний, распространенный, значительный.

ГЛАГОЛЫ: En / em + прилагательное: большой → увеличить: сила, способность, круг.

ПРИЛАГАЮЩИЕ:

Глагол + -able : вычислить → вычислимый: настроить, варьировать, изменить, примечание.

Существительное + -ant (-ent) : import → important;

Глагол, существительное + — ive : эффект → эффективный: проводить, сопротивляться, предотвращать, защищать.

Существительное + — ic : электрон → электроника: наука.

ЗАДАНИЕ 3. Изучите следующие предлоги и заполните пробелы в тексте предлогами. Прослушайте запись и проверьте ответы.

из : поток электронов
из : Я из России.С по : пройти через
в : Я живу в России.
С по : я хожу в школу
между : провести линию между двумя объектами
с : разобраться с
за : подарок тебе
на : компьютер на столе
в : преобразовать в

ИСААК НЬЮТОН

Английский физик и математик Исаак Ньютон был одним 1) … величайшие ученые 2) … все время. Его теории произвели революцию в научном мышлении и заложили основы 3) … современной физики. Его книга Principia Mathematica — это одна 4) … важнейшие работы 5) … история 6) … современная наука. Ньютон открыл закон 7) … гравитации и разработал три закона 8) … движения, которые все еще 9) … используются сегодня. Он был первым, кто разделил белый свет 10) … цвета 11) … спектр, и его исследования 12) … света привели его к созданию отражающего телескопа.Ньютон тоже был одним 13) … первопроходцами 14) … новой ветвью 15) … математикой под названием исчисление.

ЗАДАНИЕ 4. Изучите следующую структуру инфинитива, прочтите предложения ниже и переведите их с английского на русский язык.

Изобретение электронных устройств известно как новый важный этап в развитии электротехники.

, ..

1. Сообщается, что ученые уже работают над искусственным интеллектом, и следующее поколение компьютеров, вероятно, будет понимать человеческие языки. 2. Сейчас известно множество материалов, которые становятся сверхпроводниками при низких температурах. 3. Недавно было обнаружено, что некоторые керамические материалы являются сверхпроводниками. 4. Ожидалось, что Международная космическая станция станет постоянным внепланетным продолжением человеческой цивилизации. 5. Известно, что машинный код содержит двоичный код единиц и нулей, которые обрабатываются ЦП.

ЗАДАЧА 5. Преобразуйте предложения по модели: Известно, что транзисторы выполняют функции, аналогичные клапанам. → Известно, что транзисторы выполняют функции клапанов.

1. Известно, что звук в твердых телах распространяется быстрее, чем в жидкостях. 2. Доказано, что электронное оборудование экономит миллионы человеко-машинных часов. 3. Считается, что электроника — наиболее прогрессивная технология современной индустриальной эпохи.4. Очевидно, что электроника внесла большой вклад в автоматизацию. 5. Известно, что изобретение электронного устройства стало новым важным этапом в развитии электротехники.

ЗАДАНИЕ 6. Прочтите вторую часть текста.

ЭЛЕКТРОНИКА

Известно, что изобретение электронного устройства стало новым важным этапом в развитии электротехники. Это значительно расширяет область применения электроэнергии в различных промышленных целях.Изобретение электронной лампы сделало возможным радиовещание, а затем и телевещание. Исследования в области электроники дали нам радары, компьютеры, магнитофоны, бетатрон и множество медицинских инструментов. Полупроводниковые приборы, заменившие электронные лампы, уменьшают размер инструментов.

Считается, что большой прогресс в электронике связан с появлением транзистора. Использование транзистора, вероятно, станет первым шагом в миниатюризации электронных устройств и расширит диапазон их применения.Введение транзистора в 1948 году должно стать началом эволюции микроэлектроники, которая в конце 1970-х годов привела к разработке крупномасштабных интегральных схем (БИС). Теперь сотни схем можно разместить на одном квадратном дюйме, и, похоже, этому нет предела. Лучшим доказательством этого предположения является технология так называемой молекулярной эпитаксии.

Электроника, очевидно, внесла большой вклад в автоматизацию. Он расширил диапазон автоматического управления крупномасштабными промышленными операциями и ускорил обработку информации.Электронно-вычислительные машины послужили основой для строительства автоматических линий, автоматизированных агрегатов, цехов и целых заводов, инструментов с программным управлением, роботов и манипуляторов.

Электроника проникла во все сферы человеческой деятельности от бытовой техники до искусственного интеллекта и поиска космических цивилизаций. Таким преимуществам электронных устройств, как микроскопические размеры, высокая скорость, низкая стоимость и надежность, скорее всего, нет конкурентов. Неудивительно, что электронные технологии — самая динамичная технология современной индустриальной эпохи.В ближайшем будущем электроника обязательно сделает еще больший прогресс и поможет человечеству одержать новые победы в науке и технике.

ЗАДАНИЕ 7. Ответьте на следующие вопросы и перескажите текст.

1. Что сделало возможным радиовещание и телевещание? 2. Что может уменьшить размер инструмента? 3. С чем связан большой прорыв в электронике? 4. Какие основные элементы в электронике? 5. Какие преимущества есть у электронных устройств? 6.Когда был изобретен первый транзистор? 7. Когда началась разработка схем LSI? 8. Какой вклад внесла электроника в автоматизацию?

БЛОК 3

Задание 1. Изучите новые слова и словосочетания.

вещество [‘sʌbstəns]
состоит из [kəm’pəuzd]
орбита [‘ɔːbɪt]
зависит от [d’pend]
заряд [ʧɑːʤ], г.
переместить [muːv]
составляют [‘kɔnstɪtjuːt]
электрический ток [‘kʌrənt]; [‘kɜːrənt]
проводник [kən’dʌktə]
разрешить [ə’lau]
провод [‘waɪə]
покрыть
изоляционный материал [‘ɪnsjəleɪtɪŋ mə’tɪərɪəl]
проводимость [ˌkɔndʌk’tɪvətɪ]
примесь [ɪm’pjuərətɪ]
сопротивляться
постоянный ток (DC)
переменный ток (AC) [‘ɔːltəneɪtɪŋ]
изменить [ʧeɪnʤ]
включение / выключение /
частота [‘friːkwənsɪ]
напряжение [‘vəultɪʤ], [‘ vɔltɪʤ]
вольт (В)
ампер (А) [‘æmpɛə]
кулон (К) [‘kuːlɔm]
мощность
Ватт (Вт) [вес]
равняться [‘iːkwəl], г.
потребляют [kən’sjuːm]

Задача 2.Прочтите текст о веществах и элементах, из которых они состоят.

Все вещества, твердые, жидкие или газообразные, состоят из одного или нескольких химических элементов. Каждый элемент состоит из одинаковых атомов. Каждый атом состоит из небольшого центрального ядра, состоящего из протонов и нейтронов, вокруг которых вращаются оболочки электронов. Эти электроны намного меньше протонов и нейтронов. Электроны в самой внешней оболочке называются валентными электронами, и электрические свойства вещества зависят от количества этих электронов.Нейтроны не имеют электрического заряда, но протоны имеют положительный заряд, а электроны — отрицательный. В некоторых веществах, обычно в металлах, валентные электроны могут свободно перемещаться от одного атома к другому, и это то, что составляет электрический ток.

ЗАДАНИЕ 3. Прочтите текст еще раз и дополните предложения недостающей информацией.

1. Составные элементы. 2. Идентичные атомы. 3. Атомы состоят из, и. 4. Внутри есть и, а снаружи.5. Снаряды. 6. Валентные электроны. 7. Нейтронов нет. 8. Электричество вырабатывается, когда.

ЗАДАНИЕ 4. Прослушайте и дополните текст недостающей информацией.

Электричество состоит из 1) свободных электронов по проводнику. Для создания этого потока тока , на конце проводника помещается генератор для перемещения 2).

Проводники

Электричество нуждается в материале, который позволяет току легко проходить через него, 3) мало что дает потоку и полон свободных электронов.Этот материал называется проводником и может иметь форму стержня, трубки или листа. Чаще всего используются провода 4) различных размеров и толщин. Они покрыты изоляционными материалами, например пластиком.

Полупроводники

Полупроводники, такие как кремний и германий, используются в транзисторах, и их проводимость находится на полпути между проводником и 5). Небольшие количества других веществ, называемых примесями , , вводятся в материал для 6) проводимости.

Изоляторы

Материал, содержащий 7) электронов, называется изолятором. Стекло, резина, сухое дерево и 8) противостоят току электрического заряда, и поэтому они являются хорошими изоляционными материалами.

ЗАДАЧА 5. Прочтите текст еще раз и решите, верны ли следующие утверждения (T) или неверны (F), затем исправьте ложные.

1. Поток электронов, движущихся внутри проводника, создает электрический ток.

2. Генератор используется для перемещения зарядов.

3. Электроны могут легко проходить через любой материал.

4. Любой материал — хороший проводник.

5. Жилы покрыты изоляторами.

6. Наличие свободных электронов влияет на проводимость материалов.

7. Для увеличения проводимости вводятся примеси.

8. Изоляционные материалы противостоят потоку электронов.

ЗАДАЧА 6.Прочтите текст и заполните таблицу недостающей информацией.

Существует два типа тока: постоянный ток (DC) и переменный ток (AC). Постоянный ток — это непрерывный поток электронов в одном направлении, и он никогда не меняет своего направления до тех пор, пока питание не будет остановлено или отключено.

Переменный ток постоянно меняет свое направление из-за того, как он генерируется. Термин «частота» используется для обозначения того, сколько раз ток меняет свое направление за одну секунду.

Переменный ток имеет большое преимущество перед постоянным током, потому что он может передаваться на очень большие расстояния через небольшие провода, создавая высокое напряжение и низкий ток.

Есть несколько величин, которые важны, когда мы говорим об электрическом токе. Вольт (В), названный так в честь итальянского физика Алессандро Вольта, измеряет разность электрического потенциала между двумя точками на проводящем проводе. Амперы (А) измеряют количество тока, протекающего по проводнику, то есть количество электронов, проходящих через точку в проводнике за одну секунду.

Coulomb (C) измеряет количество заряда, переносимого за одну секунду постоянным током в один ампер. Мощность — это скорость выполнения работы, которая измеряется в ваттах (Вт). Киловатт (кВт), равный одной тысяче ватт, используется для измерения количества используемой или доступной энергии. Количество электроэнергии, потребляемой за один час при постоянной скорости в один киловатт, называется киловатт-часом.

Единица измерения Что он измеряет?
(1) количество электронов, проходящих через заданную точку в проводнике за одну секунду
(2) количество электроэнергии, передаваемой постоянным током в один ампер
(3) количество использованной электроэнергии
(4) разность потенциалов между двумя точками проводника
(5) скорость выполнения работ

ЗАДАЧА 7.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*

*

*