Как повысить морозостойкость бетона: Методы улучшения морозостойкости строительного бетона

Содержание

каким он бывает, как его делают и проверяют

В холодное время года стройматериалы с пористой структурой, в том числе бетон, подвергаются повышенным нагрузкам. Под воздействием отрицательных температур бетонный монолит пропитывается водой, которая проникает в поры и, становясь льдом, расширяется при замерзании. Длительное пребывание бетонных изделий на морозе, повторное оттаивание и замерзание существенно снижают эксплуатационные характеристики материала. Поэтому одним из ключевых технических характеристик бетона является класс его морозостойкости.

Морозостойкость — показатель, характеризующий способность бетона противостоять многократному замораживанию и размораживанию без потери прочности.

Эксперт о морозостойкости бетона

Классы морозостойкости бетона и сферы его применения

Класс (в просторечии марка) бетона по морозостойкости имеет буквенно-числовое обозначение. ГОСТ выделяет следующие классы морозоустойчивости по областям эксплуатации.

  • Низкий (ниже F50). Под воздействием отрицательной температуры такой материал трескается и рассыпается. Возможности его применения значительно ограничены. В России этот бетон практически не используется.
  • Умеренный (F50 – F100). Самая популярная марка бетона по морозостойкости. Изделия и фундаменты из него эксплуатируются во всех климатических зонах России, где четко выделяются четыре сезона.
  • Повышенный (F150 – F300). Выдерживает экстремальные температурные перепады, полностью сохраняя первоначальные эксплуатационные характеристики. Находит применение в районах с вечной мерзлотой, в Сибири и на Крайнем Севере.
  • Высокий (F300 – F500). Используется в особых случаях. Например, в зонах периодическими колебаниями уровня воды и многослойным промерзанием грунтов.
  • Сверхвысокий (выше F500). Находит штучное, сугубо индивидуальное применение в ответственных конструкциях, возводимых на очень длительный срок.

Как определяется морозостойкость бетона?

Ключевой критерий при определении морозоустойчивости бетона — установление максимального количества циклов заморозки-разморозки, при которых сохраняются первоначальные характеристики материала, а растрескивания и шелушения не определяются.

Лабораторные испытания материала имеют своей целью подробно продемонстрировать его поведение в естественных условиях эксплуатации. Результаты испытаний подтверждают либо не подтверждают реакцию материала на влияние внешних факторов. Условия испытаний на морозостойкость бетона подробно расписаны в ГОСТ 10060-95.

Морозостойкость бетона — способность сохранять физико-механические свойства при многократном переменном замораживании и оттаивании.

Морозостойкость бетона характеризуют соответствующей маркой по морозостойкости F.

Марка бетона по морозостойкости F — установленное нормами минимальное число циклов замораживания и оттаивания образцов бетона, испытанных по базовым методам, при которых сохраняются первоначальные физико-механические свойства в нормируемых пределах.

Цикл испытания — совокупность одного периода замораживания и оттаивания образцов.

Основные образцы — образцы, предназначенные для замораживания и оттаивания (испытания).

Контрольные образцы — образцы, предназначенные для определения прочности бетона на сжатие перед началом испытания основных образцов.

Лабораторные и альтернативные способы определения морозостойкости бетона

Для лабораторного исследования берутся основные (подверженные многократному замораживанию – размораживанию) и контрольные (новые, абсолютной прочности) образцы бетонного монолита.

Контрольные образцы бетона перед испытанием на прочность, а основные образцы перед замораживанием насыщают водой/раствором соли температурой (18±2) °С.

Для насыщения образцы погружают в жидкость на 1/3 их высоты на 24 ч, затем уровень жидкости повышают до 2/3 высоты образца и выдерживают в таком состоянии еще 24 ч, после чего образцы полностью погружают в жидкость на 48 ч таким образом, чтобы уровень жидкости был выше верхней грани образцов не менее чем на 20 мм.

Образцы помещают в морозильную камеру. После этого образцы размораживаются, и оценивается их состояние.

Существуют способы определения морозостойкости бетона подручными средствами. Для оценки показателя исследуются:

  • Внешний вид материала. Крупная зернистая структура, наличие трещин, пятнистости, шелушащихся и расслаивающихся зон — все это свидетельствует о низкой морозоустойчивости бетона.
  • Уровень водопоглощения. Когда показатель находится в диапазоне 5 — 6%, можно говорить о плохой устойчивости к низким температурам.

Еще один экспресс-метод определения морозоустойчивости реализуется по следующей схеме. Образцы исследуемого монолита погружаются в серно-кислый натрий и выдерживаются в нем в течение 24 часов. По истечении этого времени они подвергаются четырехчасовой сушке при 100 ºС. Цикл вымачивания и высушивания пятикратно повторяется аналогичным образом. По завершении эксперимента материал исследуют на предмет наличия трещин, сколов и других поверхностных дефектов.

Как повысить морозостойкость бетона?

Известно несколько способом повышения морозостойкости бетона. В их основе лежит то, что устойчивость материала к воздействию низких температур определяется количеством и величиной пор, а также исходным качеством и составом цементной основы.

  • Уменьшение макропористости. Самый простой и доступный способ повышения уровня морозоустойчивости. Использование спецдобавок и создание особых условий для быстрого отвердевания цементного раствора минимизирует потребность продукта в воде. Результатом этого становится уменьшение пористости.
  • Уменьшение количества воды в исходном растворе. Чтобы уменьшить потребность начального раствора в воде, в него добавляются специальные заполнители.
  • Поздняя заморозка. Если заморозить бетон в позднем возрасте, это сократит его пористость.
  • Гидроизоляция. С помощью специальной обмазки, окраски или пропитки на поверхности монолита создается защитная пленка, препятствующая проникновению в него атмосферной влаги.

Как заливают бетон в мороз

Бетон применяется в холодное время года, если строительные работы запоздали или идут на территории с высокой насыщенностью грунта влагой. Чтобы заливка бетонной смеси была успешной, стройплощадку предварительно прогревают тепловой пушкой или термоэлектрическими матами. Последние выполняют сразу две функции — гидроизоляции и обогрева.

Чтобы обогреть площадку можно применить и стандартную термоизоляцию. Самый простой вариант — использовать двухстороннюю пленку, которая растягивается в 2-3 см от основания. На пленку накладывают изоляцию и устанавливаются теплогенератор. На отвердевание бетона зимой обычно уходит не менее 4 дней.

Добавление в раствор прогретых инертных материалов и противоморозных добавок при зимних работах обязательно. Оно позволяет уменьшить размер больших пор (изменить структуру за счет увеличения числа микропор) и максимально удалить воду из раствора.

Подробный рассказ о том, как заливается бетон в холодное время года

Вывод

Морозостойкость — одно из важнейших свойств бетона как основного строительного материала, характеризующее его способность долговременно противостоять колебаниям температур от сезона к сезону. В условиях умеренного, а тем более арктического климата, когда годовая температурная амплитуда достигает 80 и более градусов, использование морозостойкого бетона не имеет альтернативы. Однако универсальной марки бетона, подходящей для всех случаев, не существует. Морозостойкий бетон покупается индивидуально для каждого объекта с учетом его назначения и местных условий.

Что такое морозостойкость бетона, и как она определяется

Бетон является одним из самых широко применяемых в строительстве материалов. Наряду с такими свойствами, как прочность и долговечность, морозостойкость — важная характеристика бетона.

Это качество особенно важно в России, где для многих регионов характерны суровые климатические условия: перепады температур и влажности, очень низкие температуры, в связи с чем бетон может насыщаться водой, растворами солей, а затем подвергаться многократному замораживанию и оттаиванию.

Рассмотрим, что такое морозостойкость, какими методами она определяется, и можно ли ее повысить.

Почему важна морозостойкость бетона

Бетон, являясь прочным материалом, все же имеет пористую структуру; в нем всегда есть поры и капилляры, способные поглощать влагу.

Осенью, а также зимой, во время оттепелей, бетонные конструкции насыщаются водой с растворенными в ней минеральными веществами (при контакте с влажным грунтом и атмосферными осадками, которые могут содержать агрессивные вещества от техногенных выбросов). Затем наступают заморозки, и вся оставшаяся в порах бетона влага замерзает, увеличиваясь в объеме.

В итоге возникают микротрещины, и с каждым циклом замораживания-оттаивания эти трещины становятся больше, пока бетон не начинает крошиться.

Что называется морозостойкостью

Согласно ГОСТ 10060-2012 «Бетоны. Методы определения морозостойкости», морозостойкостью называется способность бетона в состоянии, насыщенном водой или раствором соли, подвергаться замораживанию и оттаиванию без признаков разрушения, таких, как образование сколов, трещин, шелушения ребер.

В зависимости от того, сколько циклов замораживания и оттаивания образец выдерживает без повреждений, ему присваивается марка по морозостойкости.

Какие методы используются для испытания на морозостойкость

Образцы, которые подвергаются испытаниям, представляют собой бетонные кубики с размером стороны 10 или 15 см. Они отбираются из каждой партии бетона в стандартные формы в соответствии с ГОСТ 22685. Каждая серия образцов изготавливается из одной партии бетона.

ГОСТ определяет, каким образом отбирается бетон, и как хранятся образцы.

Важно!

Определение морозостойкости начинают только после того, как образцы достигли проектной прочности.

Образцы в течение 24 часов выдерживают в воде или растворе соли, погруженными на 1/3 от высоты. Через сутки уровень жидкости повышается вдвое, и образец снова выдерживают в течение суток. Следующие 48 часов кубики оставляют погруженными в раствор или воду полностью.

Испытания ведутся непрерывно.

Методы испытания делятся на две группы:

  1. базовые,
  2. ускоренные.

1. Первый

Первый метод используют для любых видов бетона, кроме бетонов для аэродромных и дорожных покрытий, а также бетонов, которые будут эксплуатироваться в условиях воздействия насыщенной минералами воды (эти виды бетонов испытываются вторым базовым методом).

Первый метод заключается в замораживании насыщенных влагой образцов на воздухе и последующем оттаивании их в воде (температура воды 20+/–2°С).

При использовании второго базового метода, насыщенные раствором хлорида натрия образцы замораживают на воздухе и размораживают в растворе NaCl (поваренной соли).

После проведения запланированного количества испытаний измеряют изменение массы образцов и их прочности и, с помощью расчетов по специальным формулам, определяют марку бетона по морозостойкости.

2. Второй

Второй метод используется для всех видов бетонов, кроме предназначенных для аэродромов и дорожных покрытий и легких бетонов, которые будут эксплуатироваться в условиях воздействия минерализованной воды.

3. Третий

Используется для всех видов бетонов, кроме легких бетонов.

Ускоренные методы используют образцы, насыщенные раствором NaCl. Их замораживают на воздухе и размораживают в 5-процентном растворе соли.

Затем обрабатывают результаты испытаний так же, как при использовании базовых методов.

К базовым методам относят первый и второй, а к ускоренным — второй и третий.

Какими бывают бетоны по морозостойкости, и где они используются

Для эффективного строительства важно точно знать, какова морозостойкость бетона. Именно поэтому бетонам присваивается марка по морозостойкости. Она обозначается литерой F и числовым показателем в диапазоне от 25 до 1000:

  1. Бетоны с морозостойкостью до F50 применяются, в основном, для внутренних и подготовительных работ.
  2. F50– F150 показывает средние значения морозоустойчивости. Такие бетоны подходят для строительства объектов, которые будут эксплуатироваться в условиях умеренного климата.
  3. Бетоны F150– F300 предназначены для строительства в холодных регионах.
  4. Марки выше F300 применяются для строительства в экстремально холодных условиях, а также для объектов специального назначения.

От чего зависит морозостойкость бетона

Очевидно, что слабая устойчивость бетона к низким температурам связана с его способностью насыщаться водой, которая впоследствии замерзнет. А насыщаемость водой тем выше, чем больше в бетоне пор и капилляров.

Поры и капилляры оказывают влияние также на водопроницаемость и прочность бетона.

Прослеживается прямая зависимость: чем плотнее бетон, чем меньше и меньшего диаметра в нем поры и капилляры, тем он более прочный, водостойкий и морозостойкий. А значит, что наиболее морозостойким будет плотный и прочный бетон.

Как повысить морозостойкость бетона

Чтобы получить плотный и прочный бетон, необходимо соблюдать следующие условия:

  1. Использовать качественный цемент высокой марки. Если планируются бетонные работы при пониженных температурах, или к бетону предъявляются повышенные требования по морозостойкости, прочности, водостойкости, применяют цемент более высокой марки.
  2. Для повышения водонепроницаемости бетона применять глиноземистые цементы.
  3. Выбрать правильное водоцементное соотношение.
  4. Обеспечить правильную укладку и уплотнение бетонной смеси, чтобы в готовом бетоне не было пустот.
  5. Обеспечить уход за бетоном и оптимальные условия твердения, чтобы бетон качественно набрал прочность (температура воздуха +18–22°С, влажность воздуха, близкая в 100%).
  6. Использовать различные добавки для бетона.

Какие добавки используют для бетона

Чтобы получить безупречный бетон, разрабатываются специальные химические добавки, позволяющие придать материалу те или иные желаемые свойства. Для повышения морозостойкости бетона необходимо повысить его плотность и водостойкость. С этой целью применяют пластификаторы и гидрофобизаторы.

Советуем изучить: Пластификаторы для бетона

Пластификаторы, например, Plastix от Cemmix, действуют следующим образом:

  1. Позволяют сэкономить до 10–20% цемента без потери прочности либо, не увеличивая количество цемента, получить более прочный бетон.
  2. Повышают подвижность бетонной смеси на 1–2 ступени без увеличения количества воды замеса. Дело в том, что количество воды, которое необходимо для протекания реакций гидратации, гораздо меньше, чем количество воды, необходимое для замеса пластичной и удобной в укладке бетонной смеси. Однако, если повысить водоцементное соотношение, в смеси будет лишняя вода. Она не вступит в реакции с частицами цемента, со временем испарится, но оставит лишние поры в бетоне, которые негативно отразятся как на его прочности, так и на водостойкости и морозостойкости. Добавление пластификатора полностью решает эту проблему, ведь с ним бетон становится более подвижным и удобным в работе без потери прочности.
  3. Бетонная смесь с пластификатором, благодаря повышенной подвижности, лучше укладывается. С одной стороны, это позволяет экономить трудозатраты и затраты электроэнергии на обработку уложенного бетона, с другой стороны, бетон укладывается более плотно, вытесняется лишний воздух, благодаря чему уменьшается количество и диаметр пор и капилляров в готовом изделии.
  4. Бетонная смесь с пластификатором дольше остается готовой к работе и не расслаивается, что повышает удобство работ.

В свою очередь, добавки, предназначенные для объемной гидрофобизации бетона (гидрофобизаторы) повышают прочность и морозостойкость бетона, защищают арматуру, а в некоторых случаях повышают подвижность бетона, позволяя обойтись без пластификатора.

Важно!

Пластификаторы и гидрофобизаторы иногда применяются совместно.

Советуем изучить: Гидрофобизаторы для бетона

Как заливают бетон в мороз

Рассматривая морозостойкость бетона, нельзя обойти вниманием такой вопрос, как производство бетонных работ в условиях пониженных температур. Ведь в России во многих регионах отрицательные температуры держатся более половины года, а строительные работы не ждут.

Но твердение бетона требует определенных условий. Чем ниже температура по сравнению с оптимальной, тем медленнее идут процессы набора прочности; при температуре ниже +5°С они почти прекращаются.

Являясь вяжущим веществом водного твердения, цемент вступает в реакции гидратации при смешивании с водой, но эти реакции протекают не одномоментно. Поэтому в бетонной смеси довольно длительное время есть свободная вода. При температурах ниже 0°С она замерзает. В результате прекращаются реакции гидратации и, даже если позже бетон оттаивает, его прочность все равно будет ниже запланированной.

В этих условиях разработаны различные методики ведения бетонных работ, которые позволяют не допустить замерзания бетонной смеси во время ее транспортировки и укладки, а также обеспечить правильный уход за уложенным бетоном.

Важно!

При проведении бетонных работ зимой наиболее важно обеспечить оптимальные условия твердения до набора бетоном критической прочности. Критическая прочность отличается от распалубочной, она задается проектной документацией и обычно составляет 30–50% от проектной прочности. После того, как критическая прочность набрана, бетон можно подвергать замораживанию без ущерба для его прочности.

Методы зимних бетонных работ делятся на две большие группы:

  1. «теплый» бетон,
  2. «холодный» бетон.

Важно!

Для зимнего бетонирования рекомендуется использовать бетон маркой не ниже, чем М400 (класс 32,5).

Теплым называют бетон, который так или иначе подогревают. Здесь возможны следующие варианты:

  1. Метод термоса. Бетонная смесь замешивается на теплой воде и прогретых заполнителях. Прогревается опалубка, а залитый бетон укрывается теплоизолирующими материалами. Если конструкция достаточно массивная, с толстыми стенками, то тепла, которое выделяется в процессе реакций гидратации, достаточно, чтобы обогреть ее и не допустить чрезмерного снижения температуры. Частный случай метода термоса — метод горячего сухого термоса, при использовании которого бетон можно укладывать даже на промороженное основание, предварительно засыпанное горячим (200–300°С) керамзитом.
  2. Устройство тепляков. В этом случае над залитым бетоном устанавливаются шатры, внутри которых ставят тепловые пушки, что позволяет поддерживать нужную температуру.
  3. Прогрев бетона различными методами (электродами, инфракрасным излучением, кондуктивным, индукционным методом и пр.)

У каждого из этих методов есть свои достоинства и недостатки. Так, метод термоса подходит только для крупных массивных конструкций, прогрев и обогрев бетона требуют расходов электроэнергии и дополнительного оборудования, а также постоянного контроля температуры в толще бетона, чтобы не допустить большого температурного градиента.

«Холодный» бетон — это метод ведения бетонных работ без прогревающих или обогревающих мероприятий. В этом случае используются противоморозные добавки и ускорители твердения бетона.

Важно!

В качестве противоморозных добавок в течение многих десятилетий используют электролиты, растворы солей калия и натрия. Однако эти добавки уместны далеко не всегда:

  1. хлорид натрия может приводить к коррозии металлической арматуры и закладных элементов;
  2. высокощелочные цементы и некоторые другие виды портландцементов не совместимы с электролитами;
  3. использование солей может привести к образованию высолов на поверхности изделия.

Вот почему оптимальный вариант — использование специальных противоморозных добавок для бетона, которые разработаны и проверены в лаборатории. Они не имеют тех недостатков, которые присущи солям и позволяют проводить бетонные работы даже в сильные морозы.

Противоморозные добавки часто сочетают в себе свойства пластификаторов и ускорителей твердения бетона. Они позволяют:

  1. Проводить бетонирование даже при очень низких температурах (до –20°С).
  2. Обходиться без тепловой обработки уложенного бетона.
  3. Снизить расход воды.
  4. Увеличить прочность бетона, как минимум, на 10%.
  5. Увеличить сцепление с арматурой.
  6. Повысить водонепроницаемость и морозостойкость бетона.

Важно!

Противоморозные добавки могут применяться и в «теплом» бетоне, позволяя экономить электроэнергию на прогрев бетона.

Советуем изучить: Для проведения работ в морозы

ВСН 150-93 «Указания по повышению морозостойкости бетона транспортных сооружений»

Искать все виды документовДокументы неопределённого видаISOАвиационные правилаАльбомАпелляционное определениеАТКАТК-РЭАТПЭАТРВИВМРВМУВНВНиРВНКРВНМДВНПВНПБВНТМ/МЧМ СССРВНТПВНТП/МПСВНЭВОМВПНРМВППБВРДВРДСВременное положениеВременное руководствоВременные методические рекомендацииВременные нормативыВременные рекомендацииВременные указанияВременный порядокВрТЕРВрТЕРрВрТЭСНВрТЭСНрВСНВСН АСВСН ВКВСН-АПКВСПВСТПВТУВТУ МММПВТУ НКММПВУП СНЭВУППВУТПВыпускГКИНПГКИНП (ОНТА)ГНГОСТГОСТ CEN/TRГОСТ CISPRГОСТ ENГОСТ EN ISOГОСТ EN/TSГОСТ IECГОСТ IEC/PASГОСТ IEC/TRГОСТ IEC/TSГОСТ ISOГОСТ ISO GuideГОСТ ISO/DISГОСТ ISO/HL7ГОСТ ISO/IECГОСТ ISO/IEC GuideГОСТ ISO/TRГОСТ ISO/TSГОСТ OIML RГОСТ ЕНГОСТ ИСОГОСТ ИСО/МЭКГОСТ ИСО/ТОГОСТ ИСО/ТСГОСТ МЭКГОСТ РГОСТ Р ЕНГОСТ Р ЕН ИСОГОСТ Р ИСОГОСТ Р ИСО/HL7ГОСТ Р ИСО/АСТМГОСТ Р ИСО/МЭКГОСТ Р ИСО/МЭК МФСГОСТ Р ИСО/МЭК ТОГОСТ Р ИСО/ТОГОСТ Р ИСО/ТСГОСТ Р ИСО/ТУГОСТ Р МЭКГОСТ Р МЭК/ТОГОСТ Р МЭК/ТСГОСТ ЭД1ГСНГСНрГСССДГЭСНГЭСНмГЭСНмрГЭСНмтГЭСНпГЭСНПиТЕРГЭСНПиТЕРрГЭСНрГЭСНсДИДиОРДирективное письмоДоговорДополнение к ВСНДополнение к РНиПДСЕКЕНВиРЕНВиР-ПЕНиРЕСДЗемЕТКСЖНМЗаключениеЗаконЗаконопроектЗональный типовой проектИИБТВИДИКИМИНИнструктивное письмоИнструкцияИнструкция НСАМИнформационно-методическое письмоИнформационно-технический сборникИнформационное письмоИнформацияИОТИРИСОИСО/TRИТНИТОсИТПИТСИЭСНИЭСНиЕР Республика КарелияККарта трудового процессаКарта-нарядКаталогКаталог-справочникККТКОКодексКОТКПОКСИКТКТПММ-МВИМВИМВНМВРМГСНМДМДКМДСМеждународные стандартыМетодикаМетодика НСАММетодические рекомендацииМетодические рекомендации к СПМетодические указанияМетодический документМетодическое пособиеМетодическое руководствоМИМИ БГЕИМИ УЯВИМИГКМММНМОДНМонтажные чертежиМос МУМосМРМосСанПинМППБМРМРДСМРОМРРМРТУМСанПиНМСНМСПМТМУМУ ОТ РММУКМЭКННАС ГАНБ ЖТНВННГЭАНДНДПНиТУНКНормыНормы времениНПНПБНПРМНРНРБНСПНТПНТП АПКНТП ЭППНТПДНТПСНТСНЦКРНЦСОДМОДНОЕРЖОЕРЖкрОЕРЖмОЕРЖмрОЕРЖпОЕРЖрОКОМТРМОНОНДОНКОНТПОПВОПКП АЭСОПНРМСОРДОСГиСППиНОСНОСН-АПКОСПОССПЖОССЦЖОСТОСТ 1ОСТ 2ОСТ 34ОСТ 4ОСТ 5ОСТ ВКСОСТ КЗ СНКОСТ НКЗагОСТ НКЛесОСТ НКМОСТ НКММПОСТ НКППОСТ НКПП и НКВТОСТ НКСМОСТ НКТПОСТ5ОСТНОСЭМЖОТРОТТПП ССФЖТПБПБПРВПБЭ НППБЯПВ НППВКМПВСРПГВУПереченьПиН АЭПисьмоПМГПНАЭПНД ФПНД Ф СБПНД Ф ТПНСТПОПоложениеПорядокПособиеПособие в развитие СНиППособие к ВНТППособие к ВСНПособие к МГСНПособие к МРПособие к РДПособие к РТМПособие к СНПособие к СНиППособие к СППособие к СТОПособие по применению СППостановлениеПОТ РПОЭСНрППБППБ-АСППБ-СППБВППБОППРПРПР РСКПР СМНПравилаПрактическое пособие к СППРБ АСПрейскурантПриказПротоколПСРр Калининградской областиПТБПТЭПУГПУЭПЦСНПЭУРР ГазпромР НОПРИЗР НОСТРОЙР НОСТРОЙ/НОПР РСКР СМНР-НП СРО ССКРазъяснениеРаспоряжениеРАФРБРГРДРД БГЕИРД БТРД ГМРД НИИКраностроенияРД РОСЭКРД РСКРД РТМРД СМАРД СМНРД ЭОРД-АПКРДИРДМРДМУРДПРДСРДТПРегламентРекомендацииРекомендацияРешениеРешение коллегииРКРМРМГРМДРМКРНДРНиПРПРРТОП ТЭРС ГАРСНРСТ РСФСРРСТ РСФСР ЭД1РТРТМРТПРУРуководствоРУЭСТОП ГАРЭГА РФРЭСНрСАСанитарные нормыСанитарные правилаСанПиНСборникСборник НТД к СНиПСборники ПВРСборники РСН МОСборники РСН ПНРСборники РСН ССРСборники ценСБЦПСДАСДАЭСДОССерияСЗКСНСН-РФСНиПСНиРСНККСНОРСНПСОСоглашениеСПСП АССП АЭССправочникСправочное пособие к ВСНСправочное пособие к СНиПСправочное пособие к СПСправочное пособие к ТЕРСправочное пособие к ТЕРрСРПССНССЦСТ ССФЖТСТ СЭВСТ ЦКБАСТ-НП СРОСТАСТКСТМСТНСТН ЦЭСТОСТО 030 НОСТРОЙСТО АСЧМСТО БДПСТО ВНИИСТСТО ГазпромСТО Газпром РДСТО ГГИСТО ГУ ГГИСТО ДД ХМАОСТО ДОКТОР БЕТОНСТО МАДИСТО МВИСТО МИСТО НААГСТО НАКССТО НКССТО НОПСТО НОСТРОЙСТО НОСТРОЙ/НОПСТО РЖДСТО РосГеоСТО РОСТЕХЭКСПЕРТИЗАСТО САСТО СМКСТО ФЦССТО ЦКТИСТО-ГК «Трансстрой»СТО-НСОПБСТПСТП ВНИИГСТП НИИЭССтП РМПСУПСССУРСУСНСЦНПРТВТЕТелеграммаТелетайпограммаТематическая подборкаТЕРТЕР Алтайский крайТЕР Белгородская областьТЕР Калининградской областиТЕР Карачаево-Черкесская РеспубликаТЕР Краснодарского краяТЕР Мурманская областьТЕР Новосибирской областиТЕР Орловской областиТЕР Республика ДагестанТЕР Республика КарелияТЕР Ростовской областиТЕР Самарской областиТЕР Смоленской обл.ТЕР Ямало-Ненецкий автономный округТЕР Ярославской областиТЕРмТЕРм Алтайский крайТЕРм Белгородская областьТЕРм Воронежской областиТЕРм Калининградской областиТЕРм Карачаево-Черкесская РеспубликаТЕРм Мурманская областьТЕРм Республика ДагестанТЕРм Республика КарелияТЕРм Ямало-Ненецкий автономный округТЕРмрТЕРмр Алтайский крайТЕРмр Белгородская областьТЕРмр Карачаево-Черкесская РеспубликаТЕРмр Краснодарского краяТЕРмр Республика ДагестанТЕРмр Республика КарелияТЕРмр Ямало-Ненецкий автономный округТЕРпТЕРп Алтайский крайТЕРп Белгородская областьТЕРп Калининградской областиТЕРп Карачаево-Черкесская РеспубликаТЕРп Краснодарского краяТЕРп Республика КарелияТЕРп Ямало-Ненецкий автономный округТЕРп Ярославской областиТЕРрТЕРр Алтайский крайТЕРр Белгородская областьТЕРр Калининградской областиТЕРр Карачаево-Черкесская РеспубликаТЕРр Краснодарского краяТЕРр Новосибирской областиТЕРр Омской областиТЕРр Орловской областиТЕРр Республика ДагестанТЕРр Республика КарелияТЕРр Ростовской областиТЕРр Рязанской областиТЕРр Самарской областиТЕРр Смоленской областиТЕРр Удмуртской РеспубликиТЕРр Ульяновской областиТЕРр Ямало-Ненецкий автономный округТЕРррТЕРрр Ямало-Ненецкий автономный округТЕРс Ямало-Ненецкий автономный округТЕРтр Ямало-Ненецкий автономный округТехнический каталогТехнический регламентТехнический регламент Таможенного союзаТехнический циркулярТехнологическая инструкцияТехнологическая картаТехнологические картыТехнологический регламентТИТИ РТИ РОТиповая инструкцияТиповая технологическая инструкцияТиповое положениеТиповой проектТиповые конструкцииТиповые материалы для проектированияТиповые проектные решенияТКТКБЯТМД Санкт-ПетербургТНПБТОИТОИ-РДТПТПРТРТР АВОКТР ЕАЭСТР ТСТРДТСНТСН МУТСН ПМСТСН РКТСН ЭКТСН ЭОТСНэ и ТЕРэТССЦТССЦ Алтайский крайТССЦ Белгородская областьТССЦ Воронежской областиТССЦ Карачаево-Черкесская РеспубликаТССЦ Ямало-Ненецкий автономный округТССЦпгТССЦпг Белгородская областьТСЦТСЦ Белгородская областьТСЦ Краснодарского краяТСЦ Орловской областиТСЦ Республика ДагестанТСЦ Республика КарелияТСЦ Ростовской областиТСЦ Ульяновской областиТСЦмТСЦО Ямало-Ненецкий автономный округТСЦп Калининградской областиТСЦПГ Ямало-Ненецкий автономный округТСЦэ Калининградской областиТСЭМТСЭМ Алтайский крайТСЭМ Белгородская областьТСЭМ Карачаево-Черкесская РеспубликаТСЭМ Ямало-Ненецкий автономный округТТТТКТТПТУТУ-газТУКТЭСНиЕР Воронежской областиТЭСНиЕРм Воронежской областиТЭСНиЕРрТЭСНиТЕРэУУ-СТУказУказаниеУказанияУКН

Морозостойкость бетона разных марок: определение, как повысить

Все материалы, используемые при строительстве и капитальном ремонте, должны соответствовать климатическим условиям эксплуатации. Не в последнюю очередь это касается бетона, так как от его морозостойкости и способности переносить сильные температурные перепады зависит устойчивость всей конструкции.

Бетон — пористый материал, когда в него попадает влага из почвы или воздуха, при отрицательной температуре она замерзает и сильно расширяется, что приводит к появлению трещин. Процесс может повторяться многократно, и при каждом последующем цикле разрушения будут все значительнее. Морозостойкость бетона — это его способность неоднократно переносить заморозки и оттаивания, и при этом сохранять свои первоначальные физико-механические свойства. Предельно допустимая потеря прочности — не более 5%.

Марки бетона

Марка и класс включают в себя такие нормативы как качество, прочность, водопроницаемость и морозостойкость. Последний показатель напрямую зависит от структуры материала — чем больше его пористость, тем ниже этот параметр.

По действующим в РФ стандартам ГОСТ 10060.0-95 морозостойкость бетона обозначается буквой F и цифрами, указывающими на допустимое число циклов заморозки и оттаивания раствора в процессе эксплуатации. Российские стандарты ГОСТ полностью совместимы с международными стандартами.

МорозостойкостьМаркаХарактеристики
НизкаяF50 и менееПрактически нигде не применяется, так как на открытом воздухе все конструкции с высокой водопроницаемостью очень быстро разрушаются.
УмереннаяF50-F200Имеет оптимальные показатели и является самым распространенным и широко применяемым. Именно такая марка бетона используется для частного строительства в средней полосе России.
ПовышеннаяF200-F350Данная марка предназначена для эксплуатации зданий в суровых климатических условиях. Материал с легкостью выдерживает значительные температурные перепады и на протяжении десятилетий сохраняет свои первоначальные качества.
ВысокаяF350-F500Требуется в исключительных случаях, например, в условиях переменной влаги.
Особо высокаяF500 и болееИспользуется, когда эксплуатационный период исчисляется в буквальном смысле слова веками. Как правило, столь высокий параметр достигается путем ввода различных добавок и присадок.

Марка и класс бетона по морозостойкости имеют прямую зависимость — чем больше прочность, тем выше его цена и ниже водопроницаемость. Соотношения приведены в таблице ниже:

FМаркаКласс
50В7,5-В12,5М100-М150
100В15-В22,5М200-М250
200В25М300-М350
300В30М400
Более 300В35-В45М450-М600

Как повысить морозостойкость?

Она напрямую зависит от числа образующихся макропор в структуре. С уменьшением пористости стойкость к многочисленным циклам заморозки-оттаивания увеличивается. Существует несколько способов повысить морозостойкость и снизить водопроницаемость цементного раствора при частном строительстве:

1. Первый и самый примитивный метод заключается в качественном уплотнении цементной смеси при заливке. При сильном утрамбовывании в разы уменьшается пористость материала и снижается объем влаги, попадающей в бетон при его насыщении. Для более качественной трамбовки желательно использовать электрический виброуплотнитель большой мощности.

2. Повышения морозостойкости можно добиться путем формирования дополнительных внутренних полостей. Для этого в состав цементного раствора примешивают специальные воздухововлекающие добавки для создания мелких резервных пор, которые могут быть заполнены, только если вода на них будет попадать под давлением.

3. И последний способ — добавить к готовой цементной смеси противоморозные присадки. К таким присадкам относятся мочевина, соли кальция и пр. При замерзании они образуют чешуйчатый лед, который менее разрушителен, чем обычный.

Иногда бывает достаточно всего лишь защитить поверхность бетона от прямого контакта с влагой. Для этого используются специальные гидроизолирующие материалы и растворы, например, битум или полимерная мастика.

Применение в строительстве

В частном домостроении готовую бетонную смесь используют чаще всего для заливки основания под здание. Бетон для фундамента выбирается с учетом типа сооружаемой конструкции и местных климатических условий.

1. Если нагрузка на основание будет небольшой, например, при строительстве каркасно-щитового дома или иного дачного сооружения лучше всего подойдет бетон М200. Для более тяжелых объектов, таких как дома из бруса, пеноблоков или кирпича потребуется приобрести цементный раствор М250 или М300. Для двухэтажных тяжелых зданий чаще всего заливается монолитный фундамент — в этом случае используется бетон марки не меньше чем М350.

2. Также нужно обращать внимание на характеристики почвы и грунта. Для средней полосы России подойдет М250, а вот на глинистых и суглинистых почвах, невзирая на тип сооружаемого здания, для фундамента можно применять только М350 и выше.

3. Класс F для любой марки бетона выбирается с учетом климатических условий региона.

4. Бетон М300 В22,5 с классом F150 или F200 является самым распространенным и применяемым в частном строительстве. Данная марка хорошо подходит не только для заливки фундамента, но и для производства монолитной плиты, изготовления чаши для бассейна и несущего перекрытия.

Морозостойкость бетона, способы ее повышения


Страница 4 из 4

 

Морозостойкие бетоны на легких заполнителях, в особенности с использованием мелкого и крупного пористых заполнителей, имеют значительный недостаток — происходит значительная потеря статической прочности по сравнению с бетонами на плотных заполнителями.

В опытах таких ученых, как Г. А. Франк и В. Ф. Знакомский замена плотных заполнителей на керамзит и керамзитовый песок обеспечила значительное повышение как морозостойкости, так и солестойкости бетона, но привела к 2,5-5-кратному снижению исходной прочности бетона на сжатие и 20-40 %-ой потере прочности на растяжение при изгибе. Чтобы избежать снижения прочности бетона, был разработан более оптимальный состав бетонов с заменой части плотных заполнителей на пористые, когда потери статической прочности оказываются относительно умеренными. Это благоприятно не только для прочности, но и оптимизирует бетоны по морозостойкости. Технология изготовления таких бетонов сводится к замене части плотных заполнителей демпфирующими компонентами.

Демпфирующим компонентам присущи жесткостные характеристики, зависящие от пористости бетона. Введение в бетон таких добавок, снижающих концентрацию напряжений на границе раздела фаз с различными упругими характеристиками, значительно уменьшает размах колебаний и пределы изменений максимальной и минимальной деформации и напряжений в процессе разрушения бетона. Механизм торможения процессов разрушения бетона определяется присутствием в нем «слабых» упруго-вязких и слоистых включений, снижающих локальные напряжения и гасящих энергию роста трещин.

Применительно к морозостойкости, эффективными демпфирующими компонентами являются мелкоразмерные гранулы пенополистирола, которые при умеренной объемной концентрации сохраняют статическую прочность бетона на приемлемом конструкционном уровне. Гранулы пенополистирола способны на длительное время сохранять функцию резервных пор, а также обеспечивать функцию демпфирующих включений, в значительной степени разгружающих структурную ячейку на уровне мелкого заполнителя от внутриструктурных напряжений.               Циклическое замораживание и оттаивание бетона с демпфирующими добавками протекает без проявления внутриструктурных повреждений с упрочнением и свидетельствует в целом о высокой стойкости структуры к многократно повторным воздействиям минусовых температур.

Оптимальная концентрация демпфера для керамзитового песка повышенной прочности сочетается со сравнительно небольшими потерями по статической прочности, т. е в этом случае обеспечивается получение полноценных конструкционных бетонов повышенной морозостойкости.

В качестве демпфирующих компонентов для повышения морозостойкости эффективны и другие поризованные минеральные компоненты в дисперсном виде, например, горелопородные пески силикатно-алюминатной минералогии, доменные гранулированные шлаки повышенной пористости.

Однако у данного метода есть недостаток. В последние годы при возведении ограждающих конструкций массовое применение получает полистиролбетон низких марок средней плотности (D150-D250), ввиду незначительной массы крупноразмерных блоков и относительно невысокой трудоемкости их монтажа. Но применение полистиролбетона в жилищном строительстве в научном аспекте обосновано недостаточно. В частности, при использовании незначительной толщины штукатурного слоя для отделки наружной поверхности конструкции из полистиролбетона в жаркий период могут ускориться процессы старения гранул полистирола с их частичной сублимацией, что приводит к снижению его прочности и морозостойкости. В весенне-осенний период знакопеременные переходы температуры через нулевой уровень приведут к дополнительному снижению прочности полистиролбетона. Циклические воздействия высоких и знакопеременных температур могут значительно снизить эксплуатационную надежность и даже привести к разрушению наружной поверхности и соответственно контактной зоны полистиролбетона с отделочным слоем. Поэтому при высокой этажности и значительных ветровых нагрузках сохранность целостности зданий с использованием ограждающих конструкций из полистиролбетона требует уточненного расчетно-экспериментального обоснования.

Негативным аспектом применения полистиролбетона в жилищном строительстве является и его потенциальная экологическая опасность, в том числе при пожаре. При использовании штукатурного слоя по металлической сетке для отделки поверхности стены внутри помещения (наиболее распространенный вариант) в зимнее время при высокой температуре отопительных элементов может произойти деструкция поверхностного слоя гранул полистирола и диффузия стирола в жилые помещения, что при недостаточной вентиляции будет негативно влиять на здоровье проживающих в них людей. Поэтому массовое применение полистиролбетона в строительстве для устройства наружных стен в жилых зданиях является научно необоснованным и преждевременным [4], [7].

Распространенным материалом, также способным повысить (или восстановить морозостойкость), является добавка «Кальматрон-Д». При применении данного состава марка по морозостойкости повышается на F100 (циклов), температура эксплуатации от — 60 до + 130 С0. Материал основан на взаимодействии в присутствии воды комплекса химически активных минеральных добавок с цементом, содержащимся как в самом «Кальматроне», так и в защищаемой бетонной конструкции. При этом образуется насыщенный электролитический раствор, который, благодаря осмотическим процессам, проникает вглубь структуры бетона по имеющимся в нем капиллярам, порам и трещинам даже навстречу давлению воды. И уже внутри бетона из этого раствора вырастают кристаллические новообразования игольчатой и пластинчатой формы, которые, разделяя имеющиеся пустоты и поры на многократно более мелкие, уплотняют структуру бетона. При этом бетонная конструкция остается паропроницаемой.

«Кальматрон» применяется при строительстве резервуаров, фундаментов, плотин, шахт, подвальных помещений, хранилищ нефтепродуктов, метрополитенов, тоннелей, причалов, мостовых сооружений, бетонных дамб [6], [8].

Итак, создание морозостойкого бетона и увеличение морозостойкости бетона в процессе эксплуатации является важной проблемой в строительстве ввиду широкого применения бетона в строительных конструкциях и при строительстве дорог.

Наиболее успешным способом увеличения морозостойкости является введение в бетонную смесь природных цеолитсодержащих пород. Кроме выгоды с экономической точки зрения, в данном случае увеличивается морозостойкость, долговечность и прочность бетона. Важным аспектом является и отсутствие экологической опасности при недостаточной вентиляции, в отличие от метода с применением полистиролбетона.

Литература

  1.      Использование природных цеолитсодержащих пород для повышения морозостойкости бетонов транспортных сооружений. / К. В. Оськин. // Транспортное строительство. — 2008. — № 7. — С. 16-18.
  2.      Определение конкретных значений морозостойкости бетона при испытаниях базовыми методами ГОСТ 10060.0 — 10060.2-95. / В. Г. Бойко. // Бетон и железобетон. — 2010. — N 6. — С. 19-22.
  3.      Особенности морозно-солевого воздействия на свойства аэродромного бетона. / С. Н. Толмачев, И. Г. Кондратьева. // Строительные материалы. — 2011. — N 3. — С. 107-110.
  4.      Структурные зависимости морозостойкости ячеистого бетона. / Е. Г. Величко. // Строительные материалы. — 2012. — N 4. — С. 73-75.
  5.      Определение морозостойкости крупного заполнителя для тяжелых бетонов. / Л. М. Добшиц. // Бетон и железобетон. — 2012. — N 4. — С. 16-20.
  6.      Эксплуатационные характеристики бетона строительных конструкций с применением системы «Кальматрон». / С. Н. Леонович, Н. Л. Полейко, С. В. Журавский, Ю. Н. Темников. // Строительные материалы. — 2012. — N 11. — С. 64-67.
  7.      Структурообразование и разрушение цементных бетонов. Бабков В. В.; Мохов, В. Н.; Капитонов С. М.; Комохов П. Г.
  8.      Официальный сайт группы компаний «Кальматрон», добавки в бетон. [Электронный ресурс]: http://kalmatron.ru/products/kompleksnaya_dobavka_v_beton/kalmatrond/ (дата обращения: 13.08.2015).

 

Добавки в бетон для водонепроницаемости: виды, применение

Специальные добавки для бетона для водонепроницаемости позволяют сделать монолит более плотным, уменьшив в его структуре количество пустот, через которые в камень попадает вода и разрушает его. Также высоких показателей стойкости к воде можно добиться благодаря покрытию материала разнообразными гидроизолирующими средствами.

Уровень водонепроницаемости бетона маркируется буквой W и четными числами в диапазоне от 2 до 20. Бетон с повышенными характеристиками стойкости к воде используют в самых разных сферах – при строительстве монолитных подземных/надземных конструкций, гидротехнических сооружений, различных изделий и элементов, на которые может негативно воздействовать влага.

Водонепроницаемый бетон – что это такое

Бетон водостойкий – это особый вид смеси, в котором нет разного типа пустот (капилляров, пор), через которые в структуру монолита может поступать влага. Уровень плотности такого материала значительно превышает нормативные показатели. Кроме того, монолит защищают внешними средствами, герметизируя швы.

Но достичь наивысшего уровня гидроизоляции возможно исключительно в монолитных конструкциях – если в сборной много подвижных швов, демонстрировать характеристики водонепроницаемости она не может.

Основные причины появления воды в бетоне:

  • Наличие пор, которые появляются из-за большого объема воды, добавленного в раствор
  • Наличие дефектов из-за неправильного либо недостаточного уплотнения залитой смеси
  • Разного рода деформации, ведущие к распространению трещин по камню

Повысить водонепроницаемость составов можно двумя способами – подбором правильного соотношения и типа компонентов либо введением в раствор специальных добавок, позволяющих получить более плотный камень без пор и капилляров, за счет чего материал становится максимально стойким к воздействию воды (он ее просто не впитывает и не пропускает).

Классы водостойкости

При выборе добавок для бетона необходимо учитывать условия эксплуатации и требования по нагрузкам к будущей конструкции, в соответствии с чем выбирают нужный компонент и добавляют в определенном объеме. В случае с замесом водостойкого бетона самой главной характеристикой является его водонепроницаемость – маркируется символом W и четными цифрами 2-20.

Показатели, определяющие взаимодействие воды и бетона:

1) Прямые – показатель водонепроницаемости по марке, а также коэффициент возможной фильтрации и т.д.

2) Косвенные – тут рассматривают отношение цемента и воды, объем поглощения влаги в зависимости от массы и др.

В случае с замесом водонепроницаемого бетона основное внимание обращают на прямые показатели, а именно на класс водостойкости, так как косвенные не очень существенно влияют на окончательные характеристики раствора.

Основные марки по водонепроницаемости:

  • W4 – нормальный уровень влагопроницаемости, подходит для построек, где эти характеристики не важны.
  • W6 – пониженная проницаемость влагой, самый распространенный раствор в строительных работах.
  • W8 – низкая водонепроницаемость: смесь пропускает очень мало влаги.
  • W10 и выше – растворы, пропускающие воду по минимуму, которые используются в строительстве бункеров, гидротехнических сооружений, разного типа водохранилищ и т.д. Из них самым водостойким считается бетон с показателем W20, он же наиболее дорогой.

Выбор класса бетона осуществляется в соответствии с условиями эксплуатации: для заливки фундамента с дополнительной гидроизоляцией используют бетон W8, фундамент в зонах с близким пролеганием грунтовых вод или повышенной влажностью выполняют бетоном W12-20, штукатурку стен в помещениях с оптимальным уровнем влажности осуществляют раствором W8-14, для сырых и холодных помещений лучше выбрать W14 и больше (то же самое касается и внешней отделки здания).

Зачем нужна гидроизоляция железобетона

Прежде, чем рассматривать, что добавляют в бетон для водонепроницаемости, необходимо понять, какие конструкции желательно защитить и почему. Так, железобетон в защите от влаги нуждается обязательно, так как от воздействия воды разрушается как бетон, так и арматура, что негативно сказывается на уровне прочности, способности выдерживать нагрузки, длительности службы и т.д.

Бетоны, пропускающие воду, имеют свойство впитывать ее и задерживать, пропускать вовнутрь монолита. Потом под воздействием низких температур вода кристаллизируется и расширяется, разрушая попутно поры камня, способствуя распространению трещин, деформаций.

Разрушается бетон не сразу, а постепенно и скорость зависит напрямую от соответствующего показателя. Обозначают буквой F и цифрой (F100, F200, F300 и т.д.), которая указывает на число циклов замораживания/оттаивания, что может пережить бетонный монолит.

Нуждается в защите от воды и арматура, которую заливают вовнутрь камня для повышения его прочностных характеристик и уровня стойкости к разного типа нагрузкам. Когда вода попадает в бетон и доходит до арматуры, металл окисляется: истончается (понижается несущая способность стержней), появляется окись металла (увеличивается объем, разрушается бетон).

Опасны для бетона и металла агрессивные виды воды – выщелачивающий, углекислотный, кислородный, сульфатный, общекислотный, магнезиальный. Для камня самыми вредными считаются воды с сернокислотными солями, которые провоцируют прохождение химических реакций и потерю прочности. Для металла любая вода может стать причиной разрушения.

Добавки в бетон для водонепроницаемости своими руками

Раздумывая о том, что добавить в бетон, чтобы он не пропускал воду, необходимо рассмотреть основные виды добавок. Обычно их делят на 3 группы: кольматирующие, полимерные, пластифицирующие.

Пластификаторы

Такие добавки предполагают единый принцип работы: при попадании в смесь они создают покрытие пленочного типа, обволакивающее частицы цемента и придающие им нужные свойства. Частички становятся более скользкими, бетон становится более подвижным. Некоторые пластификаторы могут создавать электрический заряд, за счет чего активируются частицы смеси и она становится более подвижной.

При повышении пластичности бетонного раствора снижается содержание лишней влаги в нем, понижается порообразование. Пластифицирующая добавка в бетон для водонепроницаемости вводится в смесь в объеме 0.1-3% общей массы. Выделяют три вида пластификаторов: высокоэффективные, сильнопластифицирующие и слабопластифицирующие.

Пластификатор С3

Материал используется в производстве монолитных/сборных конструкций с высокой степенью армирования. Объем вводимого в состав вещества рассчитывают, исходя из веса цемента в сухом виде – обычно это 0.3-0.8% его массы. Добавку вводят после разведения в воде с соблюдением технологии, указанной в инструкции.

В работе с такими растворами желательно помнить о некоторых нюансах: смесь готовить при плюсовой температуре воздуха, в чистой емкости, в процессе растворения вещества постоянно мешать, обязательно использовать средства для индивидуальной защиты.

Основные преимущества данного типа пластификатора: существенная экономия цемента, значительное повышение подвижности бетона без ущерба прочности, отсутствие необходимости вибрировать свежеуложенную смесь, высокий уровень плотности готового состава, улучшенные характеристики морозостойкости и водонепроницаемости, минимальная усадка.

Кольматирующие

Водоотталкивающие добавки для бетона данного типа могут производиться на базе разных веществ – часто используют сульфат/нитрат/хлорид железа, сульфат алюминия, нитрат кальция, битумную эмульсию.

Все они работают по одному и тому же принципу: уплотняют бетон, делают его непроницаемым для воды уже после застывания монолита. Такого эффекта удается добиться за счет прохождения химической реакции между водой, цементом и самой добавкой. Благодаря реакции появляются нерастворимые соединения, которые надежно заполняют все пустоты в структуре (поры и капилляры) застывшего камня.

Кольматирующие добавки могут также наноситься на монолит после застывания смеси – компоненты состава проникают в поверхностный слой, заполняя поры (проходит процесс кольматации).

Полимерные

Полимерные добавки в бетон водоотталкивающие гарантируют наиболее высокий уровень защиты материала от влаги. На всех частицах компонентов бетонного раствора формируется прочная полимерная пленка, надежно и качественно защищающая камень от воды. Такие добавки позволяют защищать даже разрушенные конструкции – покрытые трещинами, сколами, не позволив им деформироваться дальше.

Проникающая гидроизоляция

Гидрофобные проникающие добавки также обеспечивают очень высокий уровень эффективности. Они могут работать по-разному: вводиться в смесь в процессе ее приготовления либо наноситься по технологии на уже застывший монолит.

Состав смесей бывает разным, производители сегодня предлагают большой выбор. Те, в которых в преимуществе цемент и песок, просто создают корку на поверхности. Вещества с химическими соединениями гарантируют глубокое проникновение в монолит, намного эффективнее заполняя поры и пустоты.

Пенетрон

Очень популярная водоотталкивающая добавка для бетона. Обеспечивает водонепроницаемость железобетонных изделий в процессе их заливки, может применяться для сборных/монолитных конструкций, даже с порами и трещинами. Часто обрабатывают этим средством резервуары, бассейны, фундаменты, подвалы, септики.

Основные преимущества добавки «Пенетрон»: экологичность, безопасность для человека, возможность сочетать с другими добавками, повышение морозостойкости бетона, защита не только от обычной воды, но и от морской, а также кислот, щелочей, стоков и т.д.

Добавку растворяют в воде, смешивают с раствором в процессе его приготовления. Для обеспечения надежной гидроизоляции швов, примыканий, вводов коммуникаций и т.д. дополнительно монтируют гидроизоляционные прокладки.

Жидкое стекло

Раствор жидкого стекла работает на основе силиката натрия либо калия – оба вещества обладают повышенными характеристиками влагостойкости, формируют пленку. В строительных растворах добавка применяется в формате жидкой смеси вязкой, густой консистенции. Состав твердеет при контакте с углекислым газом (на воздухе, то есть), в процессе застывания образуются аморфные гидратированные оксиды кремния.

Добавка повышает текучесть смеси, благодаря чему они проникает в любые щели и трещины, надежно защищая поверхность. Состав может вводиться в бетон либо наноситься на уже застывший монолит.

Формируется надежная водонепроницаемая пленка, расход вещества небольшой, независимо от выбранного способа использования (как один из компонентов бетонного раствора либо в составе гидроизоляционного материала для поверхностного нанесения).

Значительно улучшает свойства ЖБИ, не сильно повышает стоимость. Материал обеспечивает хороший уровень водонепроницаемости, стойкости к воде и высоким температурам, плесени и грибку. Актуально использование добавки при заливке фундаментов, особенно под котлы, камины, гидротехнику, печи, разные подземные сооружения.

В готовый раствор добавка не вводится: сна

% PDF-1.4
%
1516 0 объект
>
endobj
xref
1516 87
0000000016 00000 н.
0000002095 00000 н.
0000002384 00000 н.
0000003282 00000 н.
0000003680 00000 н.
0000003767 00000 н.
0000003915 00000 н.
0000004074 00000 н.
0000004242 00000 п.
0000004306 00000 н.
0000004432 00000 н.
0000004495 00000 н.
0000004615 00000 н.
0000004678 00000 п.
0000004812 00000 н.
0000004875 00000 н.
0000004996 00000 н.
0000005059 00000 н.
0000005174 00000 п.
0000005236 00000 п.
0000005367 00000 н.
0000005429 00000 п.
0000005631 00000 н.
0000005693 00000 п.
0000005879 00000 п.
0000005941 00000 н.
0000006050 00000 н.
0000006112 00000 н.
0000006248 00000 н.
0000006310 00000 н.
0000006447 00000 н.
0000006509 00000 н.
0000006645 00000 н.
0000006707 00000 н.
0000006820 00000 н.
0000006882 00000 н.
0000006998 00000 п.
0000007060 00000 н.
0000007237 00000 н.
0000007299 00000 н.
0000007427 00000 н.
0000007489 00000 н.
0000007671 00000 н.
0000007733 00000 н.
0000007959 00000 н.
0000008022 00000 н.
0000008204 00000 н.
0000008267 00000 н.
0000008416 00000 н.
0000008479 00000 п.
0000008605 00000 н.
0000008668 00000 н.
0000008809 00000 н.
0000008871 00000 н.
0000008996 00000 н.
0000009059 00000 н.
0000009224 00000 н.
0000009286 00000 н.
0000009396 00000 п.
0000009459 00000 н.
0000009588 00000 н.
0000009650 00000 н.
0000009780 00000 н.
0000009842 00000 н.
0000009958 00000 н.
0000010021 00000 п.
0000010083 00000 п.
0000010145 00000 п.
0000010263 00000 п.
0000010382 00000 п.
0000010424 00000 п.
0000010447 00000 п.
0000011058 00000 п.
0000011080 00000 п.
0000011205 00000 п.
0000011325 00000 п.
0000011452 00000 п.
0000011572 00000 п.
0000011687 00000 п.
0000011810 00000 п.
0000011940 00000 п.
0000012058 00000 п.
0000012182 00000 п.
0000012305 00000 п.
0000012431 00000 п.
0000002450 00000 н.
0000003259 00000 н.
трейлер
]
>>
startxref
0
%% EOF

1517 0 объект
>
/ OpenAction 1518 0 R
/ Метаданные 1513 0 R
>>
endobj
1518 0 объект
>
endobj
1601 0 объект
>
ручей
Hb«g` «01

Как определяется морозостойкость бетона?

Морозостойкость строительных материалов показывает, насколько образец способен сохранять свои свойства после нескольких последовательных циклов замораживания и оттаивания.В случае с бетоном основной причиной его разрушения при этих процессах является вода в твердом состоянии, которая оказывает значительное давление на стенки микротрещин и пор материала.

В свою очередь твердость бетона не дает воде свободно расширяться, поэтому при испытании бетона на морозостойкость создаются высокие напряжения. Разрушение начинается с выступающих частей, затем продолжается в верхних слоях и, наконец, проникает глубже.

Фактором, ускоряющим разрушение бетона, также является другой коэффициент теплового расширения элементов, из которых состоит строительный материал.Это создает дополнительный стресс.

Морозостойкость бетона измеряется методами, контролирующими процедуры замораживания и оттаивания. Параметры исследуемого параметра зависят от следующих факторов: температуры замерзания, длительности циклов, размеров исследуемого образца, метода водонасыщения. Например, процесс разрушения бетона происходит быстрее, если замораживание производится при минимально возможных температурах в солевых растворах.

Морозостойкость бетона рассчитывается до момента, пока определенное количество повторных циклов не снизит массу образца на 5 процентов и не снизит его прочность на 25 процентов.Именно количество процедур, которые выдержал строительный материал, определяет его марку. Степень морозостойкости также определяется в зависимости от того, в какой сфере будет использоваться этот бетон.

Морозостойкий бетон имеет особую структуру. Природа его пористости не позволяет объему льда создавать слишком большое давление и замедляет процесс разрушения.

Морозостойкость бетона зависит только от количества макропор, поскольку вода в мелких порах не замерзает даже при минимально возможных температурах, поэтому не создает дополнительных напряжений.Таким образом, характер, форма и объем крупных пор имеют большое влияние.

Морозостойкость бетона можно повысить следующими способами:

  • Уменьшение крупных пор за счет увеличения плотности бетона.
  • Создание в бетоне дополнительных воздушных пор путем введения определенных добавок. Если объем таких пор составляет четверть объема замерзшей воды, они не будут заполнены в процессе обычного водонасыщения. В этом случае незамерзшая вода, вытесненная льдом, просочится в свободное пространство, и тогда давление ослабнет.

Внутренний объем воздуха в морозостойких бетонах должен составлять от четырех до шести процентов. Количество воздуха зависит не только от расхода цемента и воды, но и от крупного заполнителя. Объем воздуха во внутренних порах бетона увеличивается при увеличении расхода воды и цемента, а размер фракций заполнителя, наоборот, уменьшается.

% PDF-1.6
%
1 0 obj
>
endobj
4 0 obj
>
endobj
2 0 obj
>
ручей
2011-02-08T14: 11: 26 + 01: 002011-02-14T09: 59: 34 + 01: 002011-02-14T09: 59: 34 + 01: 00Adobe Acrobat 9.41 Подключаемый модуль захвата бумаги / pdfuuid: 810cf7a1-6c3d-4652-a165-c6e9f6df342euuid: 7842e6a6-3931-4c8f-b773-4d30139b0922

конечный поток
endobj
3 0 obj
>
endobj
5 0 obj
>
/ XObject>
>>
/ Аннотации [51 0 R 52 0 R 53 0 R 54 0 R]
/ Родитель 3 0 R
/ MediaBox [0 0 595 842]
>>
endobj
6 0 obj
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
7 0 obj
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
8 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
9 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
10 0 obj
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
11 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
12 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
13 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
14 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
15 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
16 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
17 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
18 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
19 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
20 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
21 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
22 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
23 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
24 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
25 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
26 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
27 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
28 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
29 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
30 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
31 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
32 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
33 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
34 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
35 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
36 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
37 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
38 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
39 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
40 0 obj
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
41 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
42 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
43 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
44 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
45 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
46 0 объект
>
/ Шрифт>
/ ProcSet [/ PDF / Text / ImageB]
>>
/ Тип / Страница
>>
endobj
47 0 объект
>
ручей
xW [o6 &} h, Q [ʼn $ [i% $ ‘ڱ & ndC ؀ Y: m «; HFUXTU ׷ dШ ڠ v_e \ SC3! i] ҌѢ ڠډ Q
, j * ojoxxYm9] / rub: of}; |
# Gv0gS: {; \ dC0! U-5_: c \ xv ~~ 4WG4ZʜyZskvIU0? Qnʵe9) w # ӷ &] ⑀ȄK # ÈMF- # 1> ‘zVVkOQ «2D Ձ | @ ae;]
37 ^ `3Джм3
rCr0vX ܧ {ҀtA5X5fjQ / DE ڗ 3 YH

Морозостойкость вторичного бетона

Презентация на тему: «Морозостойкость вторичного бетона» — стенограмма презентации:

1

Морозостойкость вторичного бетона
ДЖОЗЕФ Микель БОЭМЕ Люк, БРУКК Рамзес, ФАЛИН, ВАНДЕВАЛЛ Люси К.Ю. Левен — факультет инженерных технологий — факультет гражданского строительства, Остенде, Бельгия,

2

Recycon RecyCon Миссия: Устойчивое здание
— Переработка строительных отходов и отходов сноса в строительстве Миссия: Устойчивое строительство — Долговечные материалы — Энергоэффективность — Повторное использование материалов после «окончания срока службы» Подход: Промышленное проектирование — фокус: экономическая ценность, решения существующие проблемы и производственные возможности — меньше: фундаментальные исследования Technologiecluster Bouw Technologiecampus Oostende Zeedijk 101 8400 Oostende тел.

3

Введение Дробильная установка для сноса Переработанные заполнители Бетонный завод Бетон В 2012 году более 11 млн тонн щебня было переработано в виде переработанных заполнителей.В настоящее время большинство переработанных заполнителей используется в низкосортных материалах, таких как дорожные основания и тощий бетон. Тем не менее, исследования показали, что переработанный мусор может заменить крупный природный заполнитель в нескольких высокотехнологичных областях применения бетона. «ValReCon20: Valorisation of the вторично переработанный бетонный заполнитель в бетоне C20 / 25 и C25 / 30», Oostende: Boehme Luc, 2012. ISBN

4

Современное состояние во Фландрии

5

Высококачественные приложения
Фундамент Под фундамент… Дорожное строительство Конструкционный бетон….Сборный бетон Архитектурный бетон SCC HPC Материалы для цемента?

6

Аннотация В литературе часто делается вывод о том, что более низкие механические свойства переработанного бетона по сравнению со стандартным бетоном неблагоприятны для его долговечности в агрессивных средах. Одна из таких агрессивных сред — мороз. Бельгия с умеренным морским климатом — это страна, которая переживает много ежегодных циклов заморозков / оттепелей.Прежде чем переработанный бетон можно будет использовать во внешней среде, необходимы дополнительные экспериментальные исследования. Это исследование было проведено для определения сопротивления бетона, изготовленного из грубых заполнителей вторичного бетона (0-40%), этим циклам замораживания / оттаивания. В этом исследовании использовались заполнители из переработанного бетона, полученные в результате разрушения смешанных зданий, содержащие в основном заполнители известняка и заполнители после разрушения дорог, содержащие порфир. Вторым параметром этого исследования было влияние различных концентраций воздухововлекающего вещества.Всего было приготовлено три эталонных бетонных смеси и двенадцать различных вторичных бетонных смесей. Все пятнадцать бетонных смесей подвергались циклам оттаивания в 3% растворе NaCl. Помимо испытаний на устойчивость к морозу / оттаиванию, были проверены плотность затвердевшего материала, динамический модуль упругости и прочность на сжатие до и после 30 циклов замораживания-оттаивания.

7

Геометрические и физические свойства заполнителей
d / D [мм] WA24h [%] ρa [кг / м³] ρrd ρssd FI Песок 0/4 0,64 2632 2588 2645 — Известняк 4/20 0,78 2693 2638 2658 17 RCAroad 8/20 2,96 2447 2519 6 RCA Строительство 4,97 2581 2288 2402 8

9

Смесь 2: Нормальное качество Серия
[-] Эталонная смесь 1: Смесь высокого качества 2: Замещающая смесь нормального качества [%] 20 40 вар Цемент [кг / м³] 340 карат с 0,45 Известняк 1268 976 703 906 613 RCAroad 207 398 — RCAbuilding 167 334 Песок 645 692739 792 779 Пластификатор 1 Воздухововлекающий агент 0,44 0,88

10

Изготовление испытательного образца
Процесс смешивания всегда был одинаковым. Использовался двухэтапный процесс смешивания. Было компенсировано водопоглощение агрегатов. Испытательный образец хранился в камере влажности первые 28 дней отверждения.

11

Бетон из вторичного сырья высокого и нормального качества с содержанием воздуха
Высокое качество нормального качества

Технические требованияТехнические требования –Устойчивость к коррозии –Морозостойкость –Толщина защитного слоя морского железобетона –В.

Презентация на тему: «Технические требованияТехнические требования –Устойчивость к коррозии –Морозостойкость –Толщина защитного слоя морского железобетона –В.»- стенограмма презентации:

1

Технические требованияТехнические требования — Устойчивость к коррозии — Морозостойкость — Толщина защитного слоя морского железобетона — Максимально допустимая трещина Выбор сырья Выбор сырья 4.7.6 Бетон, стойкий к морской воде

2

Устойчивость к коррозии. Она обеспечивается в основном сырьем, которое используется для производства бетона (например, цементом и заполнителем).Стойкость к хлор-ионной коррозии — ее показатель обеспечивается в основном путем измерения коэффициента диффузии иона хлора в бетоне.

3

Морозостойкость Среднемесячная температура в самый холодный месяц / ℃ ≥0 ℃ 0 4 ℃ 0 ~ 4 ℃ 0 ~ 4 ℃ 0 ~ 4 ℃ -4 ~ -8 ℃ ≤-8 ℃ Требуемый антифриз для бетона не требуется ≥F250≥ F300≥F350 Таб.4.7.8 Морозостойкость Морозостойкость бетона, устойчивого к морской воде, показана в Табл.4.7.8

4

Толщина защитного слоя на участке в воздухе — коснулась волна — уровень воды под водой север 50505030 юг 50655030 Таб.4.7.9 Минимальная толщина защитного слоя морского железобетона / мм

5

Таб.4.7.10 Минимальная толщина защитного слоя деформируемого стержня в морских условиях / мм толщина составной части, затронутой воздухом, затронутой волной уровнем воды под водой ≥0.5m75907575 <0,5 м Выберите Макс.; (A) 2,5 × диаметр предварительно напряженного железобетона (мм) ; (b) 50 Толщина защитного слоя

6

Максимально допустимые участки трещин в конструкции при условии, что морская вода пресная вода над водой 0,130,20 поверхность воды 0.200,25 под водой 0,300,35 Табл.4.7.11 Максимально допустимая ширина трещин в железобетонных элементах (JTJ268-96) / мм

7

Выбор сырья. Цемент: цементы, гидрат которых содержит мало Ca (OH) 2 и гидратированный алюминат, следует выбирать с учетом морской коррозии бетона.При нанесении на поверхность воды следует учитывать морозостойкость, абразивную стойкость, усадку. Марки прочности не должны быть ниже 32,5 МПа.

8

Выбор сырья Заполнитель: Заполнитель должен иметь прочную ткань, прозрачность и хорошую градацию. Следует особо отметить, что крупнозернистый заполнитель ,, который используется для производства устойчивого к морской воде бетона, не должен содержать активного SiO 2, чтобы предотвратить реакцию между щелочью и заполнителем.Согласно JTJ, если морской песок выбран в качестве мелкозернистого заполнителя, он должен проходить через чистую воду до тех пор, пока содержание NaCl не станет ниже 0,1%. Добавка: например, водоредуцирующая, ускорительная и незамерзающая смесь , может быть выбрана в соответствии с требованиями техники.

Огнестойкость бетона как материалов и конструкций

Имя пользователя *

Электронное письмо*

Пароль*

Подтвердить Пароль*

Имя*

Фамилия*

Страна

Выберите страну … Аландские острова IslandsAfghanistanAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelauBelgiumBelizeBeninBermudaBhutanBoliviaBonaire, Санкт-Эстатиус и SabaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийского океана TerritoryBritish Virgin IslandsBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканского RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongo (Браззавиль) Конго (Киншаса) Кук IslandsCosta RicaCroatiaCubaCuraÇaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Южный Территорий нг КонгВенгрияИсландияИндияИндонезияИранИракОстров МэнИзраильИталия Кот-д’ИвуарЯмайкаЯпонияДжерсиИорданияКазахстанКенияКирибатиКувейтКиргизияЛаосЛатвияЛебанЛезотоЛиберияЛибияоЛихтенштейнЛихтенштейнЛитва ЮжныйAR, ChinaMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorth KoreaNorwayOmanPakistanPalestinian TerritoryPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarRepublic из IrelandReunionRomaniaRussiaRwandaSão Tomé и PríncipeSaint BarthélemySaint HelenaSaint Китса и NevisSaint LuciaSaint Мартин (Голландская часть) Сен-Мартен (французская часть) Сен-Пьер и MiquelonSaint Винсент и GrenadinesSan MarinoSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Грузия / Sandwich ОстроваЮжная КореяЮжный СуданИспанияШри-ЛанкаСуданСуринамШпицберген и Ян-МайенСвазилендШвецияШвейцарияСирияТайваньТаджикистанТанзанияТаиландТимор-ЛештиТогоТокелауТонгаТринидад и ТобагоТунисТурция ТуркменистанТуркс и Острова КайкосТувалуУгандаУкраинаОбъединенные Арабские ЭмиратыВеликобритания (Великобритания) США (США) УругвайУзбекистанВануатуВатиканВенесуэлаВьетнамУоллис и ФутунаЗападная СахараЗападное СамоаЙеменЗамбияЗимбабве

Captcha *

Регистрируясь, вы соглашаетесь с Условиями использования и Политикой конфиденциальности.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*

*

*