Какая толщина стены дома должна быть из газобетона: 404 страница не найдена

Содержание

Толщина стены дома из газобетона

Изначально я планировал строить условно каменный дом, присматривался и изучал разные материалы, в том числе газобетон. Но начал я строительство с гостевого дома-бани из сухого профилированного бруса, а дом-баня по ходу стройки увеличилась в размерах, и от возведения второго строения я отказался.

 

Я уже писал о том, что стена моего деревянного дома в 190 мм не соответствует своду правил по тепловой защите зданий СП 50.13330.2012 Сделав примерные расчеты, пришел к выводу, что для московского региона толщина стены из дерева должна быть почти 44 сантиметра, чтобы соответствовать требуемому сопротивлению теплопередаче в 3,13 (м2°C)/Вт.

У соседа дом из газобетона. Мне стало интересно рассчитать, а какой толщины должна быть стена из газобетона, чтобы она прошла по требованиям к тепловой защите жилого дома!

 

Вкратце пройдусь по теории

Чтобы ограждающая конструкция дома, будь то стена или кровля, надежно защищала обитателей дома от холода, она должна обладать хорошим сопротивлением теплопередаче – способностью препятствовать выходу тепла из помещения на улицу.

Сопротивление теплопередаче ограждающей конструкции зависит от материалов, из которых она сделана и их толщины. Чем толще слой, тем лучше. Недаром нас в детстве кутали в несколько свитеров) Но одно дело шерстяной свитер, другое дело к примеру резиновая накидка такой же толщины. В шерстяном будет однозначно теплее! Почему так происходит? У каждого материала есть определенная характеристика – теплопроводность – или способность переносить тепло от своей более нагретой части к менее. Еще хороший пример это бетонный и деревянный полы – на бетонном сразу становится холодно, так как коэффициент теплопроводности бетона выше чем у дерева. Вывод – чем меньше коэффициент теплопроводности материала, тем лучше с точки зрения экономии и сохранении тепла.

Теплоизоляцию делают из материалов с маленьким коэффициентом теплопроводности!

Однако коэффициент теплопроводности у материала меняется в зависимости от его влажности и плотности. Если тот же свитер намокнет, в нем уже не так будет тепло. Значит чем выше влажность материала, тем выше коэффициент теплопроводности. Это происходит за счет насыщения водой, которая отличается высокой теплопроводностью. Вот почему надо беречь минеральную вату от намокания! Также свод правил отлично демонстрирует, что чем выше плотность одного материала, тем выше его теплопроводность. В менее плотных состояниях больше находится воздуха, который выступает отличным теплоизолятором.

Для газобетона это очень наглядно и важно, так как марок плотности у него очень много! Соответственно меняется коэффициент теплопроводности

Таким образом зная коэффициент теплопроводности материала и его толщину, мы можем найти сопротивление теплопередаче этого слоя по формуле:

 

Если ограждающая конструкция выполнена из нескольких слоев разных материалов (допустим газобетон+минвата+штукатурка+планкен), то итоговое сопротивление теплопередаче суммируется из показателей каждого отдельного слоя!

Но в различных регионах России разный климат, погода, длительность отопительного периода. Поэтому и требуемое сопротивление теплопередаче ограждающих конструкций отличается в регионах. Чем холоднее и суровее климат, тем сопротивление должно быть выше. Зная требуемое сопротивление теплопередаче для региона, мы можем рассчитать, какой нужен слой материала, обеспечивающий нужное сопротивление.

 

 

И еще немного теории

В таблице коэффициентов теплопроводности материалов есть два режима эксплуатации ограждающей конструкции: менее влажный А и более влажный Б. При режиме А коэффициент теплопроводности как мы уже выяснили будет меньше, чем при режиме Б. Как же определить режим?

1) На карте смотрите, к какой зоне относится ваш регион.

 

2) далее по таблице определяете влажностный режим помещения. Я считаю, что температура в жилом доме как правило находится в диапазоне 12-24 градуса и до 50% влажности воздуха.

 

3) в следующей таблице в пересечении вашего влажностного режима помещения и географической зоны и будет режим эксплуатации А или Б

 

 

Что такое газобетон

Казалось бы, почему газобетон так активно приживается на рынке малоэтажного строительства? Можно подумать, что материал не теплый. Но нет, само название говорит за себя – в газобетоне при его производстве вследствие химической реакции с выделением газа образуется большое количество пор, за счет которых и достигается более низкая теплопроводность.

Обязательно поделитесь статьей в социальных сетях со своими друзьями и знакомыми! Может кто-то из них планирует построить дом из газобетона!

 

Допущения расчетов

Я буду рассчитывать именно толщину наружной стены только из газобетона, которая даст требуемое сопротивление теплопередаче для определенного региона. При этом я не буду учитывать швы кладки, так как кладка все таки обладает другими показателями теплопроводности, также не учтено сопротивление внутренней и наружной поверхности. Будем считать, что стена однородная. Разумеется газобетон для ваших самонесущих стен должен обладать требуемой прочностью.

Важно! Приведенные расчеты упрощены и носят исключительно информационный характер. Они призваны обратить внимание на проблему утепления жилого дома. Чтобы получить точные данные для конкретно вашего дома, необходимо обращаться к специализированным компаниям, которые занимаются теплотехническим расчетом профессионально!

Как можно применить эти расчеты – допустим вам предложили возвести стены из газобетона определенной толщины. Теплотехнический расчет вы не делали. Зная коэффициент теплопроводности своего газобетона и толщину стены, вы сможете рассчитать сопротивление теплопередаче. И уже принимать решение о необходимости и количестве дополнительного утепления, если полученный результат не соответствует требуемому сопротивлению.

Из свода правил я возьму коэффициенты теплопроводности трех видов газобетона при режиме эксплуатации А (я прикинул, это более вероятный режим для московского региона):

Газобетон на цементном вяжущем с плотностью 400 кг/м3 — 0,14 Вт/(м°C)

Газобетон на цементном вяжущем с плотностью 600 кг/м3 — 0,22 Вт/(м°C)

Газобетон на известняковом вяжущем с плотностью 600 кг/м3 — 0,28 Вт/(м°C)

Я получил следующие результаты:

 

Видно, что менее плотный газобетон является более теплым. При подготовке статьи я обратился за комментариями к трем компаниям, продающих газобетон, но увы, ответа не получил (хотя заход был клиентский). Это уже к теме других публикаций)) Зато нашел на сайте одного производителя их коэффициент теплопроводности для плотности 400 кг/м3 и режима А 0,104 Вт/(м°C). Получается, что для московского региона достаточно будет уже толщины стены в 330 мм, но это актуально только именно для такого коэффициента теплопроводности! В осталных же случаях по таблице видно, что толщина уже от 440 мм до 680 мм для требуемого сопротивления 3,13 (м2°C)/Вт.

 

Расчеты для других городов ниже. Если статья вам понравилась, ставьте лайк и оставляйте свои комментарии!

 

Какая оптимальная толщина стен из газосиликатных блоков. Размер блоков из газобетона для кладки несущих конструкций Стена толщиной 200 мм

Постоянно растущие цены на энергоресурсы заставляет владельцев частных домов искать пути, которые позволят сэкономить денежные средства. Один из способов это сделать – провести работы по утеплению жилых помещений, вследствие чего затраты на обогрев в отопительный сезон значительно снизятся. При этом утепление стен можно производить как снаружи, так и изнутри здания. Наиболее рационально – выполнить утепление стен дома с наружной стороны

Технология утепления наружных стен
с дальнейшей отделкой фасадов сайдингом предусматривает устройство каркасной системы. Как правило, стойки каркаса из металлического профиля или деревянных брусков закрепляют на стенах в вертикальном положении, однако при большой толщине слоя утеплителя к вертикальным стойкам закрепляют горизонтальные профили или брусья каркаса. В этом случае для закрепления в дальнейшем фасадной обшивки, например сайдинга, к горизонтальным элементам каркаса крепят вертикальные стойки с шагом400 мм.

К выбору теплоизоляционных материалов для утепления наружных стен следует подойти основательно, поскольку ремонт или замена утеплителя в процессе эксплуатации здания затруднены.

Прежде всего, утеплитель для теплоизоляции стен должен обладать низкой теплопроводностью. У материалов на основе минеральной ваты, стекловаты и пенополистирола этот показатель примерно одинаков и находится в пределах 0,034-0,042 Вт/(м К), поэтому, исходя из этой характеристики, все эти утеплители подходят для теплоизоляции стен. Результаты расчета толщины теплоизоляционного слоя в конструкции наружной стены жилого здания из блоков на основе легкого бетона толщиной200 ммприведены в таблице 1.

Таблица 1.

Наименование утеплителя

Толщина стены, мм

утеплитель

Плиты на основе базальтовой ваты Rockwool «ЛАИТ БАТТС»
Плиты на основе стеклянного волокна «URSA П-20»
Плиты пенополистирольные ПСБ-С 25
Плиты пенополистирольные «URSA XPS N — III – I»
Экструдированный пенополистирол «ЭКСТРАПЕН 35»
Экструдированный пенополистирол «ПЕНОПЛЭКС 35»

Примечания
. 1. Расчет выполнялся при условии, что:

  • город – Санкт-Петербург;
  • расчетная температура воздуха внутри помещения +20ºC.

2. Данный расчет выполнен с использованием инженерной методики расчета на основе СНиП 23-02-2003, СП 23-101-2004, СНиП 23-01-99* («энергосберегающий подход»). Расчетный коэффициент теплопроводности утеплителя, используемый при расчете, взят для нормальных условий при температуре +25ºC.


3. Данный расчет носит рекомендательный характер. Официальный расчет может произвести организация имеющая лицензию на проектирование конструкций зданий.

Другое требование к материалам для теплоизоляции стен – достаточная степень паропроницаемости. Поскольку в результате жизнедеятельности человека в помещениях дома образуется водяной пар, то при разнице температур, а значит давлений, снаружи и внутри здания происходит диффузия пара из помещения на улицу. При этом пар проходит сквозь несущую стену и попадает в теплоизоляционный слой. Поэтому каждый последующий слой ограждающей конструкции, рассматривая ее изнутри наружу, должен быть более паропроницаемым, чем предыдущий. В противном случае влага будет задерживаться в стеновой конструкции. Так как стена из пенобетона обладает достаточной паропроницаемостью, то утеплитель с меньшей паропроницаемостью, например пенопласт, который находится после нее, станет своеобразным барьером на пути паров влаги. Тогда на границе стыка стены и теплоизоляции будет образовываться конденсат, который увлажнит как стену, так и теплоизоляционный материал. Увлажнение несущей стены пагубно сказывается на ее долговечности, а намокшая теплоизоляция стены просто перестает утеплять. Если теплоизоляционный материал более паропроницаем, чем пенобетон, то пары влаги будут свободно проходить сквозь него, а попадая в воздушный зазор испаряться, не причиняя при этом вреда несущей стене и теплоизоляции. Именно так обстоит дело при использовании паропроницаемых утеплителей на основе минеральной базальтовой ваты и стекловаты, поскольку их паропроницаемость выше, чем у пенобетона.

Плиты теплоизоляционного материала на негорючей основе, например «Rockwool ЛАИТ БАТТС» крепят между стойками каркаса в распор. Дополнительное механическое крепление выполняют тарельчатыми дюбелями, специально предназначенными для этой цели.

Поверх утеплителя закрепляется гидроизоляционная, но паропроницаемая мембрана, которая служит для защиты утеплителя и несущих элементов конструкции каркаса от атмосферной влаги и как дополнительная защита от ветра. Следует отметить, что между утеплителем и простой гидроизоляционной мембраной необходимо оставить воздушный зазор 10-15 мм, иначе мембрана не будет «работать», и попавшая в утеплитель влага не будет выветриваться наружу. Однако в продаже имеются супердиффузионные гидроизоляционные мембраны, например «ИЗОСПАН-АМ», которые можно настилать непосредственно поверх утеплителя.

Предварительно гидроизоляционный материал может закрепляться на стойках каркаса строительным степлером. Затем поверх него по стойкам крепятся гвоздями или саморезами контррейки – деревянные бруски, обработанные антисептическим составом, обычно размером 40х50 мм. По контррейкам монтируется облицовка фасада выбранным застройщиком материалом, например сайдингом.

Следует отметить, что перед устройством каркаса и закреплением утеплителя все деревянные конструкции необходимо обработать огнезащитными и антисептическими составами или каким-то одним комбинированным средством для защиты древесины. Обработка деревянных конструкций выполняется для получения трудновоспламеняемой древесины, согласно требованиям ГОСТ 16363-98 и защиты деревянных конструкций от воздействия различных видов биоразрушителей: деревопоражающих насекомых, плесени, гнили, грибка, а также против появления синевы и почернений.

Добавлено: 07.06.2012 08:55

Обсуждение вопроса на форуме:

Построил дом из бетонных блоков, толщина стен 200 мм. Сейчас стоит вопрос, какой выбрать материл для наружного утепления под сайдинг, чтоб сохранить максимум тепла и не сырели стены?

Газобетон выгодно отличается от обычного бетона низкой теплопроводностью. Это свойство достигается за счет введения алюминиевой пудры в обычную бетонную смесь. Благодаря пузырькам водорода, равномерно распределенным по все смеси, газобетон намного хуже передает тепло, чем обычный бетон.

Но это преимущество имеет и обратную сторону – газобетон обладает несколько более низкой прочностью, чем обычный бетон. Поэтому при выборе толщины стены из газобетона нужно исходить не только из требуемого уровня теплоизоляции, но также учитывать прочность стены. При этом, конечно, нужно не выйти за рамки бюджета.

Классификация газобетонных блоков

В зависимости от назначения помещения отличаются и требования к прочности и теплоизоляционным характеристикам стен. В зависимости от назначения выделяют:

Что касается прочности материала, то нужно учитывать, что с увеличением плотности растет прочность и увеличивается теплопроводность материала.

На рынке доступен газобетон нескольких классов:

  • В3,5 – может применяться как материал для несущих стен 5-этажных домов;
  • В2,5 – применяется как материал для несущей стены в случае, если высота дома не превышает 3 этажа;
  • В2,0 – этот класс газобетона применяется для строительства несущих стен зданий высотой не более 2 этажей.

В зависимости от плотности газобетонные блоки разделяются на марки от D300 до D1200 (число обозначает плотность материала в кг/м 3). Блоки высокой плотности позиционируются как конструкционные (т. е. они способны выдержать большую нагрузку), блоки минимальной плотности выступаю в роли самонесущего утеплителя.

Нормативные требования

Строительство с использованием ячеистых бетонов (а газобетон относится именно к такому типу бетонов) регламентируется СТО 501-52-01-2007. Основные рекомендации по использованию газобетонных блоков состоят в следующем:

  • нормативный документ требует определять максимально допустимую высоту стен из ячеистых блоков только на основании расчета;
  • ограничивается максимальная высота зданий. Из автоклавных ячеистых бетонов допускается изготавливать несущие стены зданий до 5 этажей (или высотой до 20 метров), высота самонесущих стен не должна превышать 30 м (или 9 этажей). Пеноблоки (ячеистый бетон неавтоклавного твердения) используются для возведения несущих стен высотой не более 10 м или не более 3 этажей.
  • также норматив указывает прочность бетонных блоков в зависимости от этажности здания. Так, для строительства наружных и внутренних стен 5-этажного здания следует использовать блоки прочностью не менее В3,5 (применение пенобетона запрещено), марка раствора не ниже чем М100; в 3-хэтажных зданиях класс ячеистого бетона должен составлять как минимум В2,5, а класс раствора – М75; в 2-хэтажных – В2 и М50 соответственно.
  • для строительства самонесущих стен требуется использовать блоки класса как минимум В2,5 – в зданиях с количеством этажей больше 3 и В2,0 – в 3-этажных зданиях.

Указанные нормы учитывают лишь прочностную сторону вопроса и не охватывают вопрос теплоизоляции помещения (СНиП ІІ-3-79). Требования нормативов обязательны в первую очередь для юридических лиц. Обычные люди, например, при строительстве загородного дома или гаража, летней кухни могут использовать эти требования в качестве рекомендаций. Также необходимо учитывать то, что при эксплуатации изменяется влажность газобетонных блоков, а это несколько повышает их теплопроводность.

Оптимальным вариантов при проектировании любой постройки будет, конечно, полный расчет на прочность и теплотехнический расчет, но самостоятельно справиться с этой задаче сможет не каждый. Платить за расчет тоже захочет не каждый. В таких случаях можно ориентироваться на примерные значения классов прочности и толщины стен из газобетона в зависимости от назначения. В сравнении с другими материалами, газобетонная стена должна обладать гораздо меньшей толщиной при равной энергоэффективности.

  1. Для строительства одноэтажных домов в теплом климате, летних кухонь, гаражей и т. д. некоторые используются газобетон толщиной 200 мм, но назвать эту толщину рекомендованной нельзя. Даже для строительства нежилых помещений, как правило, используется газобетон толщиной 300 мм.
  2. Для строительства стен цокольных этажей и подвалов рекомендуется использовать газобетон D600, B3,5. Толщина блоков должна составлять как минимум 300 – 400 мм.
  3. Межквартирные перегородки – газобетонные блоки В2,5, D500 – D600, толщина блоков – 200 – 300 мм.
  4. Перегородки между комнатами – блоки В2,5, D500 – D600, толщина – от 100 до 150 мм.

Если перегородка устраивается в уже существующем помещении, то лучше выбрать газобетон D300. В этом случае решающее значение имеет не прочность, а звукоизоляция материала.

  1. Строительство нежилых помещений (гаражи, летние кухни и т. д.) Используется газобетон D500, толщина от 200 мм (в зависимости от нагрузки).

На что стоит обратить внимание

Газобетон – эффективный материал с точки зрения теплоизоляции, что обусловлено его ячеистой структурой.

Но для того, чтобы в полной мере воспользоваться преимуществами стен из газобетона следует придерживаться нескольких правил:

  1. При строительстве используется специальная клеящая смесь, которая укладывается на поверхность газобетонного блока тонким слоем (несколько мм). Людям, которые привыкли работать с обычным цементным раствором может быть трудно переучиваться. Если швы сделать слишком толстыми, то слой раствора начнет играть роль «моста холода» и теплоизоляционные свойства газобетона ухудшатся.
  1. При строительстве в холодном и умеренном климате рекомендуется утепление стен из газобетона как внутри, так и снаружи.
  1. При прочностном расчете необходимо учитывать дополнительный вес, создаваемый теплоизоляцией, например, штукатуркой.

Для того, чтобы получить действительно теплый и уютный дом недостаточно просто увеличить до максимума толщину стены. Для большинства климатических условий достаточно использовать газобетон D600, B2,5 или B3,5 толщиной 300мм. Тем не менее, желательно выбор газобетонных блоков обосновать прочностным и теплотехническим расчетом.

Вопросы пользователей:

  • Доброго Вам дня. Хочу построить дом из газобетона(ИНСИ блок), скажите пожалуйста, какой толщины должна быть стена и нужен ли утеплитель снаружи если будет облицован кирпичем с вентзазором в 6см. Спасибо.
  • Добрый день!Проектирую 5ти этажный дом в г. Краснодаре. Конструктив монолитный, газобетон выполняет роль заполнителя,вот скажите пожалуйста какой должна быть толщина, нужен ли утеплитель?сниружи штукатурка под покраску!
  • Скажите пожалуйста стоит ли утеплять снаружи стену дома из Аэрок толщиной 375 мм? Если надо, то какой толщины должна быть мин. вата. Потом будет навесной фасад. Дом в Ропше Лен. область.
  • Здравствуйте!Подойдет ли для постоянного проживания дом из газобетона с толщиной стен 250мм + 100 мм фасадный пенопласт? Дом двухэтажный на ленточном фундаменте.

По своим характеристикам газобетон подходит как для кладки несущих конструкций, так и возведения изоляционных перегородок. При выборе конкретной марки и размеров изделия отталкиваются от назначения и условий эксплуатации объекта строительства. Толщину стен, разделяющих разные температурные зоны, определяет теплотехнический расчет. Но главным требованием является обеспечение соответствующей несущей способности, а именно выдержки весовой и механической нагрузки. Нормы, зависящие от типа перегородки или перекрытия, являются минимально допустимыми, уменьшать их нельзя.


В зависимости от формата и типа поверхности различают обычные прямоугольные варианты с гладкими стенками, аналогичные с системами захвата или «шип-паз», Т-образные для монтажа перекрытий, U-образные для закладки армопояса, дверных или оконных проемов. Прочностные характеристики газобетона определяются его плотностью и пористостью, как и теплоизоляционные свойства. Выделяют следующие марки:

1. От D350 до D500 – теплоизоляционные, оптимальные для возведения или внутренней утепляющей прослойки. Выделяются высокой пористостью и имеют самый низкий коэффициент теплопроводности из всех разновидностей.

2. D500-D900 – конструкционно-теплоизоляционные, востребованные в частном строительстве, в том числе для кладки наружных стен и несущих перегородок. На практике для легких построек используют газоблоки от М400, но лишь при условии их качественной автоклавной обработки и надежной защиты от внешней влаги.

3. D900-D1200 – конструкционные, с повышенной прочностью.

Типовой для несущей стены: 600 мм по длине (у некоторых производителей – 625), в пределах 200-300 по высоте, и от 75 до 500 по ширине. Данные значения приведены для прямых и пазогребневых изделий, к стеновым обычно относят превышающие 300 мм в ширину, остальные – к перегородочным, хотя встречаются и исключения. Самыми востребованными считаются 600×300×200 и 625×300×250 мм, вес варьируется в пределах 17-40 кг, одна штука замещает не менее 17 кирпичей.

Выбор газоблоков для кладки несущих стен

Назначение конструкции, дополнительные условияОптимальная марка газоблоковТолщина стены из газобетона, мм
Несущие наружные стены и внутренние перегородки в частных домахD600300
Нежилые помещения: хозпостройки, гаражи, летние кухниD400 и D500200
Несущие наружные в домах без внешнего утепленияD500360
Цокольные этажи и подвалы, при условии обязательной и качественной гидроизоляцииD600300-400

(меньше – для внутренних подвальных ненесущих стен)

Межквартирные перегородкиD500 и D600200-300
Утепляющие прослойкиD300От 300
Внутренние ненесущие перегородки, возводимые с целью разделения жилых зон и звукоизоляции100-150

Требуемый класс (и, соответственно, марка) газобетона также зависит от этажности. Допустимый минимум для одноэтажных легких построек составляет В2,0, в пределах 3-х этажей – В2,5, В3,5. Чем выше здание, тем жестче нормативы к прочности блоков, при строительстве частного дома выше двух армирование (закладка монолитной ленты по всему периметру) в верхней части стены из газобетона обязательно. Самонесущие перегородки разрешается строить из В2,0. В целях экономии их обычно выкладывают толщиной в пределах 100-150 мм. Рост ширины перегородки возможен в двух случаях: при повышенных требованиях к шумозащите и при планировании размещения на них подвесных конструкций: полок, мебели, пролетов или тяжелой техники. Допустимый минимальный предел – 200 мм.

Дополнительные учитываемые факторы при выборе толщины стен из газобетона

Указанные размеры актуальны исключительно при использовании материла автоклавной обработки, изготовленного в заводских условиях. Их качество можно и нужно проверять визуально и на ощупь: правильные изделия имеют гладкие стенки без сколов и внешних дефектов, они ни в коем случае не раскрашиваются. Блоки, не прошедшие пропаривание под давлением, уступают в прочности и не обеспечат требуемую несущую способность. Также по умолчанию они используются при строительстве домов в средней полосе, для конструкций, эксплуатируемых при нормальной влажности. При необходимости возведения в бассейнах, ванных, банях, подвалах применяются усиленные меры гидроизоляции.

Для исключения ошибок на стадии составления проекта следует провести прочностной и теплотехнический расчет размеров несущих конструкций с учетом их ожидаемой нагрузки и климатических условий. Коэффициент теплопроводности газобетона зависит от марки: от 0,072 Вт/м·°C у блоков D300, до 0,12 и выше у D600.

Взаимосвязь очевидна: чем плотнее и прочнее изделия, тем хуже их изоляционные способности. При равной средней температуре окружающего воздуха зимой разница между требуемым минимумом толщины стен, способных обеспечить нужное сопротивление потерям тепла, у марок с отличием в удельном весе от 100 кг/м 3 достигает 1/3.

Требования к несущим конструкциям повышаются при строительстве домов в оконными проемами с большой площадью, эксплуатируемыми кровлями, высокой этажностью. В этом случае возможны несколько вариантов: использование конструктивных блоков с повышенной прочностью (более дорогих, что не всегда выгодно) или вертикальное армирование. Задействование монолитного ж/б каркаса с закладкой менее прочных, но хорошо держащих тепло элементов, считается разумной альтернативой. Но такие проекты требуют привлечения специалистов, они более сложны в реализации.

Возведение собственного дома — ответственный шаг. На этапе проектирования продумывают много нюансов и выбирают материал для каждой части здания. Толщина стен из газосиликатных блоков напрямую зависит от региона и типа сооружаемого помещения. Для сохранения тепла внутри допускается дополнительно произвести оштукатуривание. Во внимание берутся технические характеристики и требования, которые выдвигаются к будущей конструкции. Толщина газосиликатных блоков должна быть достаточной. Только в таком случае удастся создать условия для проживания или хранения вещей внутри помещения, экономит на оплате счетов за отопление.

Толщина несущих стен

При ремонтных работах учитывают теплотехнические и показатель прочности. Самостоятельное проведение расчетов производится по специальной схеме. Однако и в таком случае сложно быть уверенным в корректности полученных значений. Дополнительно во внимание берется назначение строения.

Газосиликат при небольшой толщине имеет достаточный показатель энергоэффективности. К примеру, 44 см материала хватит для создания необходимых условий. Они будут равны тем, которые достигаются при толщине стены из кирпича в 51-64 см. Для керамзитобетона данный показатель равен 90 см, для древесины — 53 см.

При такой толщине стены организуют необходимый уровень защиты от теплопотерь. Показатель усредненный и сформирован на основе ряда статистических данных. Если человек планирует самостоятельно провести расчеты, то рекомендуется опираться на опыт застройщиков, которые давно работают в регионе.

Если планируется построить одноэтажное здание, гараж или летнюю кухню, то толщина газосиликата составляет не менее 200 мм. Однако достаточно часто встречаются здания, в которых показатель увеличивают до 300 мм. Тепло не сможет пройти сквозь стену. Она достаточно плотная и не пористая.

Газосиликатные стены имеют безусловное преимущество — толщина стен. Она меньше обычной, но обеспечивает необходимый уровень защиты от потери электроэнергии. Показатель в 300 мм рекомендуется применять жителям умеренно-континентального климата. Он подходит в процессе возведения стен на цокольных этажах и в подвалах. Ширина блока согласно нормативам находится в пределах от 300 до 400 мм. При планировании постройки промышленной или индивидуальной допускается понизить данный показатель до 200 мм.

Толщина перегородочных стен

Межкомнатным перегородкам также следует уделить должное внимание. Они должны обладать определенной степенью звукоизоляции. Их толщина должна быть в пределах от 200 до 300 мм. Благодаря этому удастся добиться оптимального показателя. Его можно понизить до 100 мм. Рекомендуется использовать марку от D500 до D600. Допускается также использовать газосиликатные блоки D300. Они обеспечат необходимый уровень звукоизоляции. Материал прочный, поэтому прослужит в течение долгого периода времени. Его применяют для строительства различных вариантов хозяйственных помещений. При определении конечной величины толщины стены следует учесть нагрузку на фундамент и необходимую прочность.

Толщина стен для регионов

В Российской Федерации представлено несколько климатических зон. Они отличаются температурами воздуха, периодичностью появления ветра и осадков. Расчет толщины производится в каждом регионе в индивидуальном порядке. Газосиликатный блок используется в любых климатических условиях.

Толщина стен из газосиликатных блоков в Сибири увеличивается, ведь регион характеризуется низкими температурами окружающей среды в зимнее время. Специалисты убеждены, что перегородка достигает минимум 40 см. Однако в таком случае дополнительно придется использовать слой утеплителя. Если такой возможности нет, то показатель должен быть увеличен до 50 см.

Беларусь отличается более теплыми климатическими условиями. Фактор необходимо брать во внимание в обязательном порядке. Толщина стен из газосиликатных блоков в Беларуси должна находиться в пределах от 200 до 300 мм. Лучше всего остановить выбор на втором варианте. Благодаря этому удастся создать комфортные условия в помещении в любое время года. 200 мм — толщина, которая подойдет для создания подсобных помещений разного типа.

Отзывы строителей

Выбор строительного материала для стен очень важен. От него в дальнейшем будет зависить срок эксплуатации объекта и комфортное нахождение внутри. Рекомендуется опираться на опыт специалистов. Газосиликат получает положительные отзывы.

Антом, 35 лет.

Газосиликатные блоки использовал при строительстве дачи четыре года назад. До этого отдавал предпочтение исключительно кирпичу. Газосиликат обошелся значительно дешевле. Он также позволил эксплуатировать помещение в течение всего года. Материал обладает многими преимуществами: легко монтируется и транспортируется, за раз можно положить сразу несколько рядов. Я использовал специальный клей и сделал толщину стены в 300 мм. Мы довольны температурой в помещении даже зимой. Дополнительно следует отметить, что у нас не бывает морозов ниже -22 градусов. Существенно экономим на отоплении. В другой пристройке из кирпича требуется более интенсивная работа отопительного прибора.

Николай, 42 года.

Из газосиликатных блоков строил дом. Все делала своими руками с еще 4 помощниками. В результате получился дом с площадью в 120 км. м. На фундамент и его отделку моя бригада потратила 14 дней. Материал использую исходя из его приемлемой цены. Блок удобен в эксплуатации и дает возможность сформировать четкие углы. На процесс не требуется тратить много времени. Дом имеет приемлемый внешний вида даже без внешней отделки. Делали стену толщиной в 400 мм без дополнительного утеплителя. Проблемы возникли только с внутренним оформлением. Блок гладкий со всех сторон, поэтому шпаклевка не может на нем закрепиться. Для улучшения адгезии пришлось дополнительно использовать малярную сетку.

Подводим итоги

По ГОСТу в центральном регионе нашей страны можно строить дома из газосиликата в один слой. В Сибири и других холодных регионах для создания комфортных условий рекомендуется выполнять работы в два или три слоя. Толщина материала выбирается исходя из свойств будущего помещения и климатического пояса. Перед покупкой газосиликатных блоков рекомендуется внимательно ознакомиться с преимуществами и недостатками данного материала. Благодаря этому удастся правильно оценить свои возможности и спрогнозировать ход ремонтных работ.

Толщина выбирается исходя от местоположения комнаты. Стена может быть несущей или использоваться как перегородка. Именно поэтому показатель изменяется от 100 до 400 мм. При дополнительном монтаже утеплителя допускается уменьшить значение. Материал следует сочетать с минеральной ватой, ведь она не мешает процессу испарения с поверхности.

Один из главных вопросов, который решается при строительстве частного дома, – какую толщину стен выбрать. Все хотят сэкономить, поэтому обозначенные в проекте, к примеру, 370 мм толщины кирпичной кладки «выглядят ошибочными», ведь «сосед построил стены в 190мм и ничего». Действительно, в последнее время зачастую при строительстве частных домов стены делаются не широкими, — из кирпича в 250 мм, а из тяжелых бетонных блоков и в 200 мм. Такие же значения иногда задаются проектами малоэтажных домов. Всегда ли подойдет такая толщина стен?

Отчего зависит толщина стены дома, какую толщину стены дома предпочесть, и на что обратить внимание при выборе этого параметра для собственного жилища…..

Какие нагрузки действуют на стену дома

  • На наружные несущие стены дома действует вертикальная сжимающая нагрузка, образованная весом самой кладки и выше расположенных перекрытий, крыши, снега, постоянной и переменной эксплуатационной нагрузки…
    Простой расчет показывает, что стена толщиной 190 – 250 мм из кирпича или тяжелых бетонных блоков, положенных на обычном цементном растворе, имеет большой запас прочности на сжатие. Такая стена может выдерживать значительно большие сжимающие нагрузки.
  • На стены действуют нагрузки направленные горизонтально, плоскости, стремящиеся их опрокинуть. Горизонтальные нагрузки могут быть вызваны напором ветра, поэтому все дома рассчитываются на ветровую нагрузку. Также значительная боковая нагрузка на стену может возникнуть вследствие распора от стропильной системы крыши. Стена должна быть устойчивой к определенным значениями боковых нагрузок. Распор от элементов крыши должен компенсироваться в самой конструкции крыши, например, можно ознакомиться,
  • На стену действуют различные изгибающие и крутящие моменты. Природа их возникновения может быть различной, например, вследствие просадки фундамента, вследствие большего давления от перекрытий или фасадной отделки на края стены, из-за неровностей кладки и образовавшегося наклона стены и др. Усилия на изгиб и кручение в различных направлениях могут быть выше, чем прочность тонких стен. Несущие стены из кирпича и бетонных блоков с толщиной 190 – 250 мм не имеют большого запаса прочности к изгибающим нагрузкам.
    Такая толщина стен по этому фактору должна подтверждаться расчетом для каждой конкретной конструкции дома. В тоже время, согласно практическому опыту стена с толщиной 350 мм и более обладает значительным запасом прочности в самых различных вариантах конструкции здания.

Т.е. большое влияние на выбор толщины стены оказывает конкретная конструкция дома. Рассмотрим подробнее факторы, которые значительным образом влияют на выбор толщины стены.

Как влияет конструкция на прочность выбор толщины

На устойчивость, прочность стены здания основное влияние оказывает его конструкция. Наиболее значимые следующие факторы:

  • Толщина стены. С уменьшением толщины значительно возрастает вероятность разрушения стены, прежде всего из-за изгибающих нагрузок.
  • Высота стены. Чем выше стена, тем значительно большие нагрузки на нее воздействуют, тем меньше ее устойчивость.
  • Площадь проемов в стене. Проемы значительно ослабляют стену. Чем больше проем, тем меньше устойчивость стены.
  • Количество проемов (ширина стены между проемами). Чем больше суммарная площадь всех проемов, чем уже промежутки стены между проемами, тем меньше устойчивость и запас прочности стены.
  • Наличие подпора от прилегающей несущей стены. Чем больше пролет стены без бокового подпора перпендикулярной (прилегающей) стены, тем меньше устойчивость этого участка. Сопрягающиеся стены (с переплетением кладки) увеличивают устойчивость конкретного участка стены.
  • Наличие армирующих поясов. Для увеличения устойчивости в стене закладываются армирующие пояса, различная армировка кладки, которые значительно повышают устойчивость стен из штучных материалов.
  • Наличие штроб, внутренних каналов, ниш и т.п. в стене. Глубина и длина различных нарушений сплошности стены, определяются проектом и подтверждаются расчетом.
  • Помимо конструктивных факторов на устойчивость стены оказывают влияние строительные факторы или «человеческий фактор». Так, прочность любой стены будет меняться, если изменить марку, класс кирпича, блоков или раствора для кладки…. Возможны изменения материалов и конструкций примыканий, кровли или даже фундамента. Все это повлияет на устойчивость стен дома.

    Какие нарушения существенно снижают устойчивость

    • Используются блоки, кирпич с более низким классом прочности, чем это предусмотрено проектом. Используется кладочный раствор, состав которого, отличается от запроектированного.
    • Допускаются искривления кладки больше нормативных. Допущен большой наклон стены по вертикали. Не соблюдена горизонтальная прямолинейность кладки.
    • Швы между блоками не заполнены раствором полностью.
    • Увеличена толщина швов. Увеличено количество швов и уменьшены размер штучного материала, применены куски кирпичей и блоков.
    • Не выполнена стыковка перекрытий (балок перекрытий) со стенами с помощью анкеров, уменьшено их количество, изменено места расположения.
    • Неправильно выполнена перевязка несущих стен, уменьшена плотность перевязки.
    • Не выполнена армировка стен согласно проекту, уменьшено количество рядов, изменена марка материала и др.
    • Нарушена конструкция фундамента, крыши, других прилегающих конструкций, вследствие чего допущены значительно большие изгибающие, опрокидывающие усилия…

    В процессе строительства возникают ситуации, когда отсутствует необходимое количество материала с нужными качествами. Также зачастую строительные бригады хотят упростить работу и конструкцию и предлагают «сделать проще и надежней». Владельцу необходимо контролировать процесс строительства и соответствие исполнения требованиям документации. Не допускать отступлений от проекта, норм и правил
    . Все изменения конструкции стен и перекрытий необходимо согласовывать с проектировщиком. Вносимые изменения должны быть заверены подписями, печатями ответственных лиц и организаций.

    Особенно это важно для тонких стен, у которых запас прочности невелик. Ошибки и недочеты в процессе строительства резко сокращают и без того небольшую устойчивость тонкой стены, становится возможным ее разрушение.

    Какая толщина у стен в большинстве случаев

    Наработан большой опыт строительства малоэтажных частных домов из штучных материалов большой плотности. Если применять тяжелый кирпич или бетон на цементно-песчном растворе, то можно говорить что удовлетворительная устойчивость будет у несущих стен следующей толщины.

    • Для одноэтажного дома применимы стены толщиной 200 – 250 мм. Такая же толщина стен может быть у верхнего этажа многоэтажного дома.
    • Для дома в два этажа толщина стен в 200 – 250 мм должна быть подтверждена расчетами, заверенными проектировочной организацией. Также проект должен быть основан на исследованиях грунта участка застройки. Выполнять такой проект должны квалифицированные строители-специалисты. Должен быть проведен квалифицированный технический надзор за строительством.
    • Для двух и трех этажного дома, несущие стены нижних этажей с толщиной 350 мм и более будут иметь достаточный запас устойчивости, чтобы компенсировать влияние некоторых неблагоприятных факторов.

газоблок для несущих наружных, газосиликатные, плотность газобетона, толщина

Газоблок – это строительный материал, который активно используют при возведении стен дома. Другими словами, про такое изделие можно сказать, что это искусственный камень, полученный на основе ячеистого бетона. Сегодня газоблоки получили широкую востребованность при строительстве домов промышленного и жилого назначения. В настоящее время газобетонные блоки активно применяется для несущих стен при возведении развлекательных и торговых центров, межкомнатных перегородок. Рассмотрим какие бывают размеры таких блоков.

Также будет интересно узнать о том, какие бывают стандартные размеры шлакоблока.

Различия по цели строительства

Размеры представленного материала определяются с учетом того, для каких целей будет использоваться газоблок. В этом случае габариты могут быть различные для материала с плоской поверхность, для возведения стен и перемычек.

Изделия с плоской поверхность используются для возведения несущих стен. Имеет газоблок следующие размеры:

  • длина составляет 600 мм;
  • значение ширины может отличаться большей вариативностью – 200-500
  • высота может достигать 200 или 250

А вот каковы размеры фундаментных блоков, поможет понять данная информация.

При выборе стеновых блоков, необходимо знать, что их применяют для возведения внутренних перегородок. Типовые размеры газобетона:

  • длина – 600 мм;
  • ширина – от 75 до 150
  • высота – 200, 250

Блоки для перемычек могут иметь V-образную форму и следующие габариты:

  • длина 500 мм;
  • ширина от 250 до 400
  • высота – 200, 250

На видео – размеры газобетонных блоков для несущих стен:

А вот каков может быть размер газосиликатного блока для стен, поможет понять информация по ссылке.

Самым популярным габаритом газобетонного блока можно считать 625х300х250 мм.

Для возведения наружной несущей стены с использование газоблока необходимо применять изделие, толщина которого оставляет 28-30 см. При таком устройстве стены нет необходимости осуществлять теплоизоляцию. Но если вы хотите перестраховаться, то лучше утеплить свой дом. Для этих целей можно задействовать минеральную вату.

Не требуется дом в утеплении при условии, что при возведении стен использовали газоблок толщиной 36 см, а размер его кладки будет составлять 360 мм. В таком случае для отделки стен лучше применять штукатурку. В этом случае очень важную роль занимает такой параметр, как плотность представленных материалов. Она может составлять Д500 и Д400. При использовании блоков с толщиной 36 см, то удается сократить денежные затраты на отоплении.

А вот каковы должны быть размеры арболитовых блоков и где их необходимо применять, указано в данной статье.

При строительстве дома можно применять газобетонные блоки и с большим значением толщины – 375 мм и 400 мм. Но сохранить нижний предел тепловой энергии в комнате удается при условии, что для возведения стен будут использованы блоки с толщиной стенки 360 мм. Если вы пожелаете утеплить такую стену, то здесь вам нужно потратить больше денежных средств, но зато они быстро окупятся, ведь за отопление вам придется платить меньше. Перед тем как приступать к строительству дома, необходимо произвести все расчеты верно, а строительные материалы покупать с разумной экономией.

Также при строительстве объекта следует понимать о том, чем отличается газоблок от пеноблока.

Плотность газобетонного блока

При выборе газобетонных блоков очень важно обращать внимание на такой параметр, как плотность. Именно этот критерий влияет на способность будущего строения выдерживать практически любые нагрузки без каких-либо проявлений разрушений.

На видео рассказывают про особенности кладки несущих стен из газобетона:

А вот что лучше применять на стройке газоблоки или пеноблоки, можно прочесть в данной статье.

Для определения плотности изделия необходимо руководствоваться его прочностью. Если речь идет о газобетоне, то показатель прочности будет составлять 500 кг на м2. Это соответствует марке Д500. Материал с такими характеристиками может задействовать при возведении домов, высотка которых составит не более 3 этажей.

Блоки с меньшей плотностью Д400 могут применять в случае, когда далее будет производиться утепление дома. Но применять подобные изделия для кладки стен с несущей функцией нельзя. При использовании газобетона Д600 можно монтировать дом с большой этажностью, ведь для такого материала характерен большой коэффициент плотности. Но при этом стоит понимать, что чем больше плотность, тем выше показатель теплопроводности.

А вот каков состав арболитовых блоков и где они применяются, указано в данной статье.

Для описанных изделий свойственны высокие показатели стойкости к морозу – F50-F100. Такие изделия способны сохранять все свои качественные характеристики даже при резких перепадах температурного режима.

Кроме этого, у них высокие показатели огнестойкости и звукоизоляции. Газоблоки не подвергаются возгорания и не меняют свои качественные характеристики в течение 12 часов прямого влияния огня.

Газобетон представляет собой пористый материал, который прекрасно пропускает воздух. В результате этого качества у него отличные показатели паропроницаемости, которые в несколько раз превышают аналогичные параметры кирпича. Благодаря этому удается создать отличные климатические условия и прекрасную атмосферу внутри комнат.

А вот какой использовать клей для газосиликатных блоков, и как подобрать нужный, указано в данной статье.

Различие в размерах для внешних и внутренних стен

Процесс строительства дома – это очень ответственный процесс, который требует тщательного выбора материала. Причем, необходимо правильно определить материал для возведения внешних и внутренних стен.

При строительстве дома с несущими однослойными стенами стоит выбирать Д400 и Д500, при этом их толщина будет составлять 375-400 мм. В этом случае выполнять дополнительную изоляцию нет необходимости. Для несущих стен стоит применять блоки с толщиной 250-300, а плотность материала Д500. Если вы будете выполнять перегородку в ванной комнаты или туалете, то стоит воспользоваться блоками толщиной 100, а плотность его 500. Всегда можно подобрать вариант из того, какие бывают размеры плит перекрытия.

На видео – сколько этажей можно построить из газобетона:

А вот какие существуют плюсы и минусы газоблоков, указано тут.

Когда необходимо монтировать на возведенные стены телевизор, полки, то стоит задействовать блоки с толщиной 200  и плотностью Д500 и Д600. Чем выше будет плотность материала, тем лучше его показатели звукоизоляции.

При повышенном уровне влажности на газоблоки оказывается негативное влияние. Причина в том, что представленный материал обладает пористой структурой, поэтому отлично поглощает влагу, теряя свои изоляционные свойства. Если уровень влажности повышен, то у блока повышаются показатели теплопроводности. Для устранения этого недостатка стоит применять качественную гидроизоляцию.

А вот как выглядят стеновые блоки для внутренних перегородок и как их применять, указано в данной статье.

Газоблок – это очень востребованный на сегодняшний день строительный материал. Они обладают очень высокими показателями прочности и надежности. Но при выборе этого материала необходимо правильно определить такие параметры, как плотность, длина, ширина и толщина. Перед отправкой в магазин вы должны произвести все расчетные мероприятия и составить проект.

Руководство по строительству дома из газоблока от БлокЭксперт.ру Пермь.

У любого начинающего строителя, который решил возвести дом из газобетонных блоков, неизбежно появляется множество вопросов, связанных со строительством из этого материала.

Фундамент под дом из газобетона

Любое здание нуждается в крепком фундаменте, из какого бы современного материала оно не было построено. Дом из газобетонных блоков — не исключение.

Фундамент под газобетонное здание устраивается для предотвращения появления трещин и других деформаций конструкции от движения, пучения основания. Существует три вида фундаментов, которые используются под конструкции из различных материалов, в том числе и из газоблока.

Все эти три вида могут быть устроены под здание из газоблоков. Главное — фундамент должен быть заглубленным. Выбор вида фундамента зависит от размеров Вашей конструкции и объема средств на его устройство; от типа грунта, его пучинистости и подвижности; уровня грунтовых вод; климата и рельефа местности.

Какие это три вида?

Монолитный железобетонный (плитный) фундамент.

Монолитный фундамент представляет собой железобетонную плиту, которая располагается по всему основанию дома. Это дорогой, но в то же время самый надежный и оптимальный из фундаментов под дом из газоблоков. Он может устраиваться на любых типах грунтов, даже самых подвижных.

Плита предотвратит появление трещин и деформаций в стенах от движения основы.

Ленточный фундамент.

Ленточный фундамент — это самое популярное и дешевое основание под дома из газобетона. Он может быть мелкозаглубленным (для одноэтажных строений) или заглубленным (для домов с подвалами).

Дешевизна основания имеет обратную сторону: оно должно быть измерено и уложено с особой тщательностью, иначе конструкция не прослужит долго. Само основание должно быть хорошо армировано и связано жесткой железобетонной лентой.

Тщательно армируются также стены, создается армопояс на верхних этажах.

Столбчатый фундамент.

Столбчатый (или свайный) фундамент является самым дешевым вариантом (дешевле ленточного). Но его можно использовать только на «благополучных» основаниях и в несуровых климатических условиях.

Использование такого типа основы дома исключает устройство гаража или подвала.

Выбор толщины стен

Как известно, чем плотнее стройматериал, тем выше его прочность и больше вес, но ниже теплоизоляционные характеристики. Поэтому очень важно правильно подобрать вид газоблока для устройства эффективных теплых стен.

Известно также, что потери тепла в жилом доме через стены составляют 20-25%. Производители (Бетолекс) рекомендуют для оптимального сохранения тепла при таком проценте потерь использовать блок марки плотности D500 или D600 класса прочности В2,5 толщиной 400 мм.

Максимально энергоэффективная несущая стена из газоблока должна иметь ширину 500-600 мм при использовании блока марки плотности D500 или D600 класса В2,5. По строительным нормам теплая стены из газоблока должна иметь толщину не менее 440 мм (сравните с кирпичной: 2100 мм!).

Для маленьких дачных домиков, гаражей, сараев и т.п. можно использовать блок марок D400 или D500 толщиной 150-200 мм. И все желательно для таких целей использовать блок толщиной 300 мм для надежности.

Стены зданий в теплом климате могут иметь толщину всего лишь 200-250 мм.

Приведем примерную таблицу толщины стен снаружи и внутри зданий в условиях сурового уральского климата.











КонструкцияМарка плотности блока (кг/м3)Класс прочности блокаТолщина стены, мм
Несущие стены 
Одноэтажных зданийD600B2,5-B3,5200-240
Многоэтажных зданий (2-3 этажа)D600B2,5-B3,5300-400
Ненесущие стены 
Межквартирные перегородкиD500-D600B2,5-B3,5200-300
Межкомнатные перегородкиD500-D600B2,5-B3,5100-150
Другие стены внутри помещенийD300B2,5-B3,5100-150
Стены подвалов и цокольных этажей 
Наружные стеныD600B3,5400
Внутренние стеныD600B3,5300

Выбирая теплый блок, не забывайте о том, что необходимо также правильно подобрать клей для блоков. Правильно выбранный клей поможет Вам обеспечить наилучшую теплоизоляцию помещений и избежать появления мостиков холода.

Выбор сухой строительной смеси

В отличие от традиционных строительных материалов (например, кирпича), газобетонные блоки кладутся не на цементно-песчаную смесь, а на особый клеевой состав.

Использование клея позволяет сохранить теплоизоляционные свойства газобетона, а также уменьшить время кладочных работ и их стоимость.

Казалось бы, выбор такого простого материала как клей — дело последнее и незатейливое, но это не так. Клей для укладки газобетонных блоков, как и сами блоки, выпускается в разных видах, и выбирать его нужно исходя из времени, целей и материалов строительства.

Во-первых, определимся, какой должна быть нормальная сухая строительная смесь. Клей для кладки газоблока должен обладать:

  • Хорошей адгезией с поверхностью. Как и любая строительная смесь, клей должен хорошо сцепляться с поверхностью, надежно соединяя блоки между собой. Помните, однако, какой бы хорошей адгезией ни обладал клей, поверхность блока перед кладкой должна быть очищена от пыли, грязи, масляных пятен и т.п.
  • Схожестью состава с составом газоблока. Клеевая смесь для газоблока должна быть изготовлена на основе портландцемента и песка точно так же, как и сам блок. Таким образом при засыхании они образуют монолитную и прочную конструкцию.
  • Быстрым схватыванием и высыханием. Быстрое время схватывания и засыхания клея позволит Вам существенно сократить время кладочных работ. Но помните, что такая смесь допускает «поправки» только в течение нескольких минут (в среднем 1-3 минуты).
  • Влаго- и морозостойкостью. Устойчивостью к влаге, морозу и перепадам температур обладают не только «зимние» клеевые смеси, но и обычные «летние». Устойчивость к этим воздействиям им придают различные добавки в их составе.
  • Пластичностью. Этот показатель клея достигается добавлением в него искусственных пластификаторов. Важно, чтобы смесь обладала пластичностью во избежание появление трещин в швах.
  • Хорошей упаковкой. Сухая строительная смесь должна быть надежно и герметично упакована, чтобы храниться в течение долгого времени. Клей фасуется в мешки по 25 кг.
  • Нормальным соотношением цены и качества. Смесь не должна иметь слишком низкую или слишком высокую цену. Стоимость клея должна соответствовать его составу, добавкам в нем и назначению.

Вот основные правила выбора клеевой смеси для Ваших газобетонных стен:

  1. Определитесь, из какого блока Вы будете строить. Многие производители выпускают клеевые смеси для своей продукции, чтобы обеспечить наилучшее качество работ.
  2. Определитесь с сезоном проведения строительных работ. Если Вы будете строить летом или осенью, когда температура выше нуля, используйте обычный универсальный клей. Если же Вы собираетесь производить кладку зимой, то воспользуйтесь «зимним» клеем с повышенной морозостойкостью, который допускает проведение работ при температуре до −10 °C.
  3. Определитесь с объемом средств. Дешевые клеи — универсальные, более дорогие имеют повышенные характеристики морозо-, влагоустойчивости, лучше предотвращают появление «мостиков холода».
  4. Прочитайте отзывы о выбранном клее для газобетона. Ознакомьтесь с опытом использования выбранного Вами клея через знакомых или Интернет. Это позволит Вам не ошибиться в выборе и не пожалеть о покупке.

Выбор перемычек

Для повышения прочности конструкции из газоблоков используются, помимо всего прочего, так называемые перемычки. Перемычки — это армированные бетонные изделия, которые устанавливаются под оконные и дверные проемы с целью укрепления конструкции.

При строительстве здания из газобетонных блоков Вы можете воспользоваться как традиционными железобетонными перемычками, а можете использовать современные газобетонные.

Армированные железобетонные перемычки придают конструкции очень высокую прочность, но имеют большой вес и нуждаются в дополнительном утеплении (обязательно при использовании их в газобетонной кладке).

Кроме этого, готовые монолитные перемычки не всегда подходят под нестандартные оконные и дверные проемы. Чтобы сделать строительство из газобетона более эффективным, производители выпускают не только блоки, но и перемычки.

Газобетонные перемычки представляют собой U-образные ячеистые блоки, которые также подвергаются автоклавной обработке, а значит, имеют такую же высокую прочность. При строительстве из газоблока используются сборные перемычки из газобетона.

В борозду U-образного блока закладывается сварной арматурный каркас, который при необходимости дополняется утеплителем. Все это кладется на деревянную опалубку над оконным или дверным проемом.

Газобетонная перемычка может быть сборно-монолитной, когда паз с арматурным каркасом заливается тяжелым бетоном.

Основные преимущества газобетонных перемычек — это:

  • Несущая функция. Прочный автоклавный газобетон, дополнительно армированный, отлично справляется с нагрузками.
  • Снижение нагрузки на конструкцию. При высокой прочности такая перемычка имеет малый вес и не оказывает высокой нагрузки на стены и фундамент здания.
  • Теплоизоляция. Перемычка имеет пористую структуру, как и блоки, поэтому не нарушает их теплоэффективности.

Выбор панелей перекрытий

Производители газобетонных блоков выпускают и панели перекрытий, чтобы строительство производилось из одного и того же материала. При выборе панелей перекрытий для Вашего здания Вы должны опираться на 2 параметра. Это:

  1. нагрузка плиты перекрытия;
  2. длина плиты перекрытия.

Нагрузка определяется назначением плиты, то есть тем местом, где эта плита будет использована. Приведем таблицу нагрузки плит перекрытий в различных конструкциях.





Тип перекрытияНагрузка, кг/м2Толщина перекрытия, ммМарка плотности газобетона (кг/м3)Класс прочности газобетона
Межэтажные перекрытия600240D600B3,5
Межэтажные с увеличенной нагрузкой (общественные здания, гаражи и т. п.)800300D600-D700B3,5
Перекрытия подвалов и цокольных этажей600300D600B3,5
Устройство кровли, мансарды, чердака450400D500B2,5

Длина плиты перекрытия выбирается исходя из длины пролета перекрываемого помещения и опоры перекрытия на стены. Длина пролета измеряется по внутренним габаритам помещения.

Опорная часть плиты перекрытия должна составлять не менее 100 мм на каждую сторону (то есть минимум на 200 мм длиннее перекрываемого пролета).

Отделка стен из газобетона

Многие производители уверяют, что газобетонные блоки совсем не нуждаются в отделке, но это не так. Газоблок нуждается в обязательном штукатурении и защите от внешних воздействий.

Как любой камень, газобетон подвержен воздействию ветра и воды. Структура с открытыми порами делает газоблок особенно беззащитным, поэтому необходимо тщательно позаботиться о его отделке.

Кроме того, отделка стен из газобетона производится в декоративных и даже теплоизоляционных целях. Отделку газоблоков можно произвести тремя различными способами.

Выбор зависит от толщины стен, уровня их утепления, Ваших средств и предпочтений.

Оштукатуривание.

Кладка из газоблока отделывается цементной штукатуркой, которая наносится на армированную сетку, прикрепленную к блокам. Штукатурка кладется в несколько слоев, обычно в 3.

Существует вариант нанесения штукатурки на прикрепленные к блокам плиты утеплителя (базальтовой ваты).

При выборе данного способа облицовки газобетонных блоков нужно обязательно помнить, что штукатурка не должна препятствовать блокам «дышать». Для этого выбираются особые «дышащие» виды цементных штукатурных смесей.

Навесной фасад.

Навесной, или вентилируемый, фасад (вентфасад) — очень популярный сегодня вид отделки стен. Вентфасад крепится к стенам или утеплителю на них с помощью металлического каркаса.

Снаружи на каркас может быть прикреплен сайдинг, керамогранит или другой декоративный материал. Между внешним слоем и стеной (или утеплителем) остается пустой вентиляционный зазор, который позволяет стенам «дышать» и обеспечивает дополнительную теплоизоляцию.

Несмотря на прочность блоков, навесной фасад не должен оказывать сильной нагрузки на стены конструкции.

Многослойная кладка.

Не менее популярна отделка стен из газоблоков облицовочным кирпичом, ведь такая конструкция будет сочетать в себе надежность газобетона и привлекательный внешний вид кирпича.

Облицовка слоем кирпича предусматривается заранее, еще на этапе закладки фундамента и цоколя здания, так как предполагает увеличение ширины стен. Кирпич кладется вплотную к блокам, через слой утеплителя или вентзазор.

Распространены следующие вариации трехслойной кладки:

  1. Блок + Зазор + Кирпич
  2. Блок + Утеплитель + Кирпич
  3. Блок + Кирпич (на некотором расстоянии)

Мастер-класс по кладке стен из газоблока

Для укладки стен здания из газоблока Вам понадобятся:

  • Сам блок
  • Клей для кладки блоков и ведерко для его разведения
  • Инструмент (щетка для смахивания пыли, ножовка по газобетону, металлический уголок для резки блоков, кельма, шпатель, терка, резиновая киянка, строительный уровень, шпатель).

Укладка блоков производится в несколько простых этапов, с которыми может справиться даже начинающий строитель.

  1. Сухая строительная смесь для кладки блоков разводится по инструкции, указанной на упаковке. Разведенный водой клей тщательно перемешивается до густой консистенции. Через несколько минут клей желательно перемешать второй раз.
  2. Укладка первого ряда блоков должна осуществляться на гидроизолирующий материал, например, рубероид.
  3. Первый ряд газоблоков укладывается с угла. Угловой блок кладется гребнями наружу, гребни спиливаются ножовкой.
  4. Первый ряд блоков выкладывается на раствор для горизонтального выравнивания, затем поверхность блоков тщательно очищается от пыли и грязи щеткой. Далее на блоки с помощью кельмы или шпателя наносится клей тонким слоем. Удаление излишков клея и затирание швов производятся шпателем. Клеевой шов должен составлять 1-3 мм.
  5. Ровность укладки проверяется с помощью строительного уровня.
  6. Блоки укладываются таким образом, чтобы пазы и гребни надежно соединялись. Захваты для рук помогут в легкой укладке блоков.
  7. Второй и последующие ряды выкладываются аналогичным образом, начиная с угла.
  8. Газобетонная кладка выравнивается резиновой киянкой.
  9. При необходимости уложенный ряд выравнивается теркой.
  10. Для создания доборных блоков, арок и т.п. воспользуйтесь ножовкой и уголком для резки газобетона.

Ваши стены из газобетонных блоков готовы!

Энергия в зданиях — OpenLearn

Любой тщательный анализ толщины изоляции, необходимой для соответствия указанному значению U , потребует некоторых подробных расчетов. Предыдущее обсуждение основ значений U рассматривало только термическое сопротивление одной плиты строительного материала.

В любом практическом строительном элементе будет возникать повышенное тепловое сопротивление, особенно со стороны тонких слоев воздуха, прилегающих к самым внешним и самым внутренним слоям материала, и воздуха в любом значительном зазоре между слоями. В таблице 5 приведены стандартные тепловые значения, используемые для них. Обратите внимание, что сопротивление внешней поверхности намного ниже, чем значение, используемое для внутренней поверхности. Это связано с тем, что воздух с меньшей вероятностью остается снаружи и, таким образом, обеспечивает относительно более низкие характеристики изоляции.

Таблица 5 Тепловые сопротивления для поверхностей и пробелов воздуха

Слой Сопротивление /

м 2 K W -1

Внутри поверхности (R SI ) 0.13
воздушный зазор 0,18
на улице (R SO ) 0,04

Тепловые сопротивления компонентов элемента здания могут быть добавлены в серию, как на рисунке 16, до дать общее тепловое сопротивление (скорее, как последовательное добавление электрических сопротивлений). Таким образом, общее тепловое сопротивление практического строительного элемента будет состоять из суммы сопротивлений всех его слоев плюс сопротивления внутренней и внешней поверхностей.

Рисунок 16 Суммирование тепловых сопротивлений

Взяв, например, стеновую конструкцию из четырех слоев, общее тепловое сопротивление, R T , будет: + R 1 + R 2 + R 3 + R 4 + R + R SI M 2 KW -1

U — величина этой стены обратная ей = 1/ R T W м –2  K –1

Например, стена, показанная на рисунке 15, состоит из следующих слоев: 115 мм общий кирпич, полость 115 мм заполнена минеральной ватой (теплопроводность 0.035 Вт м –1 К –1 ), 115 мм газобетонных блоков (плотность 460 кг м –3 ) и слой штукатурки 13 мм с внутренней стороны. Используя значения проводимости в таблице 4, мы можем рассчитать его значение U путем суммирования различных тепловых сопротивлений, как показано в таблице 6.

Проводимость /

W M -1 K -1 K -1 K -1 K -1

Сопротивление /

M 2 кВт -1

вне теплового сопротивления 0.04 Кирпич 115 мм 0,77 0,115 / 0,77 = 0,15 Минеральная вата 115 мм 0,035 0,115 / 0,035 = 3,29 Газобетон блок 115 мм 0.11 0.11 0.115 / 0.11 = 1.05

Губная штукатурка 13 мм 0,57 0,013 / 0,57 = 0,02

Внутри термического сопротивления 0

0.13 Всего термического сопротивления 4. 67

U -Value является затем:

  • U = 1/ R = 1/467 = 0,21 W M -2  K –1

На практике строительные элементы состоят не только из плоских слоев. В приведенной выше конструкции стены, вероятно, используются тонкие металлические стеновые связи, крепящие внешнюю кирпичную кладку к внутреннему листу блочной кладки. Это создаст «тепловой мост» в обход изоляции и ухудшит ее характеристики.В зависимости от деталей более реалистичное значение U для конструкции такого типа может составлять около 0,25 Вт·м –2  K –1 .

Аналогично, на рис. 10 базовый слой изоляции чердака только блокирует поток тепла в определенной области. Через древесину балок, поддерживающих потолок, проходит параллельный путь теплового потока. Этот поток блокируется верхним слоем изоляции. Всегда необходимо делать определенную поправку на тепловые мосты, но математика не проста.

Мероприятие 5

Пренебрегая тепловым сопротивлением оконных стекол, используйте данные таблицы 5 для оценки значения U для стеклопакета.

Ответ

Общее тепловое сопротивление окна представляет собой сумму сопротивлений внутреннего слоя, воздушного зазора между стеклами и наружного поверхностного слоя.

  • Общее сопротивление = 0,13 + 0,18 + 0,04 = 0,35 м35 = 2,86 Вт·м –2 K –1

Этот ответ очень близок к значению 2,7 Вт·м –2 K –1 , приведенному в Таблице 2 для воздухонаполненных стеклопакетов, хотя при этом также учитываются потери тепла через оконную раму.

Мероприятие 6

Каково тепловое сопротивление листа оконного стекла толщиной 4 мм? (Вам нужно будет вернуться к Таблице 3 в Разделе 2.2.3.) Вероятно ли, что удвоение толщины стекла значительно улучшит общее значение U окна с двойным остеклением?

Ответ

В таблице 3 удельная проводимость стекла равна 1.05 Вт м -1 К -1 . Таким образом, тепловое сопротивление толщины 4 мм будет всего 0,004/1,05 = 0,0038 м 2 КВт -1 . Это составляет всего около 1% от расчетного общего теплового сопротивления окна в Упражнении 5. Удвоение толщины стекла удвоит его тепловое сопротивление, но не сильно изменит общее значение окна U .

Мероприятие 7

(a) Изучение улучшения значения

U в результате введения конструкции полой стены

В приведенной выше таблице 6 показан расчет значения U современной многослойной стены.Обычный британский дом до 1919 г., вероятно, имел сплошные стены толщиной в два кирпича, причем каждый кирпич имел толщину 115 мм (см. рис. 12(а)). В более поздних конструкциях использовались полые стены с воздушным зазором между двумя слоями кирпича, как показано на рис. 12(b).

Таблица 7 является интерактивной и позволяет изменить конструкцию стены в третьем слое, предоставляя три варианта:

  • сплошная кирпичная стена толщиной в два кирпича
  • пустотелая стена
  • сплошная кирпичная стена толщиной в три кирпича.

Общее рассчитанное значение U отображается внизу.

Что из следующего дает меньшее значение U ?

  • i. добавление полости к сплошной стене из двух кирпичей

    или

  • ii. увеличение толщины сплошной стены до трех кирпичей?

Таблица 7

Активное содержимое не отображается. Этот контент требует включения JavaScript.

Интерактивная функция недоступна в одностраничном представлении (см. ее в стандартном представлении).

(b) Изучение преимуществ изоляции полых стен и толщины изоляции, необходимой для соответствия будущим стандартам UK

U -значение

Интерактивная таблица 8 позволяет рассчитать значение U для полой стены, заполненной изоляцией (как показано на рисунке 15). Также позволяет менять внутренний лист между кирпичом и газобетоном. (Обратите внимание, что вам нужно будет нажать кнопку «Рассчитать», чтобы получить ответ внизу.)

Таблица 8

Активное содержимое не отображается.Этот контент требует включения JavaScript.

Интерактивная функция недоступна в одностраничном представлении (см. ее в стандартном представлении).

  • i.Начните с расчета значения U для пустотелой стены с наружной обшивкой из кирпича в слое 2, внутренней обшивкой из кирпича в слое 4 и изоляцией в полости толщиной 50 мм. Типичное значение проводимости, используемое для изоляции полости из вспененной минеральной ваты, может составлять 0,035 Вт·м -1 К -1 . Свойства других видов изоляции приведены в таблице 4.Это должно дать значение U , равное 0,52 Вт·м -2 K -1 . Как это соотносится со значением U неизолированной стенки полости в части (а) этой деятельности?
  • ii. Далее исследуйте улучшение значения U , заменив внутренний лист стены на изолирующий газобетон в слое 4. Не забудьте нажать «Рассчитать», чтобы получить окончательное значение U .
  • iii.Увеличить толщину изолированной полости до 100 мм или 150 мм.Какое сейчас значение U ?
  • iv. Будущим домам в Великобритании могут потребоваться стены с U -значением 0,15 Вт м -2 K -1 или выше. Какая минимальная толщина утеплителя им потребуется при использовании минеральной ваты? Каков ответ, если использовали полиизоциануратную пену с электропроводностью 0,023 Вт·м −1 K −1 ?

Ответ

(a)

  • i. Добавление воздушного зазора для создания полой стенки уменьшает значение U с 2.03 Вт м -2 К -1 до 1,49 Вт м -2 К -1 .
  • ii. Увеличение толщины сплошной стены до трех кирпичей снижает значение U до 1,56 Вт·м -2 K -1 .

Полая стенка дает большее снижение значения U .

(b)

  • i. Заполнение полости изоляцией из минеральной ваты снижает показатель U с 1,49 до 0,52 Вт·м -2 K -1 , почти втрое.
  • ii. Замена внутреннего листа с кирпича на газобетон улучшает его до 0,36 Вт м -2 K -1 .
  • iii. Увеличение толщины изоляции до 100 мм улучшает значение U до 0,24 Вт·м -2 K −1 , а 150 мм дает 0,18 Вт·м -2 K −1 .
  • iv. Минимальная толщина полости для достижения значения U 0,15 Вт·м -2 K -1 с минеральной ватой составляет 180 мм. Эта цифра составляет всего 120 мм, если используется пенополиизоцианурат.

Здания | Бесплатный полнотекстовый | Оценка энергетических характеристик неавтоклавного газобетона жилого дома в Нур-Султане, Казахстан

1. Введение

В последнее десятилетие экологически безопасные строительные технологии в строительной отрасли были адаптированы и постоянно развивались. Зеленое строительство определяется как практика создания структур и использования экологически ответственных и ресурсосберегающих процессов на протяжении всего жизненного цикла здания, от этапа планирования до сноса здания.Эта практика включает в себя не только классические критерии проектирования зданий, такие как экономичность, полезность, долговечность и комфорт, но и эффективное использование земли, воды, ресурсов и энергии внутри и вокруг здания с низким воздействием на окружающую среду [1,2]. ,3]. Спрос на строительство энергоэффективных жилых домов и зданий постепенно растет, особенно в Нур-Султане, столице Казахстана. В Нур-Султане существует значительная разница температур между сезонами, с длинной суровой зимой и коротким жарким летом.В то время как летние температуры иногда достигают +35 ° C, температура с середины декабря до начала марта обычно колеблется от -20 до -35 ° C, а средняя скорость ветра составляет 5,2 м / с, достигая 31 м / с. [1,4]. Из-за таких суровых погодных условий расходы на отопление и охлаждение жилых домов и зданий составляют основную часть эксплуатационных расходов в жилых домах и зданиях в Нур-Султане. Например, более 30% всей энергии потребляется жилыми домами, а потребление тепловой энергии в г. Нур-Султан выросло с 4963 МВт до 6401 МВт в период с 2010 по 2014 год [5,6].Более того, в существующих традиционных домах постройки 1990-х годов до 35% теплопотерь приходится на стены. Таким образом, проектирование энергоэффективного здания с использованием надлежащих строительных материалов может значительно сэкономить домовладельцам с точки зрения энергосберегающих операций и затрат на техническое обслуживание. Газобетон (ББ) — современный энергоэффективный строительный материал, относящийся к легким бетонам из-за его низкой плотности. и прочность [7]. По способу производства ЯБ можно разделить на ячеистый бетон (ЯБ) и автоклавный газобетон (АГБ).CC производится с использованием органического или синтетического пенообразователя и обычного метода отверждения. Напротив, AAC производится с использованием вспенивающего агента, такого как порошок алюминия (Al), и процесса отверждения в автоклаве [8,9]. В качестве строительного материала AAC обычно используется в бетонных кладочных элементах, таких как блоки. Типичный состав смеси AAC включает вяжущие (цемент и известь), богатый кремнеземом дополнительный вяжущий материал, мелкие заполнители (кремнезем и минеральные заполнители кварца), расширитель (Al) и воду [10,11].Уникальным свойством газобетона является его низкий коэффициент теплопроводности. λ AAC объясняется миллионами равномерно распределенных, однородных по размеру и захваченных воздушных пустот, вызванных химической реакцией между порошком алюминия и щелочами в вяжущих смесях с образованием газообразного водорода [12,13]. Несмотря на зависимость от пропорций смеси, типичная пористость АЦ колеблется от 75 до 90 % [14]. Это уникальное свойство обеспечивает теплопроводность (λ) газобетона всего 0,085–0,30 Вт/(м·К) в зависимости от плотности, метода отверждения, содержания влаги, пропорций смеси и ингредиентов [13,15].Например, Вальчак и др. [13] сообщили, что значение λ газобетона на основе песка составляет примерно 0,15 Вт/(м·K), тогда как значение λ газобетона на основе зольной пыли составляет 0,085 Вт/(м·K) при той же плотности (400 кг/м 3 ). Для экономии энергии Walczak et al. [13] сообщили, что значение λ материалов, используемых для строительства зданий, должно быть ниже 0,23 Вт/(м·К), чтобы снизить потребление энергии и счета за коммунальные услуги; AAC может выполнить это условие. Несколько исследователей изучали качество энергоэффективности материалов переменного тока.Радхи [16] сообщил, что использование материалов переменного тока в слое стен зданий снижает потребление энергии на 7%. Нараянан и Рамамурти [7] описали, как газобетон обеспечивает лучшую теплоизоляцию, чем обычные бетонные блоки, и считается энергоэффективным материалом, сохраняющим температуру и снижающим потребление энергии. С точки зрения устойчивости, каждый 1 м 2 газобетонного газобетона может сократить примерно 350 кг выбросов CO 2 на протяжении всего жизненного цикла здания [17].Согласно исследованию, проведенному Portland Cement Association (PCA), 77% специалистов по проектированию утверждают, что газобетон можно считать устойчивым материалом, отвечающим всем требованиям устойчивости [18]. Несколько исследователей сравнили различные строительные материалы, в том числе газобетон, с точки зрения энергопотребления. Например, Кашка и Юмруташ [19] исследовали различные многослойные строительные стены, состоящие из материалов, обычно используемых в Турции, включая брикеты, кирпичи, блоки и газобетон.Они обнаружили, что AAC является более подходящим материалом для стен, чем другие материалы, потому что он имеет более низкую температуру на внутренней поверхности, и тепло проходит через стену при высокой температуре наружного воздуха. Heathcote [20] определил внутреннюю температуру здания без кондиционера в летние дни, которое было построено из кирпичной облицовки, сырцовых кирпичей и стеновых панелей из газобетона; его результаты показали, что внутренняя температура здания, построенного из газобетона, составляла 25,0 ° C, а в здании, построенном из кирпичной фанеры и сырцового кирпича, — 25.4 °С и 26,6 °С соответственно; он пришел к выводу, что использование стен из газобетона делает помещение более комфортным, чем из других материалов. Айбек [18] также провел моделирование энергопотребления зданий с использованием газобетона, деревянных и металлических каркасов; он обнаружил, что модель здания, изготовленная из газобетона, потребляет на 14% и 11,6% меньше энергии, чем модели с деревянным и металлическим каркасом соответственно. метод отверждения. Автоклавное отверждение, используемое для AC, сопряжено с потенциальными рисками и является экологически дорогостоящим из-за его работы при высоком давлении и температуре. Поэтому был разработан неавтоклавный газобетон (NAAC), отверждаемый на воздухе или во влажной комнате при 100% относительной влажности. В предыдущей работе авторов были успешно оценены свойства NAAC с точки зрения прочности на сжатие, пористости и λ, и было обнаружено, что NAAC может иметь достаточную прочность и аналогичный λ с AAC [10]. Однако, когда NAAC используется в качестве строительного материала для стен в жилом доме в Нур-Султане, Казахстан, интересно, насколько NAAC способствует энергосбережению. Поэтому в этом исследовании потенциал энергосбережения NAAC для улучшения энергетических характеристик жилого дома оценивался на протяжении всего моделирования с помощью программных инструментов DesignBuilder.Наконец, были рассчитаны как простые годовые потери тепла, так и теплопередача через стены здания.

5. Выводы

В статье показано, какой вклад НААК вносит в энергосбережение типового жилого двухэтажного дома в Казахстане. Потенциал энергосбережения NAAC оценивался на протяжении всего исследования по сравнению с кирпичом и обычным бетоном путем моделирования с использованием программного обеспечения DesignBuilder, расчета годовых теплопотерь и оценки количества тепла, передаваемого через стены дома. После сравнения результатов для NAAC, кирпича и обычного бетона можно сделать следующие выводы:

(1)

Прочность на сжатие NAAC обычно увеличивается при влажных условиях отверждения, повышении температуры отверждения и уменьшении в водо-вяжущем отношении;

(2)

Бетонные смеси с большей пористостью и меньшей плотностью имели низкие значения λ независимо от возраста твердения;

(3)

Результаты моделирования в DesignBuilder показывают, что NAAC с более низкими значениями λ приводит к снижению потребности в энергии для нагрева и охлаждения;

(4)

Самая большая площадь в доме потребляет больше энергии на отопление и охлаждение, независимо от типа смеси;

(5)

Поскольку тепловые и охлаждающие нагрузки NACC были ниже, чем у кирпича и обычного бетона, дом со стенами NACC был более эффективным в плане экономии исходной энергии и энергии объекта, а также снижения материальных затрат. ;

(6)

Результаты оценки годовых потерь тепла и теплопередачи согласуются с результатами моделирования в DesignBuilder, показывая, что использование NAAC экономит больше энергии, чем использование кирпича или обычного бетона.

На термические свойства NAAC сильно влияют различные ингредиенты бетона и свойства бетона в затвердевшем состоянии, такие как плотность и пористость. NAAC в этом исследовании был изготовлен из обычных материалов, таких как цемент, известь, песок с высоким содержанием кремнезема и алюминиевая пудра. Следовательно, можно было бы принять более устойчивый подход, если бы NAAC производился из промышленных побочных продуктов, таких как летучая зола и измельченный гранулированный доменный шлак (GGBFS), или из твердых бытовых отходов, таких как использованные стеклянные бутылки.

Эволюция строительных элементов

2 Наружные стены

Ранняя кирпичная кладка

В 1700-х годах производство кирпича было усовершенствовано. Смешанный
глины, лучшие методы лепки и более равномерный обжиг дали большую консистенцию
кирпичной формы и размера. Мода диктовала кирпичный цвет: красный и фиолетовый.
популярные в конце 1600-х годов, уступили место более мягким коричневым цветам в 1730-х годах. К 18:00
производство желтых лондонских акций не так сильно давало кирпичный цвет
отличается от природного камня.Отмена налога на кирпич в 1850 году придала кирпичной промышленности новый импульс.
Усовершенствованные смесительные и формовочные машины вместе с более совершенными методами обжига
позволило кирпичному производству достичь новых высот. Кирпичи теперь были доступны в
разнообразие цветов, форм и прочностей, которые невозможно было бы вообразить за 100 000 000
лет назад. Более совершенные методы разработки карьеров позволили добывать более глубокие
глины, из которых получаются очень прочные, плотные кирпичи; жизненно необходим для строительных работ
таких как каналы, виадуки, канализация и мосты.

Кирпичная кладка

К концу 19 века большинство домов имели стены как минимум в один кирпич.
толщина. Дома выше трех этажей часто имели более толстые стены, что обычно уменьшало
толщиной на каждом уровне верхнего этажа. Сама кирпичная кладка (по крайней мере,
видна кирпичная кладка) в целом была уложена на очень высоком уровне. Большинство домов
были построены на фламандской связке, хотя задние стены или стены, скрытые штукатуркой, часто укладывались на связке садовой стены (обычно английской).

Каменная кладка

Камень часто использовался для строительства престижных зданий или в местах, где он естественным образом
произошел. В горных районах (на севере и западе) камень часто был очевидным выбором для строительства.
здание, потому что оно было легко доступно (а до железных дорог они были
часто районы, где кирпич был дорогим). Есть 3 группы камня; магматические, осадочные и метаморфические. То
осадочная группа, в которую входят известняк и песчаник, составляет большую часть камня, используемого для строительства в Великобритании.

Стены из бутового камня встречаются в самых разных стилях. В самом дешевом варианте он включает
грубая каменная кладка, построенная в виде двух наружных листьев и связанных между собой обильным
количества известкового раствора. Более дорогая работа состояла из щебня квадратной формы, возможно, уложенного на кирпич.
поддержка В большинстве случаев каменная стена должна быть толще кирпичной. Так,
тогда как стена толщиной в 1 кирпич (215 мм или около того) может подойти для двух или трех
этажный дом, каменная стена скорее всего будет 325мм и даже больше.Большинство каменных стен были заостренными заподлицо или слегка утопленными.
Ленточное заострение, которое так часто можно увидеть в наши дни, не является традиционным и не особенно долговечным.

Обработанная и/или тонко обработанная каменная кладка часто называется размерной.
камень. Иногда его называют свободным камнем. значит можно работать
(вырезать, формовать и сглаживать) стамеской и пилой в любом направлении. Оно имеет
мелкозернистая, без явных расслоений и ярко выраженных плоскостей напластования. В 18 веке целые города строились (некоторые перестраивались) из камня. Не было
рентабельно построить всю стену из фристона и подложки
почти всегда можно найти материал из щебня или кирпичной кладки. Только в некоторых домах
передний фасад будет построен из фристона, а стороны и задняя часть будут
сооружается из бутового или кирпичного. Чтобы соединить две половины стены вместе,
использовались «сквозные» или связующие камни.

Там, где песчаник уложен с очень тонкими швами, почти невидимыми с более
чем в нескольких футах, работа известна как ашлар.В некоторых частях страны
камни были обрезаны с конусом, чтобы облегчить формирование соединений. Клинья сделаны
из кусков дерева или даже раковин устриц часто вставляли в спину, чтобы
обеспечивают устойчивость по мере набора раствора. Эти здания были построены на известковом растворе
который очень медленно твердел. Гидравлические извести не были неизвестны, но они были менее
обычные и более дорогие. Кроме того, они часто схватываются слишком быстро, что приводит к
большое количество мусора на месте.

Миномет

Известковые растворы были распространены до 1930-х годов в некоторых частях Великобритании, даже
позже.Известняк или мел сжигали с углем для образования негашеной извести.
Негашеная известь известна как комовая известь. Затем негашеную известь гасили водой.
а затем смешивают с мелкими заполнителями (в настоящее время песком) для образования раствора. Полное затвердевание известковой штукатурки может занять много месяцев.
Тогда процесс известен как карбонизация. Некоторые лаймы имеют гидравлический набор
(немного похоже на слабый цемент). Это может быть вызвано добавлением пуццоланов, содержащих диоксид кремния.
Другим вариантом было использование извести, которая естественным образом содержит кремнезем (обычно
доля глины).Гидравлический «набор» быстрее и прочнее, чем карбонизация.
Некоторые из очень прочных гидравлических известняков не отличаются от современного цемента; сделано из
Конечно, из мела и глины.

В течение 1930-х и 1940-х годов цементные растворы постепенно вытесняли известковые. Лайм
часто добавляли в смесь для улучшения ее рабочих качеств и долговечности.
Более подробную информацию можно найти ниже на странице.

Наведение

В начале 1900-х годов стыки обычно отделывались заподлицо или слегка
утопленный.Там, где использовались кирпичи очень хорошего качества, швы часто
всего 8 мм, а то и меньше. Это, вместе с использованием кирпичной пыли в растворе,
означало, что раствор очень мало повлиял на внешний вид зданий.
Жилье рабочего класса обычно точили в известковом растворе, в состав которого входили
местные промышленные отходы в виде мелкого заполнителя. Возможно, пепел был самым
общий. На фотографиях ниже показаны три примера качественной кирпичной кладки 19 века.

Вытачивание обычно предназначалось для работы самого высокого качества.Так указывая
в основном состоит из двух частей, строительный раствор часто содержит заполнители, чтобы соответствовать
цвета кирпичей или каменной кладки и тонкая полоска извести, указывающая на
закончить сустав. Издалека заостренная стена кажется
мелко сочлененный. Примеры складки можно найти под стенами.
раздел этого веб-сайта.

Полые стенки

Во второй половине 19 века было построено несколько домов с
стенки полости.Однако только в 1920-х годах это стало общепринятым.
форма конструкции. Полые стены было дешевле построить, чем их сплошную стену.
аналоги. Кроме того, они обеспечивают улучшенную теплоизоляцию и лучшую
защита от непогоды. Большинство стен состояло из двух половинчатых листов толщиной 50 мм.
полость. Две половины стены были связаны через равные промежутки сталью или
кованые настенные связи. Наружный лист кирпичной кладки закладывался облицовочным кирпичом, внутренний
лист в общем.Несколько ранних полых стен имели внешний лист толщиной в один кирпич.
а в некоторых ранних формах конструкции DPC проходил прямо через полость.

К началу 1900-х годов широко использовались DPC

(для предотвращения повышения влажности). Они
можно было сделать из свинца, смолы, асфальта и сланца. Лишь в середине 1920-х гг.
вертикальные ЦОДы становятся стандартной деталью вокруг проемов.

1930–1960-е годы

За этот период стенки полости мало изменились.Минометы постепенно стали
на основе цемента, а не на основе извести, потому что раствор быстрее схватывается.
более быстрое строительство. Блокворк стал распространенным материалом для внутренних створок
полые стены — блоки обычно изготавливались из заполнителя из камня или
промышленные отходы (обычны клинкер и мелочь). Обычно несколько домов
Дома в стиле модерн с оштукатуренной отделкой строились со стенами из массива.
блочная кладка (т.е. без полостей).

Обратите внимание, что в течение 1950-х и начала 1960-х годов было построено несколько тысяч домов.
в нетрадиционном строительстве.Их часто строили из сборных железобетонных изделий.
рамы или панели; в некоторых случаях insitu панели. Некоторые системы были основаны на
древесина. Для получения дополнительной информации перейдите в раздел «Сборка системы» на веб-сайте.

1970–1980-е годы

В 1970-х годах стандарты изоляции постепенно улучшались. Максимальное значение «U»
1,70 был введен в 1972 году (мера способности стен передавать тепло
— поясняется далее в разделе Стены). Достижение этого стандарта было
относительно легко; внешний лист из кирпича, полость 50 мм и внутренний лист из плотного блока
отделано гипсом толщиной 13мм, только что сделал 1.7 порог. В 1980 г.
максимальное значение U упало до 1; для этого потребовалась легкая блочная кладка во внутреннем
лист. С этого периода и до наших дней были изготовлены самые легкие блоки.
из газобетона. Их делали (и делают) из цемента, извести, песка,
пылевидная топливная зола и алюминиевая пудра. После того, как эти материалы смешаны
с горячей водой алюминиевый порошок вступает в реакцию с известью, образуя миллионы
крошечные карманы водорода. Тем не менее, есть несколько других материалов для
блочные конструкции, которые пользовались недолгой популярностью. К ним относятся бетонные блоки
облицованные утеплителем, пустотелые блоки, содержащие гранулы полистирола и блоки
из пемзы или мелкозернистого бетона.

Современные полые стены

В 1990-е годы максимальное значение U упало до 0,45; обычно это требовало
очень толстая легкая внутренняя изоляция листа или полости.
Есть три распространенных варианта, большинство из которых требуют легкого или вентилируемого
блоки во внутреннем листе. Это:

  • прозрачная полость с изолированной сухой подкладкой
  • изоляционные плиты, частично заполняющие полость
  • изоляционных плит, которые заполняют полость.

По-прежнему можно строить сплошные стены, но это нецелесообразно с использованием
кирпич. Только газобетон даст приемлемый уровень изоляции.

На момент написания (2006 г.) значения U должны быть меньше 0,3, поэтому современная полая стенка имеет значение U несколько ниже.
В 5 или 6 раз лучше, чем его аналог 1920-х годов. В приведенных выше примерах немного
более толстая изоляция даст значение U 0,30. В полости современного строительства
ширина увеличилась далеко за пределы 50 мм, обычных 80 лет назад.Если используется изоляция плит, требуется 50-миллиметровый зазор в чистоте .
Обычно для этого требуется полость шириной 90 мм.

Настенные стяжки

Настенные стяжки теперь в основном из нержавеющей стали. Существуют различные модели; в
шайба, показанная ниже, предназначена для удержания изоляционных плит в положении напротив внутренней
лист. Все эти галстуки сделаны Анконом.

Современные минометы

Современные строительные растворы изготавливаются из цемента и песка.Гашеная известь (т.е. в мешках
известь) часто добавляют в смесь, чтобы придать ей пластичность и
сделать его более работоспособным. Известь также улучшает способность строительных растворов справляться с
с тепловым и влагодвижением. В последние годы широкое распространение получило использование готовых растворов. Эти
доставляются на объект в герметичных контейнерах, готовых к использованию. Обычно они содержат замедлитель схватывания, поэтому их можно использовать в течение 36–48 часов или около того. В конце этого
период они набирают свою прочность так же, как обычные минометы.

Поверхность соединения может быть обработана несколькими способами, три наиболее распространенных из которых показаны ниже. Инструментальные соединения
(где раствор прижимается к кирпичной кладке) обеспечивают лучшую погоду
защиту, поскольку инструмент сглаживает и сжимает соединение.

Это копия
более старой «раздатки» по эволюции — она может оказаться вам полезной.
изображения являются доказательствами перед публикацией от «Инспектора дома».

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*

*

*