Модуль упругости бетона в25: Модуль упругости и коэффициент Пуассона бетона (понятие и значение)

Содержание

Модуль упругости и коэффициент Пуассона бетона (понятие и значение)

Модуль упругости бетона — это коэффициент пропорциональности между нормальным напряжением и соответствующей ему относительной продольной упругомгновенной деформацией при σ1=0,3Rпр при осевом сжатии образцов. (ГОСТ 24452-80 Бетоны, Rпр — призменная прочность бетона)

Значение начального модуля упругости тяжелого бетона при сжатии и растяжении приведено в СП 63.13330.2018 Бетонные и железобетонные конструкции. Основные положения. Актуализированная редакция СНиП 52-01-2003. Данный СП действующий и обязательных к применению (см. пост.985)

Согласно таблицы 6.11 п.6.1.15 СП 63.13330.2018 для тяжелого бетона:

БетонЗначение модуля упругости бетона при сжатии, Eb, МПа
B1019000 МПа
В12,521500 МПа
В1524000 МПа
В2027500 МПа
В2530000 МПа
В3032500 МПа
В3534500 МПа

При продолжительном действии нагрузки модуль упругости бетона определяется по формуле:

-коэффициент ползучести бетона, принимаемый по таблице 6.12 п.6.1.16 

Согласно таблицы 6.12 п.6.1.16 СП 63.13330.2018 для тяжелого бетона B10-B35:

Относительная влажность воздуха окружающей среды, %В10В15В20В25В30В35
Выше 752,82,42,01,81,61,5
40-753,93,42,82,52,32,1
Ниже 405,64,84,03,63,23,0

Примечание: Относительную влажность воздуха окружающей среды принимают по СП 131.13330 как среднюю месячную относительную влажность наиболее теплого месяца для района строительства.

Согласно п.6.1.17 СП 63.13330.2018 коэффициент поперечной деформации бетона (коэффициент Пуассона) допускается принимать 0,2.

Узнать расчетное сопротивление бетона сжатию

Расчетные сопротивления и модули упругости для различных строительных материалов

Cодержание:

1. Модули упругости основных строительных материалов.

2. Начальные модули упругости бетона.

3. Нормативные сопротивления бетона.

4. Расчетные сопротивления бетона.

5. Расчетные сопротивления бетона растяжению.

6. Нормативные сопротивления арматуры.

7. Расчетные сопротивления арматуры.

8. Нормативные и расчетные сопротивления стали.

9. Заменяемые марки стали.

10. Список использованной литературы.

Таблица 1. Модули упругости для основных строительных материалов.

(вернуться к списку таблиц)



































МатериалМодуль упругости Е, МПа
Чугун белый, серый(1,15…1,60) • 105
»      ковкий1,55 • 105
Сталь углеродистая(2,0…2,1) • 105
»     легированная(2,1…2,2) • 105
Медь прокатная1,1 • 105
»    холоднотянутая1,3 • 103
»    литая0,84 • 105
 Бронза фосфористая катанная1,15 • 105
Бронза марганцевая катанная1,1 • 105
Бронза алюминиевая литая1,05 • 105
Латунь холоднотянутая(0,91…0,99) • 105
Латунь корабельная катанная1,0 • 105
Алюминий катанный0,69 • 105
Проволока алюминиевая тянутая0,7 • 105
Дюралюминий катанный0,71 • 105
Цинк катанный0,84 • 105
Свинец0,17 • 105
Лед0,1 • 105
Стекло0,56 • 105
Гранит0,49 • 105
Известь0,42 • 105
Мрамор0,56 • 105
Песчаник0,18 • 105
Каменная кладка из гранита(0,09…0,1) • 105
»    из кирпича(0,027…0,030) • 105
Бетон (см. таблицу 2) 
Древесина вдоль волокон(0,1…0,12) • 105
»    поперек волокон(0,005…0,01) • 105
Каучук0,00008 • 105
Текстолит(0,06…0,1) • 105
Гетинакс(0,1…0,17) • 105
Бакелит(2…3) • 103
Целлулоид(14,3…27,5) • 102

Примечание: 1. Для определения модуля упругости в кгс/см2 табличное значение умножается на 10 (более точно на 10.1937)

2. Значения модулей упругости Е для металлов, древесины, каменной кладки следует уточнять по соответствующим СНиПам.

Нормативные данные для расчетов железобетонных конструкций:

(вернуться к списку таблиц)

Таблица 2. Начальные модули упругости бетона (согласно СП 52-101-2003)

(вернуться к списку таблиц)

Таблица 2.1. Начальные модули упругости бетона согласно СНиП 2.03.01-84*(1996)

Примечания: 1. Над чертой указаны значения в МПа, под чертой — в кгс/см2.

2. Для легкого, ячеистого и поризованного бетонов при промежуточных значениях плотности бетона начальные модули упругости принимают по линейной интерполяции.

3. Для ячеистого бетона неавтоклавного твердения значения Еb принимают как для бетона автоклавного твердения с умножением на коэффициент 0,8.

4. Для напрягающего бетона значения Еb принимают как для тяжелого бетона с умножением на коэффициент a = 0,56 + 0,006В.

5. Приведенные в скобках марки бетона не точно соответствуют указанным классам бетона.

Таблица 3. Нормативные значения сопротивления бетона (согласно СП 52-101-2003)

(вернуться к списку таблиц)

Таблица 4. Расчетные значения сопротивления бетона (согласно СП 52-101-2003)

(вернуться к списку таблиц)

Таблица 4.1. Расчетные значения сопротивления бетона сжатию согласно СНиП 2.03.01-84*(1996)

Таблица 5. Расчетные значения сопротивления бетона растяжению (согласно СП 52-101-2003)

(вернуться к списку таблиц)

 

Таблица 6. Нормативные сопротивления для арматуры (согласно СП 52-101-2003)

(вернуться к списку таблиц)

Таблица 6.1 Нормативные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)

Таблица 6.2. Нормативные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)

Таблица 7. Расчетные сопротивления для арматуры(согласно СП 52-101-2003)

(вернуться к списку таблиц)

Таблица 7.1. Расчетные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)

Таблица 7.2. Расчетные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)

 

Нормативные данные для расчетов металлических конструкций:

Таблица 8. Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе (согласно СНиП II-23-81 (1990))

(вернуться к списку таблиц)

листового, широкополосного универсального и фасонного проката по ГОСТ 27772-88 для стальных конструкций зданий и сооружений

Примечания:

1. За толщину фасонного проката следует принимать толщину полки (минимальная его толщина 4 мм).

2. За нормативное сопротивление приняты нормативные значения предела текучести и временного сопротивления по ГОСТ 27772-88.

3. Значения расчетных сопротивлений получены делением нормативных сопротивлений на коэффициенты надежности по материалу, с округлением до 5 МПа (50 кгс/см2).

Таблица 9. Марки стали, заменяемые сталями по ГОСТ 27772-88 (согласно СНиП II-23-81 (1990))

(вернуться к списку таблиц)

Примечания: 1. Стали С345 и С375 категорий 1, 2, 3, 4 по ГОСТ 27772-88 заменяют стали категорий соответственно 6, 7 и 9, 12, 13 и 15 по ГОСТ 19281-73* и ГОСТ 19282-73*.
2. Стали С345К, С390, С390К, С440, С590, С590К по ГОСТ 27772-88 заменяют соответствующие марки стали категорий 1-15 по ГОСТ 19281-73* и ГОСТ 19282-73*, указанные в настоящей таблице.
3. Замена сталей по ГОСТ 27772-88 сталями, поставляемыми по другим государственным общесоюзным стандартам и техническим условиям, не предусмотрена.

Расчетные сопротивления для стали, используемой для производства профилированных листов, приводятся отдельно.

Список использованной литературы:

1. СНиП 2.03.01-84 «Бетонные и железобетонные конструкции»

2. СП 52-101-2003

3. СНиП II-23-81 (1990) «Стальные конструкции»

4. Александров А.В. Сопротивление материалов. Москва: Высшая школа. — 2003.

5. Фесик С.П. Справочник по сопротивлению материалов. Киев: Будiвельник. — 1982.

21-11-2013: Badyoruy

Отличная подборка


03-10-2015: мухаммад

спасибо вам всеесть то что надо


26-04-2016: Василий

Почему значения начального модуля упругости бетона при сжатии и растяжении умножаются на 10^-3? Должна ведь быть положительная степень. Выходит, что модуль упругости для бетона В25 составляет 30 кПа, но он равен 30 ГПа!


26-04-2016: Доктор Лом

Потому, что при составлении разного рода таблиц нет необходимости писать в каждой ячейке по 3 дополнительных нуля, достаточно просто указать, что табличные значения занижены в 1000 раз. Соответственно, чтобы определить расчетное значение, нужно табличное значение не разделить, а умножить на 1000. Такая практика используется при составлении многих нормативных документов (именно в таком виде там даются таблицы) и я не вижу смысла от нее отказываться.


26-04-2016: Владимир

Тогда получается, что модуль упругости арматуры необходимо разделить на 10 в пятой степени. Или я что-то не понимаю? В рекомендациях по расчету и конструированию сплошных плит перекрытий крупнопанельных зданий 1989г. и модуль бетона и модуль арматуры умножают на 10 в третьей и на 10 в пятой степени соответственно


26-04-2016: Доктор Лом

Попробую объяснить еще раз. Посмотрите внимательно на таблицу 1. Если бы в заглавной строке вместо «Модуль упругости Е, МПа» я бы прописал «Модуль упругости Е, МПа•10^-5», то это избавило бы меня от необходимости в каждой строке к значению модуля упругости добавлять «•10^5». Вот только значения модулей упругости для различных материалов различаются в сотни и даже тысячи раз, потому такая форма записи для таблицы 1 не совсем удобна. В таблицах 2 и 2.1 значения начальных модулей упругости различаются незначительно и потому использовалась такая форма записи. Более того, если вы откроете указанные нормативные документы, то лично в этом убедитесь. Традиция эта сформировалась в ту далекую пору, когда ПК и в помине не было и наборщик вручную набирал литеры в пресс для книгопечатания, так что в данном случае все вопросы не ко мне, а к Гутенбергу и его последователям.


05-08-2016: Александр

Возможно, модуль упругости легче бы запоминался и воспринимался в ГПа, ведь тогда у стали примерно 200 единиц, а у древесины 10…12.


05-08-2016: Доктор Лом

Вполне возможно, вот только и ГигаПаскали — не самая наглядная и простая для восприятия размерность.


Модуль (коэффициент) упругости бетона: формула для расчета

 

Определение упругости и единицы измерения

Изделия и конструкции из бетона подвергаются большим нагрузкам, причем этот процесс происходит постоянно. Технологи нашли возможность придать бетону упругость, т. е. способность упруго деформироваться при воздействии давления и силы, направленной на сжатие и расширение. Величина, которая характеризует этот показатель, называется модулем упругости бетона и по определению вычисляется с помощью формулы соотношения напряжения и упругой деформации образца: данные занесены в специальную таблицу.

Нормативные сведения также включают данные о:

  • классе материала,
  • его видах (тяжелый, мелкозернистый, легкий, пористый бетон и т. д:.),
  • технологии производства, в частности способах твердения (естественное, автоклавная или тепловая обработка).

В связи с этим модуль упругости бетона В30 может быть различным и определяться исходя из других характеристик. Если взять в качестве примера тяжелые и ячеистые бетоны одного и того же класса прочности, их модули будут иметь абсолютно разные значения. Таблица утверждена СНиП и составлена на основе результатов опытных исследований.

Таблица начальных модулей упругости E (МПа*10-3) при сжатии и растяжении бетонов с различными эксплуатационными характеристиками






























Классы по прочности на сжатие

В3,5

В5

В7,5

В10

В12,5

В15

В20

В25

В30

В35

В40

В45

В50

В55

В60

Характеристики бетона

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Тяжелые бетоны

Естественное твердение

9,5

13

16

18

21

23

27

30

32,5

34,5

36

37,5

39

39,5

40

Тепловая обработка при атмосферном давлении

8,5

11,5

14,5

16

19

20,5

24

27

29

31

32,5

34

35

35,5

36

Автоклавная обработка

7

10

12

13,5

16

17

20

22,5

24,5

26

27

28

29

29,5

30

Мелкозернистые

Естественное твердение, А-группа

7

10

13,5

15,5

17,5

19,5

22

24

26

27,5

28,5

Тепловая обработка при атмосферном давлении

6,5

9

12,5

14

15,5

17

20

21,5

23

Естественное твердение, Б-группа

6,5

9

12,5

14

15,5

17

20

21,5

23

Автоклавная теплообработка

5,5

8

11,5

13

14,5

15,5

17,5

19

20,5

Автоклавное твердение, В-группа

16,5

18

19,5

21

21

22

23

24

24,5

25

Легкие и поризованные

Марка средней плотности, D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

800

4,5

5,0

5,5

1000

5,5

6,3

7,2

8

8,4

1200

6,7

7,6

8,7

9,5

10

10,5

1400

7,8

8,8

10

11

11,7

12,5

13,5

14,5

15,5

1600

9

10

11,5

12,5

13,2

14

15,5

16,5

17,5

18

1800

11,2

13

14

14,7

15,5

17

18,5

19,5

20,5

21

2000

14,5

16

17

18

19,5

21

22

23

23,5

Ячеистые автоклавного твердения

Марка средней плотности, D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

700

2,9

800

3,4

4

900

3,8

4,5

5,5

1000

6

7

1100

6,8

7,9

8,3

8,6

1200

 

8,4

8,8

9,3

От чего зависит упругость бетона

1. Состав

Бетон с более высоким модулем упругости подвергается меньшей относительной деформации.

Значительную роль в этом играет качество цементного камня и наполнителя – двух компонентов, из которых и состоит бетон. И раствор, и заполнитель берут на себя всю нагрузку. При анализе зависимости модуля упругости бетона от модуля упругости его составляющих, исследователи выяснили, что прочность заполнителя не всегда задействуется для улучшения характеристик готового материала, а вот показатель упругости оказывает значительное влияние.

2. Класс

Начальный модуль упругости бетона при сжатии и расширении зависит от класса изделия по прочности на сжатие.

Эта зависимость устанавливается путем применения эмпирических формул, поэтому для практических целей проще всего получать информацию из готовой таблицы. Даже без сложных математических расчетов можно заметить, что модуль упругости увеличивается пропорционально прочности материала. Другими словами, чем выше класс, тем больше модуль упругости бетона, т. е. материал класса В25 является более устойчивым к относительным деформациям по сравнению с В20.

Расчет модуля упругости в лабораторных условиях

Когда речь идет о модуле упругости, принимают во внимание оба его варианта – динамический и статический. У первого значение выше и определяется в ходе вибрации образца. Статический модуль, помимо основной информации, предоставляет данные о такой характеристике, как ползучесть бетона – динамика образования деформаций при постоянной нагрузке.

При расчетах учитывают тождество модулей упругости материала как на растяжение, так и на сжатие. Замечено, что если напряжение составляет 0,2 и более максимальной прочности бетона, происходят остаточные деформации. Это приводит к тому, что при сцеплении раствора и наполнителей возникают микротрещины, а это становится причиной крошения и в конечном итоге разрушения.

Во время эксперимента образец подвергают непрерывной нагрузке, имеющей тенденцию к возрастанию, до полного разрушения. Для этого используют особое оборудование – нагружающие установки. В диаграмму вносят данные, показывающие влияние нагрузок на степень деформаций. На завершающем этапе производится расчет среднего модуля упругости всех образцов.

elima.ru › Таблица начальных модулей упругости бетона

БетонНачальные модули упругости бетона при сжатии и растяжении Eb·103 [МПа] при классе бетона по прочности на сжатие
В1В1,5В2В2,5В3,5В5В7,5В10В12,5В15В20В25В30В35В40В45В50В55В60
Тяжёлый:
естественного твердения9,51316182123273032,534,53637,53939,540
подвергнутый тепловой обработке при атмосферном давлении8,511,514,5161920,52427293132,5343535,536
подвергнутый автоклавной обработке7101213,516172022,524,52627282929,530
Мелкозернистый групп:
А — естественного твердения71013,515,517,519,522242627,528,5
подвергнутый тепловой обработке, при атмосферном давлении6,5912,51415,5172021,5232424,5
Б — естественного твердения6,5912,51415,5172021,523
подвергнутый тепловой обработке при атмосферном давлении5,5811,51314,515,517,51920,5
В — автоклавного твердения16,51819,521222323,52424,525
Лёгкий и поризованный марки по средней плотности D:
80044,555,5
100055,56,37,288,4
120066,77,68,79,51010,5
140077,88,8101111,712,513,514,515,5
160091011,512,513,21415,516,517,518
180011,2131414,715,51718,519,520,521
200014,516171819,521222323,5
Ячеистый автоклавного твердения марки по средней плотности D:
5001,11,4
6001,41,71,82,1
7001,92,22,52,9
8002,93,44
9003,84,55,5
100067
11006,87,98,38,6
12008,48,89,3

что это такое и как определяется

Невозможно представить строительство зданий и сооружение железобетонных конструкций без использования бетона. Различные марки композита отличаются эксплуатационными характеристиками. Он способен воспринимать повышенные нагрузки, однако внешние факторы вызывают его разрушение. Один из важнейших параметров, определяющих устойчивость возведенных зданий и продолжительность их эксплуатации – это модуль упругости бетона. На его величину влияет ряд факторов. Рассмотрим детально параметр, характеризующий способность бетона воспринимать сжатие и растяжение.

Использование бетона при строительствеНевозможно представить строительство зданий и сооружение железобетонных конструкций без использования бетона

Модуль упругости бетонных конструкций – важный параметр

Модуль упругости бетона, характеризующий способность массива сохранять целостность под воздействием деформации, используют проектировщики при выполнении прочностных расчетов строительных конструкций. Главная отличительная черта бетонных изделий и конструкций – твердость. Вместе с тем, воздействие нагрузки, величина которой превышает допустимые значения, вызывает сжатие и растяжение композита. Затвердевший монолит в процессе деформации изменяется. Причина – ползучесть материала.

В зависимости от значения коэффициента ползучести и величины приложенной нагрузки, структура монолита изменяется постепенно:

  • на первом этапе приложения нагрузки происходит кратковременное изменение структуры бетона. Он сохраняет целостность и восстанавливает первоначальное состояние. Растягивающие и сжимающие усилия, а также изгибающие моменты вызывают упругую деформацию без необратимых разрушений;
  • на следующей стадии при резком возрастании нагрузки возникают разрушения необратимого характера. В результате пластичной деформации возникают глубокие трещины, являющиеся, в дальнейшем, причиной постепенного разрушения зданий и различных бетонных конструкций.

Коэффициент упругости – главная характеристика, определяющая прочностные свойства бетона. Показатель представляет интерес для профессиональных проектантов, занимающихся расчетом нагрузочной способности бетонных конструкций. Индивидуальным застройщикам следует ориентироваться на класс материала, с возрастанием которого увеличивается значение модуля упругости бетона.

Коэффициент упругости – главная характеристикаКоэффициент упругости – главная характеристика, определяющая прочностные свойства бетона

Какие факторы определяют модуль упругости бетона В25 и бетонов других классов

На величину модуля упругости влияют следующие факторы:

  • характеристики наполнителя. Величина показателя прямо пропорциональна удельному весу бетона. При небольшой плотности значение модуля упругости меньше, чем у тяжелых мелкозернистых стройматериалов, содержащих плотный гравийный или щебеночной наполнитель;
  • классификация бетона. Каждый класс бетона по прочности имеет свое значение модуля упругости. С возрастанием класса бетона одновременно увеличивается значение модуля упругости. Начальное значение модуля упругости бетона класса В10 составляет 19, а для бетона В30 равно 32,5;
  • возраст монолита. Величина параметра, характеризующего упругость материала и продолжительность эксплуатации, связаны прямым соотношением. Оно не имеет предела пропорциональности – с увеличением возраста бетона возрастает крепость бетонной структуры. Используя существующие таблицы, специалисты определяют искомую величину с учетом поправочных коэффициентов;
  • технологические особенности изготовления бетона. Технологией производства бетона предусмотрена обработка при атмосферном давлении и возможность застывания стройматериала в естественных условиях, а также в автоклавах под воздействием повышенного давления и высокой температуры. Условия, при которых твердел бетон, влияют на показатель;
  • продолжительность нахождения бетона под нагрузкой. Расчет модуля упругого сопротивления производится путем умножения табличного значения на корректирующий коэффициент. Для ячеистых бетонов с пористой структурой величина составляет 0,7; для плотного бетона – 0,85;

Модуль упругости бетонаМодуль упругости бетона разных классов

  • концентрация влаги в воздушной среде. В зависимости от влажности воздуха изменяется концентрация влаги в бетоне, что влияет на его способность воспринимать предельные нагрузки. Температура окружающей среды также влияет на значение модуля упругости;
  • наличие пространственной решетки, изготовленной из арматурных прутков. Армирование повышает способность бетонного массива сопротивляться разрушающим деформациям и воспринимать действующие нагрузки. Расчетное сопротивление для арматуры указано в нормативных документах.

Модуль зависит от комплекса факторов. Их следует учитывать при выполнении прочностных расчетов. Независимо от  упругости массива, помните, что наличие арматурной решетки значительно повышает сопротивляемость бетона действующим нагрузкам.

Для усиления используйте арматуру повышенного класса. Не забывайте, что значение нормативного сопротивления для арматуры класса A6 выше, чем величина сопротивления для арматуры класса А1.

Модуль упругости бетона – таблица

Коэффициент, характеризующий упругость материала, остается неизменным до определенного температурного порога.  Проследить зависимость изменения модуля упругости от марки материала и температурных условий поможет таблица. Например, для материалов, у которых температура плавления 300 °С, после дальнейшего нагрева снижается способность противодействовать упругой деформации. И хотя бетон не плавится, под воздействием повышенной температуры, вызванной пожаром, нарушается структура бетонного массива и он теряет свои свойства.

Модуль упругости бетонаМодуль упругости бетона – таблица

Разработанная согласно Своду правил 52 101 2003 таблица поможет определить величину начального модуля упругости для различных классов бетона:

  • величина показателя упругости для материала класса В3,5 составляет 9,5;
  • стройматериал класса В7,5 отличается увеличенным значением модуля, равным 16;
  • строительный материал класса В20 при естественном твердении имеет значение модуля 27;
  • бетон, классифицируемый как В35, имеет увеличенную до 34,5 величину модуля упругости;
  • максимальное значение параметра 40 соответствует прочному бетону класса В60.

Зная класс материала, а также имея информацию о плотности стройматериала и технологии изготовления, несложно определить величину параметра по специальной таблице.

Как определяется модуль упругости бетона В20

Значение модуля для всех классов материала определяется согласно сп 52 101 2003. Таблица нормативного документа содержит значения всех необходимых коэффициентов для выполнения расчетов. Алгоритм определения показателя предусматривает выполнение экспериментальных исследований на стандартных образцах.

Модуль упругости бетона в20Диаграмма модуля упругости бетона в20

В специальной литературе параметр обозначается заглавной буквой Е и известен среди профессиональных проектировщиков как модуль Юнга.

Он имеет различную величину в зависимости от действующей нагрузки и структуры бетона:

  • значение начального модуля упругости соответствует исходному состоянию бетона, воспринимающего пластическую деформацию без растрескивания массива;
  • приведенная величина модуля упругости характеризует стадию нагружения, после которой бетон теряет целостность в результате необратимых разрушений.

Осуществляя специальные расчеты и зная значение модуля упругости, специалисты определяют запас прочности сооружений арочного типа, автомобильных и железнодорожных мостов, а также перекрытий зданий.

Уже после возведения конструкции или сооружения фактически провести достоверные комплексные испытания бетона на прочность, морозостойкость, влажность и влагопроницаемость можно только в лаборатории. В рамках неразрушающих испытаний есть возможность грубо определить класс бетона ультразвуковыми методами диагностики.

И если после такой экспертной проверки образца возникают сомнения в однозначной классификации, то для оценки прочностных характеристик бетона берется проба – керн непосредственно на объекте строительства.
Для практического определения коэффициента упругости материала и фактического документального подтверждения проводится независимая экспертиза бетона. 

Очень часто недобросовестные подрядчики экономят финансовые средства на материалах и не закупают / не применяют на объекте бетон, установленного проектом класса. Как следствие, меньший модуль упроугости приводит к преждевременному разрушению сооружения.

Рекомендации

Профессиональные строители рекомендуют для повышения величины модуля упругости применять различные технологии изготовления. Рассмотрим, как изменяет свойства бетон б15, изготовленный различными методами:

  • в результате автоклавной обработки бетон приобретает упругие свойства, характеризуемые модулем, равным 17;
  • применение тепловой обработки, выполненной при атмосферном давлении, позволяет увеличить величину модуля упругости до значения 20,5;
  • максимальную величину модуля имеет бетон 200 М (B15) при естественных условиях твердения.

Пропорции раствораРазличные технологии изготовления бетона

Аналогичная тенденция прослеживается для других классов бетона, включая популярный b25 бетон.

С рассматриваемой точки зрения прослеживаются следующие тенденции:

  • для повышения величины модуля упругости бетона целесообразно использовать технологию естественного твердения;
  • применение гидротермической обработки снижает способность материала сопротивляться сжимающим и растягивающим нагрузкам;
  • при возрастании класса используемого бетона увеличивается его сопротивление упругим деформациям.

Используя табличные значения, несложно определить модуль сопротивления, и выбрать класс бетона для выполнения конкретных задач.

Заключение

Понимание физической сущности параметра упругости бетонного материала позволит правильно выбрать класс бетона для обеспечения необходимой прочности и долговечности строительных конструкций. Желая подробно ознакомиться с методикой расчета бетонных конструкций, изучите внимательно Свод правил 52 101 2003, положения которого распространяются на строительные конструкции из бетона и железобетона.

Модуль упругости бетона

СП 63.13330.2012

6.1.15 Значения начального модуля упругости бетона при сжатии и растяжении принимают в зависимости от класса бетона по прочности на сжатие В согласно таблице 6.11. Значения модуля сдвига бетона принимают равным 0,4Еb.

При продолжительном действии нагрузки значения модуля деформаций бетона определяют по формуле:

где φb,cr— коэффициент ползучести бетона, принимаемый согласно 6.1.16.

Таблица 6.11

БетонЗначения начального модуля упругости бетона при сжатии и растяжении Eb, МПа × 10-3, при классе бетона по прочности на сжатие
В1,5В2В2,5В3,5В5В7,5в10В12,5B15B20B25в30В35В40В45В50В55В60В70В80В90В100
Тяжелый9,513,016,019,021,524,027,530,032,534,536,037,038,039,039,541,042,042,543
Мелкозернистый групп:
А — естественного твердения7,01013,515,517,519,522,024,026,027,528,5
Б — автоклавного твердения16,518,019,521,022,023,023,524,024,525,0
Легкий и порисованный марки по средней плотности:
D8004,04,55,05,5
D10005,05,56,37,28,08,4
D12006,06,77,68,79,510,010,5
D14007,07,88,810,011,011,712,513,514,515,5
D16009,010,011,512,513,214,015,516,517,518,0
D180011,213,014,014,715,517,018,519,520,521,0
D200014,516,017,018,019,521,022,023,023,5
Ячеистый автоклавного твердения марки по средней плотности:
D5001,4
D6001,71,82,1
D7001,92,22,52,9
D8002,93,44,0
D9003,84,55,5
D10005,06,07,0
D11006,87,98,38,6
D12008,48,89,3
Примечания

1 Для мелкозернистого бетона группы А, подвергнутого тепловой обработке или при атмосферном давлении, значения начальных модулей упругости бетона следует принимать с коэффициентом 0,89.

2 Для легкого, ячеистого и поризованного бетонов при промежуточных значениях плотности бетона начальные модули упругости принимают по линейной интерполяции.

3 Для ячеистого бетона неавтоклавного твердения значения Еbпринимают как для бетона автоклавного твердения с умножением на коэффициент 0,8.

4 Для напрягающего бетона значения Еb принимают как для тяжелого бетона с умножением на коэффициент α = 0,56 + 0,006 В.

6.1.16 Значения коэффициента ползучести бетона φb,cr принимают в зависимости от условий окружающей среды (относительной влажности воздуха) и класса бетона. Значения коэффициентов ползучести тяжелого, мелкозернистого и напрягающего бетонов приведены в таблице 6.12.

Значения коэффициента ползучести легких, ячеистых и поризованных бетонов следует принимать по специальным указаниям.

Допускается принимать значения коэффициента ползучести легких бетонов по таблице 6.12 с понижающим коэффициентом (ρ/2200)2.

Таблица 6.12

Относительная влажность воздуха окружающей среды, %Значения коэффициента ползучести бетона φb,crпри классе тяжелого бетона на сжатие
В10В15В20В25взоВ35В40В45В50В55В60 — В100
Выше 752,82,42,01,81,61,51,41,31,21,11,0
40 — 753,93,42,82,52,32,11,91,81,61,51,4
Ниже 405,64,84,03,63,23,02,82,62,42,22,0
Примечание — Относительную влажность воздуха окружающей среды принимают по СП 131.13330 как среднюю месячную относительную влажность наиболее теплого месяца для района строительства.

 

от чего зависит и как правильно произвести расчет

Любые растворы, которые имеют свойство затвердевать, в застывшем состоянии обладают некой плотностью. Бетон не является исключением. Плотность позволяет определить, для каких работ пригоден материал, поэтому при любом строительстве нужно учитывать все эксплуатационные характеристики, в том числе класс прочности и модуль упругости бетона. Именно от этих параметров будут зависеть качество и срок эксплуатации постройки.

Основное понятие

Важным параметром при выборе бетона является его упругость, которая показывает способность застывшей массы оставаться в целостности даже под воздействием деформации. Такие данные нужны проектировщикам для того, чтобы возводить прочные и долговечные конструкции.

Безусловно, главным достоинством материала является его твердость. Но из-за ползучести затвердевшая масса в процессе эксплуатации может деформироваться. Все это может происходить из-за воздействия нагрузки, если ее значение превысит допустимые нормы. Поэтому следует учитывать величину приложенной нагрузки и значение коэффициента ползучести, из-за которых структура затвердевшего изделия постепенно меняется.

Этапы изменения структуры

При строительстве необходимо учитывать деформацию от приложенной нагрузки. В процессе эксплуатации бетонная структура деформируется в два этапа:

  1. Первый этап — краткосрочное изменение структуры. На этой стадии бетон сохраняет свою целостность и может восстанавливать исходное состояние. При этом во время растяжения, сжатия и изгибания возникает упругая деформация без необратимых разрушений.
  2. Второй этап — разрушения необратимого типа, которые происходят в результате внезапной и сильной нагрузки. Во время пластичной деформации появляются трещины, вследствие которых начинается постепенное разрушение бетонных конструкций.

Помимо деформации от приложенной нагрузки существует такое понятие, как коэффициент упругости. Такой показатель просто необходим для людей, занимающихся расчетом прочности бетонных зданий.

Для застройщиков же такие расчеты проводить не нужно, так как главным ориентиром прочности является класс материала. И чем выше класс, тем больше увеличивается начальный модуль упругости бетона.

Виды раствора

Все подобные материалы подразделяются на несколько видов. Самое интересное заключается в том, что даже не все профессиональные строители знают, что существует несколько разновидностей бетона:

  1. Тяжелые. Такой вид имеет маркировку М100, М150, М200 и т. д. В состав смеси входят плотные наполнители известняк и гранит. Тяжелый бетон является высокопрочным. Он быстро затвердевает, поэтому его главное предназначение — сборные железобетонные конструкции.
  2. Легкие. В такой бетон при изготовлении добавляют легкие пористые наполнители, такие как керамзит, пемза, вспученный шлак и другие. Благодаря такому составу материал становится намного легче, поэтому его используют для возведения несущих стен и других ограждающих сооружений.

Легкие изделия бывают еще поризованные, крупнопористые и ячеистые. Отличаются они своим составом и сферой применения.

Факторы, влияющие на упругость

Чтобы понять, от чего зависит модуль упругости бетона В25, В20, В15 и других классов, нужно рассмотреть все причины. На эту величину влияет очень много факторов, но самыми распространенными являются:

  1. Свойства наполнителя. Если изделие имеет низкую плотность, то и модуль упругости у него небольшой. При использовании тяжелых наполнителей упругость возрастает в несколько раз.
  2. Классность. Чем выше класс, тем больше и упругость. Например, модуль упругости В30 равен 32,5, а у класса В10 он составляет всего лишь 19.
  3. Продолжительность использования. Бетонные конструкции становятся крепче со временем, поэтому специалисты используют таблицы для таких целей.
  4. Особенности производства. В процессе изготовления могут использоваться разные обработки бетона. Некоторые применяют высокую температуру и давление. Другие же проводят обработку при атмосферном давлении и дают строительному материалу затвердевать естественным путем. Все эти особенности изготовления напрямую влияют на показатель прочности и упругости.
  5. Время нахождения под давлением и нагрузкой. Для расчета используются специальные таблицы, из которых берется значение и умножается на корректирующий коэффициент.
  6. Влажность воздуха. Температура и влажность также влияют на значение упругости.
  7. Арматура. Использование стальной арматуры помогает противостоять различным нагрузкам и сопротивляться деформациям. Необходимые значения находятся в нормативных документах.

Хоть и многие факторы влияют на упругость материала, все же бетонные изделия нельзя назвать ненадежными и недолговечными. При качественном производстве и правильных расчетах конструкции прослужат долгое время.

Начальный модуль

Коэффициент напрямую зависит от температурных условий. Он остается неизменным до определенного порога температуры, который у каждого класса свой. Например, материалы, имеющие температуру плавления 300 ⁰C, при превышении порога могут потерять частично свою устойчивость к деформации. Хотя бетон и не относится к материалам, которые плавятся, но при воздействии высокой температуры нарушается структура массива.

Существуют таблицы, в которых в соответствии со всеми установленными правилами указаны нужные значения. С их помощью можно определить начальный модуль упругости бетона В20, В25, В30 и других классов. Зная классность материала, его плотность и технологию производства, можно легко узнать этот параметр. Для этого для расчетов используются необходимые коэффициенты упругости, плотности и модуль деформации бетона В30, В15 и т. д.

Помимо этого, модуль упругости определяется во время исследований на пробах по бетону. Такой параметр принято обозначать буквой Е. В профессиональных кругах у него есть второе название — модуль Юнга бетона.

Модуль упругости бетона — определение и важность при проектировании

Модуль упругости бетона (Ec) определяется как отношение приложенного напряжения к соответствующей деформации. Он не только демонстрирует способность бетона противостоять деформации из-за приложенного напряжения, но и его жесткость. Другими словами, он отражает способность бетона упруго отклоняться. Модуль упругости бетона зависит от пропорций заполнителя и смеси бетона.

При проектировании бетонных конструкций очень важен модуль упругости, который требует определения. Линейный расчет элементов, основанный на теории упругости, используется в некоторых случаях для удовлетворения требований предельного состояния по прочности и пригодности к эксплуатации, например, при проектировании предварительно напряженных бетонных конструкций.

Общие применимые нормы по всему миру, такие как Кодекс ACI, Европейский Кодекс, Британские стандарты, Канадская ассоциация стандартов и Индийский стандарт, предоставили формулу для расчета модуля упругости бетона.

Расчет модуля упругости бетона

Расчет модуля упругости бетона с использованием уравнений различных кодов представлен ниже:

1. Модуль упругости на основе ACI 318-14

Согласно ACI 318-14 раздел 19.2.2, модуль упругости бетона оценивается следующим образом:

Для бетона удельный вес (wc) колеблется от 1440 до 2560 кг на кубический метр.

Для бетона с нормальным весом:

2.Модуль упругости на основе CSA

Модуль упругости для бетона с нормальным весом согласно Канадской ассоциации стандартов (CSA A23.3):

Для высокопрочного бетона:

3. Модуль упругости согласно EC

Модуль упругости бетона по Еврокоду можно оценить с помощью следующего выражения:

Где,

Ecm: средний модуль упругости

фут · см: средняя прочность бетона на сжатие через 28 дней в соответствии с таблицей 3.1 BS EN 1992-1-1: 2004

4. Модуль упругости согласно британскому стандарту

Значение модуля упругости при 28-дневном возрасте бетона приведено в BS 8110: Часть II 1985:

.

Где:

ko: составляет 20 кН на квадратный миллиметр
для нормального бетона

fcu, 28: прочность бетона на сжатие через 28 дней.

5. Модуль упругости в соответствии с IS 456

Модуль упругости бетона по индийскому стандарту можно рассчитать с помощью следующего выражения:

Важность проектирования бетонных конструкций

Очень важно определить модуль упругости бетона при проектировании бетонной конструкции.Линейный анализ элементов, основанный на теории упругости, используется для удовлетворения требований предельного состояния как по пределу прочности, так и по эксплуатационной пригодности, например, в случае предварительно напряженного бетона, который демонстрирует сечение без трещин вплоть до разрушения.

В дополнение к расчету прогибов, которые должны быть ограничены в соответствии с требованиями эксплуатационной пригодности для всех конструкций. Наконец, знание модуля упругости высокопрочного бетона очень важно для предотвращения чрезмерной деформации, обеспечения удовлетворительной эксплуатационной пригодности и избегания наиболее экономичных конструкций.

.

Испытание для определения модуля упругости бетона

Модуль упругости бетона определяется как отношение напряжения, приложенного к бетону, к соответствующей деформации. Точное значение модуля упругости бетона можно определить путем проведения лабораторного испытания, называемого испытанием на сжатие, на цилиндрическом образце бетона.

В ходе испытания анализируется деформация образца в зависимости от изменения нагрузки. Эти наблюдения создают график «напряжение-деформация» (график «нагрузка-прогиб»), по которому определяется модуль упругости бетона.Наклон линии, проведенной на кривой напряжения-деформации, от нулевого значения напряжения до значения напряжения сжатия 0,45f’c (рабочее напряжение) дает модуль упругости бетона.

Лабораторные испытания для определения модуля упругости бетона описаны ниже.

Процедура

Процедура тестирования состоит из двух этапов. Первоначально компрессометр настраивается, после чего выполняется нагрузка и тестирование.

Настройка компрессометра

Компрессометр — это устройство, используемое при испытании бетонного цилиндра на сжатие для определения его характеристик деформации и деформации.Настройка включает следующие процедуры.

  1. Компрессометр состоит из двух рамок (верхней и нижней), как показано на рисунке-1. Изначально рамы собираются с помощью распорок. Прокладки удерживаются на месте во время сборки.
  2. Шарнирный стержень удерживается на винтах, которые затем фиксируются. Затяжные винты верхней и нижней рам остаются незатянутыми.
  3. После размещения компрессометра его помещают на образец бетона, находящийся на ровной поверхности.Компрессометр располагается по центру образца.
  4. После того, как положение установлено, винты затягиваются и компрессометр удерживается на образце.
  5. После завершения настройки распорки можно открутить и снять.

Рис.1. Компрессометр с индикатором часового типа

Испытания образца

Процедура проверки включает следующие шаги:

  1. Образец с установленным компрессометром помещается на платформу машины для испытания на сжатие.Он правильно отцентрирован.
  2. Нагрузка выполняется непрерывно со скоростью 140 кг / см² / мин без каких-либо препятствий.
  3. Приложение нагрузки продолжается до достижения значения напряжения, равного (c + 5) кг / см². Здесь c — это 1/3 средней прочности куба на сжатие (значение прочности куба, рассчитанное с точностью до 5 кг / см²), что составляет нагрузку 12,4 т.
  4. Как только это значение напряжения достигнуто, оно поддерживается в течение 60 секунд, а затем снижается до напряжения 1.5 кг / см², что соответствует нагрузке 0,3T.
  5. Опять же, нагрузка увеличивается до тех пор, пока не будет достигнуто напряжение (c + 1,5) кг / см², что составляет нагрузку 11,8T. В этот момент записываются показания компрессометра.
  6. Теперь нагрузка постепенно снижается, и показания записываются с интервалами 1T, т.е. 11,8T, 10,8T, 9,8T, 8,8T, 7,8T, …………, 1,8T, 0,3T .
  7. Повторите испытание, приложив нагрузку в третий раз, и запишите показания компрессометра с интервалом 1T i.e 1.8T, 10.8T, 9.8T, 8.8T, 7.8T, …………, 1.8T, 0.3T определен.

Подробнее: Прочность бетонных цилиндров на сжатие

График нагрузки-прогиба

На основе наблюдений график прогиба нагрузки построен для условий нагружения. Касательные наносятся на начальном участке графика и в точке значения, равной рабочему напряжению бетонной смеси. Проводится линия, соединяющая обе точки.

Рис.2 График отклонения нагрузки

Подробнее: кривая напряжения-деформации бетона

Расчет и результаты

Расчет

Наклон начальной касательной дает:

Начальный касательный модуль = напряжение / деформация

Наклон касательной при рабочем напряжении дает:

Модуль касательной упругости при рабочем напряжении = напряжение / деформация

Наклон линии, соединяющей начальную точку касания и точку рабочего напряжения, дает:

Секущий модуль = напряжение / деформация

Отчет об испытаниях

В отчет должна быть включена следующая информация.

  • Идентификационный знак
  • Дата испытания
  • Возраст образца
  • Форма и номинальные размеры образца

Результат

Начальный касательный модуль данного бетона = ……………… Н / мм²

Модуль упругости при рабочем напряжении = ……………… .Н / мм²

Секущий модуль (Модуль упругости данного бетона) = ………… .. Н / мм²

Меры предосторожности

  1. Считывание следует снимать непрерывно без каких-либо задержек.
  2. Если показания деформации различаются более чем на 5% для разных испытаний, то испытание необходимо повторить.

.

Модуль Юнга — предел текучести и растяжения для обычных материалов

Модуль упругости — или модуль Юнга alt. Модуль упругости — это показатель жесткости эластичного материала. Он используется для описания упругих свойств таких объектов, как проволока, стержни или колонны, когда они растягиваются или сжимаются.

Модуль упругости при растяжении определяется как

«отношение напряжения (силы на единицу площади) вдоль оси к деформации (отношение деформации к начальной длине) вдоль этой оси»

Его можно использовать для прогнозирования удлинения или сжатие объекта до тех пор, пока напряжение меньше, чем предел текучести материала.Подробнее об определениях под таблицей.

9002 4

170

9 0018 502

АБС-пластик 1,4 — 3,1 40
A53 Стандартная бесшовная и сварная стальная труба — марка A 331 207
A53 Бесшовная и сварная стандартная сталь Труба — класс B 414 241
A106 Бесшовная труба из углеродистой стали — класс A 400 248
A106 Бесшовная труба из углеродистой стали — класс B 483 345
A106 Бесшовная труба из углеродистой стали — класс C 483 276
Стальная труба A252 сваи — сорт 1 345 207
Стальная труба A252 — свая — сорт 2 414 241
Стальная труба A252 для укладки свай — класс 3 455 310
A501 Конструкционные трубы из углеродистой стали горячей штамповки — класс A 400 248
A501 Конструкционные трубы из горячеформованной углеродистой стали — класс B 483 345
A523 Стальные трубопроводы для кабельных цепей — класс A 331 207
A523 Стальные трубопроводы для кабельных цепей — класс B 414 241
A618 Горячеформованные высокопрочные низколегированные конструкции НКТ — класс Ia и Ib 483 345
A618 Горячеформованные высокопрочные низколегированные конструкционные трубы — класс II 414 345
A618 Горячие формованные высокопрочные Низколегированные конструкционные трубы — класс III 448 345
Линейная труба API 5L 310 — 1145 175 — 1048
Ацетали 2.8 65
Акрил 3,2 70
Алюминий бронза 120
Алюминий 69 110 95
Алюминиевые сплавы 70
Сурьма 78
Арамид 70-112
Бериллий (Be) 287
Бериллий Медь

124
Висмут 32
Кость компактная 18 170
(компрессионная)
Кость губчатая 76
Бор 9002 4

3100
Латунь 102-125 250
Латунь, военно-морской флот 100
Бронза 96-120
CAB 0.8
Кадмий 32
Пластик, армированный углеродным волокном 150
Углеродная нанотрубка, одностенная 1000
Чугун 4.5 % C, ASTM A-48 170
Целлюлоза, хлопок, древесная масса и регенерированная 80-240
Ацетат целлюлозы, формованный 12-58
Ацетат целлюлозы, лист 30-52
Нитрат целлюлозы, целлулоид 50
Хлорированный полиэфир 1.1 39
Хлорированный ПВХ (ХПВХ) 2,9
Хром 248
Кобальт 207
Бетон 17
Бетон, высокая прочность (сжатие) 30 40
(сжатие)
Медь 117 220 70
Алмаз (C) 1220
Древесина пихты Дугласа 13 50
(сжатие)
Эпоксидные смолы 3-2 26-85
Древесноволокнистая плита средней плотности 4
Льноволокно 58
Стекло 50-90 50
(сжатие)
Матрица из армированного стекловолокном полиэстера 17
Золото 74
Гранит 52
Графен 1000
Серый чугун 130
Конопляное волокно 35
Инконель 214
Иридий 517
Железо 210
Свинец 13.8
Магний металлический (Mg) 45
Марганец 159
Мрамор 15
МДФ — средней плотности ДВП 4
Ртуть
Молибден (Мо) 329
Монель Металл 179
Никель
Никель-серебро 128
Никелевая сталь 200
Ниобий (колумбий) 103
Нейлон-6 2-4 45-90 45
Нейлон-66 60-80
Дуб (вдоль волокон) 11
Осмий (Os) 550
Фенольные литые смолы 33-59
Формовочные смеси фенолформальдегидные 45-52
Фосфорная бронза 116
Сосновая древесина (вдоль волокон) 9 40
Платина 147
Плутоний 97
Полиакрилонитрил, волокна 200
Полибензоксазол 3.5
Поликарбонаты 2,6 52-62
Полиэтилен HDPE (высокая плотность) 0,8 15
Полиэтилентерефталат, ПЭТ 2 — 2,7 55
Полиамид 2,5 85
Полиизопрен, твердая резина 39
Полиметилметакрилат (ПММА) 2.4 — 3,4
Полиимидные ароматические углеводороды 3,1 68
Полипропилен, PP 1,5 — 2 28-36
Полистирол, PS 3 — 3,5 30-100
Полиэтилен, LDPE (низкая плотность) 0,11 — 0,45
Политетрафторэтилен (PTFE) 0,4
Жидкий полиуретановый литой 10-20
Полиуретановый эластомер 29-55
Поливинилхлорид (ПВХ) 2.4 — 4,1
Калий
Родий 290
Резина, малая деформация 0,01 — 0,1
Сапфир 435
Селен 58
Кремний 130-185
Карбид кремния 450 3440
Серебро 72
Натрий
Сталь, высокопрочный сплав ASTM A-514 760 690
Сталь нержавеющая AISI 302 180 860
Сталь, конструкционная ASTM-A36 200 400 250
Тантал 186
Торий 59
Олово 47
Титан
Титановый сплав 105-120 900 730
Зубная эмаль 83
Вольфрам ( Вт) 400 — 410
Карбид вольфрама (WC) 450 — 650
Уран 170
Ванадий 131
Кованый Иро n 190-210
Дерево
Цинк 83
  • 1 Па (Н / м 2 ) = 1×10 -6 Н / мм 2 = 1.4504×10 -4 psi
  • 1 МПа = 10 6 Па (Н / м 2 ) = 0,145×10 3 psi (фунт f / дюйм 2 ) = 0,145 тыс. фунтов на квадратный дюйм
  • 1 ГПа = 10 9 Н / м 2 = 10 6 Н / см 2 = 10 3 2 Н / мм 0,145×10 6 фунтов на кв. Дюйм (фунт на / дюйм 2 )
  • 1 МПа = 10 6 фунтов на квадратный дюйм = 10 3 тысяч фунтов на квадратный дюйм
  • 47 фунтов на квадратный дюйм 1 2 ) = 0.001 тыс. Фунтов на квадратный дюйм = 144 фунта / кв. Дюйм (фунт на / фут 2 ) = 6 894,8 Па (Н / м 2 ) = 6,895×10 -3 Н / мм 2

Примечание! — этот онлайн-преобразователь давления может использоваться для преобразования единиц модуля упругости при растяжении.

Деформация — ε

Деформация — это «деформация твердого тела из-за напряжения» — изменение размера, деленное на исходное значение размера, — и может быть выражено как

ε = dL / L (1)

где

ε = деформация (м / м, дюйм / дюйм)

дл = удлинение или сжатие (смещение) объекта (м , дюйм)

L = длина объекта (м, дюйм)

Напряжение — σ

Напряжение — это сила на единицу площади и может быть выражена как

σ = F / A (2)

где

σ = напряжение (Н / м 2 , фунт / дюйм 2 , psi)

F = приложенная сила (Н, фунт)

A = площадь напряжения объекта (м 2 , в 2 )

  • растягивающее напряжение — напряжение, которое стремится к растяжение или удлинение материала — действует нормально по отношению к напряженной области
  • сжимаемое напряжение — напряжение, которое имеет тенденцию сжимать или укорачивать материал — действует нормально по отношению к напряженной области
  • напряжение сдвига — напряжение, которое имеет тенденцию к сдвигу материала — действует в плоскости напряженной области под прямым углом к ​​напряжению сжатия или растяжения

Модуль Юнга — Модуль упругости при растяжении, Модуль упругости — E

Модуль Юнга можно выразить как

E = напряжение / деформация

= σ / ε

= (F / A) / (dL / L) (3)

, где

E = Модуль упругости Юнга (Па, Н / м 2 , фунт / дюйм 2 , фунт / кв. Дюйм)

  • , названный в честь XVIII века Английский врач и физик Томас Янг

Эластичность

Эластичность — это свойство объекта или материала, указывающее, как он восстановит его первоначальную форму после искажения.

Пружина — это пример упругого объекта: при растяжении она создает восстанавливающую силу, которая стремится вернуть его к исходной длине. Эта восстанавливающая сила в целом пропорциональна растяжению, описанному законом Гука.

Закон Гука

Чтобы растянуть пружину вдвое дальше, требуется примерно вдвое больше силы. Эта линейная зависимость смещения от силы растяжения называется законом Гука и может быть выражена как

F s = -k dL (4)

, где

F s = усилие в пружине (Н)

k = жесткость пружины (Н / м)

dL = удлинение пружины (м)

Обратите внимание, что также может применяться закон Гука к материалам, испытывающим трехмерное напряжение (трехосное нагружение).

Предел текучести — σ y

Предел текучести определяется в инженерии как величина напряжения (предел текучести), которому может подвергаться материал перед переходом от упругой деформации к пластической деформации.

  • Предел текучести — материал постоянно деформируется

Предел текучести для низко- или среднеуглеродистой стали представляет собой напряжение, при котором происходит заметное увеличение деформации без увеличения нагрузки. В других сталях и цветных металлах этого явления не наблюдается.

Предел прочности на разрыв — σ u

Предел прочности на разрыв — UTS — материала — это предельное напряжение, при котором материал фактически разрывается с внезапным высвобождением накопленной упругой энергии.

.

Модуль упругости бетона

Модуль упругости является фундаментальным параметром при проектировании бетонных конструкций. В последние годы строительные спецификации даже требовали соблюдения определенного модуля упругости бетона, в основном для ограничения чрезмерной деформации и раскачивания в высотных зданиях. Для Бурдж-Халифа (в настоящее время самое высокое здание в мире) проектировщик указал минимум 43800 МПа для бетонных смесей 80 МПа для вертикальных элементов.

Проще говоря, модуль упругости (MOE) измеряет жесткость материала и является хорошим общим показателем его прочности.Это отношение напряжения к деформации. Напряжение — это деформирующая сила, действующая на единицу площади (F / A), а деформация — это деформация (изменение формы), вызванная напряжением (∆L / L).

Взаимосвязь напряжения и напряжения впервые была изучена Робертом Хуком, английским естествоиспытателем, архитектором и экспертом во многих различных областях знаний. В 1678 году он заявил, что «в пределах упругости напряжение прямо пропорционально деформации».

Напряжение α деформация

и.е., напряжение / деформация = константа (эта константа называется модулем упругости)

Когда к телу прикладывается напряжение, возникает деформация, и материал проходит различные стадии деформации, как показано на рисунке ниже.

Эластичность — это свойство вещества, благодаря которому материал восстанавливает свою первоначальную форму после снятия деформирующего усилия. Предел упругости (предел текучести) — это величина напряжения, которому может подвергнуться материал перед переходом от упругой деформации к пластической деформации.При пластической деформации материал не может восстановить свою первоначальную форму даже после снятия деформирующей силы. Остается в деформированном виде. Пластическая деформация продолжается до точки разрушения, а затем происходит разрыв. Эта точка напряжения, в которой материал разрывается, с внезапным высвобождением накопленной упругой энергии, называется пределом прочности при растяжении (UTS).

На основе типов напряжения (растяжение, сжатие или сдвиг) и деформации, включая направление, можно определить различные типы модуля упругости, как подробно описано ниже.

1. Модуль Юнга (E) — отношение линейного напряжения к линейной деформации,

2. Модуль сдвига (G или µ) — отношение напряжения сдвига к деформации сдвига и,

3. Объемный модуль (K) — отношение объемного напряжения к объемной деформации.

Модуль Юнга

позволяет рассчитать изменение размеров бетонных элементов под действием растягивающих или сжимающих нагрузок. Например, он предсказывает, насколько бетонная колонна может укоротиться при сжатии. Другими словами, модуль упругости говорит нам, сколько напряжения или сжатия необходимо, чтобы материал стал немного длиннее или короче.

Томас Янг (1773–1829) был английским ученым и специалистом во многих различных областях знаний. Он очень интересовался ранними экспериментами и исследованиями Леонарда Эйлера (1727 г.) и Джордано Рикатти (1782 г.) по модулям упругости материалов.

Модуль Юнга (E) = линейное напряжение / линейная деформация

Линейное напряжение = Сила / площадь = F / A

Линейная деформация = Изменение длины / исходная длина = ∆L / L

Следовательно, модуль Юнга (E) = (F / A) / (∆L / L) = FL / A∆L

Более высокий модуль упругости означает, что бетон может выдерживать более высокие нагрузки, но бетон станет хрупким и быстрее появятся трещины.Низкий модуль упругости означает, что он очень легко изгибается и деформируется. Высокий модуль упругости в раннем возрасте (7 или 14 дней) приведет к более высокому потенциалу растрескивания. Это происходит из-за высокого напряжения, возникающего из-за даже низкой деформации. Деформация может возникать не только из-за приложенного напряжения, например, усадки. Усадка и термическая активность могут вызывать очень низкое напряжение, но из-за высокого модуля упругости соответствующее напряжение велико. Поскольку прочность бетона на растяжение в таком раннем возрасте все еще низкая, будут развиваться трещины.

Гидратированная цементная паста имеет более низкий модуль упругости, чем заполнитель. Следовательно, объемное содержание заполнителя важно, поскольку рассматривается модуль упругости смеси. Модуль упругости затвердевшего цементного теста составляет от 10 до 30 ГПа, а заполнителя — от 45 до 85 ГПа. Бетон обычно имеет модуль упругости от 30 до 50 ГПа.

Факторы, влияющие на модуль упругости бетона:

1- Свойства крупного заполнителя — такие как модуль упругости заполнителя, тип заполнителя (дробленый или натуральный), петрология и минералогия, а также количество заполнителя.Чем больше объем заполнителя в смеси, тем выше модуль упругости.

2- Состав смеси, включающий общее содержание цемента и соотношение воды и газа. Чем меньше пасты, тем выше модуль упругости.

3- Условия отверждения — образец, отвержденный влажным способом, показал лучшие результаты, чем образец сухого отверждения, из-за усадки и связанных с этим трещин.

4- Скорость нагружения — высокая скорость нагружения приведет к более высокой прочности на сжатие и более высокому модулю упругости.

5- Химическая примесь — не оказывает большого влияния на модуль упругости.Но некоторые типы добавок могут привести к более высокой дисперсности цемента и, таким образом, к более высокой прочности на сжатие и модулю упругости.

6- Минеральные добавки — поскольку они влияют на прочность бетона, они также влияют на модуль упругости.

Наиболее важным фактором, влияющим на модуль упругости бетона, является используемый заполнитель. На это также влияют соотношение заполнитель / цемент и возраст бетона.

В следующей таблице, взятой из Еврокода-2, приведены значения прочности на сжатие (по цилиндрам и кубам), модуль упругости и предел прочности на разрыв для различных классов прочности бетона с нормальным весом, которые обычно используются для целей проектирования.1,5 √fc —— в МПа

Где Ec — модуль упругости, Wc — вес бетона (фунты на фут или кг / м3), а fc — прочность цилиндра на сжатие через 28 дней (фунт / кв. Дюйм или МПа). Эти уравнения часто упрощаются на основе заполнителя нормальной плотности и бетона с нормальной массой следующим образом:

Ec = 57000 √fc —— в фунтах на кв. Дюйм или

Ec = 4700 √fc —— в МПа

BS 8110 Использование бетона в конструкциях, Часть 2, пункт 7.2. Упругая деформация предлагает следующее уравнение для расчета ожидаемого значения модуля упругости на основе результатов 28-дневной кубической прочности.

Ec, 28 = Ko + 0,2 fcu, 28

Где Ко — постоянная величина, тесно связанная с модулем упругости заполнителя, который часто принимается равным 20 кН / мм2 для заполнителя нормального веса, а Fcu, 28 — прочность куба на сжатие через 28 дней.

Если прогиб или деформация имеют большое значение, испытания следует проводить на бетоне, изготовленном с использованием заполнителя, который будет использоваться в конструкции. Но без предшествующих данных по агрегату или с неизвестным агрегатом следует рассматривать диапазон значений Ec, основанный на Ko = 14 кН / мм2 — 26 кН / мм2.

Свод правил Индии (IS 456) рекомендует следующее уравнение:

Ec = 5000 √fck

ACI 363R — Отчет по высокопрочному бетону и новозеландский стандарт NZS 3101-1 дают следующее уравнение для модуля упругости бетона:

Ec = [3320 √fc + 6900] —- в МПа

Австралийский стандарт AS 3600 рекомендует следующее выражение для расчета значения модуля упругости с погрешностью ± 20%:

Ec = ρ ^ 1.0,5] ——- в МПа

Где ρ — плотность бетона в кг / м3, а fm — средняя прочность на сжатие в МПа за 28 дней.

Модуль упругости бетона испытывают с использованием цилиндрических образцов размером 150 мм X 300 мм в соответствии с:

1. ASTM C 469 — Статический модуль упругости и коэффициент Пуассона бетона при сжатии или

2. BS 1881 Часть 121 — Определение статического модуля упругости при сжатии.

Модуль упругости определяется с помощью компрессометра, закрепленного на образце цилиндра (иногда экстензометра также для вычисления коэффициента Пуассона, как показано на рисунке выше) и нагруженного при определенном уровне напряжения.Его можно оценить, используя уровни напряжения от 15 до 85% в диапазоне упругости. В ASTM уровень напряжения составляет 40% прочности на сжатие вспомогательного цилиндра, а в BS 33% прочности вспомогательного цилиндра. Согласно методу испытаний ASTM, результаты сообщаются с точностью до ближайших 200 МПа, а по методу испытаний BS — с точностью до ближайших 500 МПа.

Доступны другие типы тензометров (компрессометр и экстензометр). Электрический тензодатчик является наиболее подходящим методом для определения деформации бетона, который должен быть приклеен к бетонному образцу, но требует времени и внимания со стороны технических специалистов.

Ezeagu C.A. и Обаси К. (International Journal of Advanced Research) сообщили о своих исследованиях, что бетон, изготовленный из заполнителя с максимальным номинальным размером 20 мм, показал более высокий модуль упругости, чем бетон с 30 мм и 60 мм. Они рассчитали модуль упругости на основе разных уравнений и нашли разные значения модулей упругости.

Такафуми Ногучи и др. (ACI Structural Journal) сообщили, что даже несмотря на то, что японские и американские правила кодов предлагают вес единицы с показателем 1.5, их исследования показали, что существует прямая зависимость между модулем упругости бетона и его удельной массой 2.

К. Анбувелан и д-р К. Субраманиан (Международный журнал инженерии и технологий) сообщили на основании своих экспериментальных исследований упругих свойств бетона, содержащего стальную фибру, что IS 456 и EC-2 предсказывают более высокий модуль упругости, чем BS 8110, ACI 318 и NZS 3101.

Основываясь на результатах своего исследования, Валид Баалбаки и др. (ACI Materials Journal) пришли к выводу, что невозможно точно предсказать модуль упругости высокопрочного бетона на основе его прочности на сжатие.

В следующей таблице приведены значения прочности на сжатие и модуля упругости (результаты пробной смеси) бетонных смесей, используемых для изготовления вертикальных элементов Бурдж-Халифа — самой высокой башни в мире. Значения модуля упругости очень близки к уравнению ACI 318.

Перед тем, как завершить эту статью, у автора есть вопрос к читателям. Всем известно, что модуль упругости указывает на жесткость материала. Другими словами, он представляет собой прочность материала.Прочность материала может быть шести следующих типов:

1- Хрупкость — Материал очень легко ломается или превращается в порошок.

2- Податливый — материал можно измельчать на тонкие листы, как металл.

3- Дуктильный — материал можно растянуть в проволоку, как металл.

4- Sectile — Материал можно легко разрезать ножом.

5- Пластик — материал деформируется под воздействием напряжения, но не может восстановить свою первоначальную форму при снятии усилия.

6- Эластичность — Материал деформируется под действием напряжения, но восстанавливает свою первоначальную форму при снятии усилия.

По мере увеличения модуля упругости материал становится более жестким и хрупким. Но по сравнению со сталью бетон более хрупкий, несмотря на то, что модуль упругости стали составляет 200 ГПа, а бетон — от 25 до 50 ГПа. Почему это так?

Алмаз имеет модуль упругости 1220 ГПа и очень хрупкий.

_____________________

Спасибо.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*

*

*