Набор бетоном прочности: График набора прочности бетона, таблица прочности бетона
- Набор прочности бетона. Твердение бетона при разных температурах. Сроки набора прочности бетона при устройстве бетонных полов.
- особенности, график и от чего зависит?
- набор прочности бетона по времени, часы, сутки.
- Набор прочности бетона: графики, особенности, факторы
- Какой бывает прочность бетона
- Прочность на сжатие бетона
- Прочность на разрыв
- Прочность бетона на изгиб
- От чего зависит набор прочности бетона?
- Способы определения прочности бетона на сжатие в лабораторных условиях
- Неразрушающие методы контроля прочности бетона или способы определения прочности на месте
- Схватывание бетона
- Стадия твердения бетона
- Комбинированные методы контроля
- Виды бетонных смесей и сфера их использования
- Использование бетонных конструкций для частных построек
- Набор прочности бетона: время затвердевания бетона, таблица
- Твердение и набор прочности бетона
- Марки и классы бетона: твердение и набор прочности
- Изменение прочности бетона на сжатие со временем — Технология бетона
- Коэффициент набора прочности бетона
- взаимосвязей между семидневными и 28-дневными сильными сторонами | Журнал Concrete Construction
- Развитие прочности бетона
- Поведение при повышении прочности на сжатие и прогнозирование цементно-стабилизированного щебня при низкотемпературном отверждении
- 1. Введение
- 2. Описательный анализ температур в районе Харбина
- 3. Планы тестирования в помещении и на открытом воздухе
- 4. Характеристики материала и методы испытаний
- 4.1. Характеристики цемента
- 4.2. Агрегат, марка
- 4,3. Испытание на уплотнение
- 4.4. Испытание на неограниченную прочность на сжатие
- 5. Результаты и обсуждение
- 5.1. Результаты испытаний в помещении
- 5.2. Результаты испытаний на открытом воздухе
- 6. Сравнение закона увеличения прочности и установление зрелости-прочности Модель
- 6.1. Сравнение закона увеличения прочности при четырех условиях отверждения
- 6.2. Оценка и прогноз модели зрелости-прочности
- 7. Заключение
- Доступность данных
- Конфликт интересов
- Благодарности
- Как оценить прочность бетона на месте
- Все, что вам нужно знать о прочности бетона
Набор прочности бетона. Твердение бетона при разных температурах. Сроки набора прочности бетона при устройстве бетонных полов.
Набор прочности бетона значительно зависит от температуры, что ограничивает скорость выполнения бетонных работ, устройство бетонных полов, и, соответственно, сроки сдачи строительных объектов в эксплуатацию.
Твердение бетона — относительная прочность бетона на сжатие при различных температурах твердения % от 28-суточной.
Бетон | Срок твердения, суток | Средняя температура бетона, °С | |||||
---|---|---|---|---|---|---|---|
-3 | 0 | +5 | +10 | +20 | +30 | ||
М200 — М300 на портландцементе М-400, М-500 | 1 | 3 | 5 | 9 | 12 | 23 | 35 |
2 | 6 | 12 | 19 | 25 | 40 | 55 | |
3 | 8 | 18 | 27 | 37 | 50 | 65 | |
5 | 12 | 28 | 38 | 50 | 65 | 80 | |
7 | 15 | 35 | 48 | 58 | 75 | 90 | |
14 | 20 | 50 | 62 | 72 | 90 | 100 | |
28 | 25 | 65 | 77 | 85 | 100 | — |
Для ускорения набора прочности бетона и уменьшения времени выдержки рекомендуется использовать бетон (пескобетон) с пониженным водоцементным отношением (В/Ц). При В/Ц=0,4 сроки, приведенные в таблице, уменьшаются в 2 раза.
Для этого в бетон добавляются суперпластификаторы (С-3, Лигнопан Б-4 и т.п.)
Таблица «Твердение бетона» показывает, что сроки устройства бетонных полов и бетонных конструкций значительно зависят от температуры. Из таблицы видно, что если устройство бетонных полов производится при низких температурах, то это отразиться на наборе прочности бетона, то есть прочность будет недостаточна для передачи полов в эксплуатацию.
В большинстве случаев устройство бетонных полов выполняется для дальнейшего нанесения финишных покрытий: полимерных полов, полимерных наливных полов и т.п. Медленный набор прочности бетона вынуждает увеличивать перерыв между устройством бетонных полов и началом устройства полимерных покрытий, что приводит к увеличению общих сроков работ.
Можно ли ускорить набор прочности бетона, даже если твердение бетона происходит при низких температурах? — Да можно!
ООО «ТэоХим» производит добавки для бетона, которые позволяют значительно увеличить скорость набора прочности бетона. Например, если «обычный» бетон необходимо выдерживать до нанесения защитной пропитки около месяца (28 дней), то добавка для бетона «Эластобетон-А» позволяет ускорить твердение бетона, и нанести пропитку уже на 7-8день после того, как выполнено устройство бетонных полов. Для укладки окрасочных и кварцевых полимерных полов, наливных полимерных полов необходимые сроки твердения бетона с добавками Эластобетон-А сокращаются в 2 раза — с 28 суток до 12-14 суток.
Таким образом, добавки для бетона Эластобетон значительно ускоряют набор прочности бетона и дают значительный экономический эффект за счет уменьшения сроков ввода объектов в эксплуатацию.
12янв14
особенности, график и от чего зависит?
Основная характеристика бетона, которая определила его широкое распространение — это высокая прочность. Материал набирает любую прочность в реальных условиях, так как есть много причин, которые способствуют недобору величины, соответствующей бетону определенной марки. Знание этих причин и их особенностей способствует формированию бетонных фундаментов, конструкций с максимальными эксплуатационными показателями.
Процесс набора
Физико-химические реакции гидратации создают новые монолитные соединения, которые придают материалу свойства искусственного камня. Новое качество формируется в течение многих суток (окончательно примерно через полгода) и в идеале прочностные свойства бетонной конструкции должны соответствовать бетону определенного класса и марки. По времени процесс вызревания камня имеет две последовательные стадии: начальная — схватывание, и завершающая — твердение. По его завершении бетон может нагружаться.
Вернуться к оглавлению
Схватывание
Схема возможного расслоения бетонной смеси: а — в процессе транспортирования и уплотнения, б — после уплотнения; 1 — направление, по которому отжимается вода, 2 — вода, 3, 4 — мелкий и крупный заполнители.
Бетоном пользуются не сразу после затвердения, так как может потребоваться некоторое количество времени, чтобы довезти материал до объекта. Смесь должна оставаться подвижной, чему способствует механическое перемешивание раствора в миксере автосмесителя. Тиксотропия позволяет сохранить основные свойства смеси до ее заливки, откладывая старт начальной стадии созревания. Однако следует знать, что если время затянуть или температура поднимется, развивается необратимый процесс «сваривания» раствора, в результате которого занизятся его характеристики.
Длительность схватывания находится в зависимости от температуры воздуха — от 20 мин. до 20 часов. Наибольшая продолжительность данного процесса зимой при температурных значениях около 0 град. Заливка фундамента в этот период будет сопровождаться удлинением интервала начала схватывания от 6 до 10 часов, а сама стадия растянется на 15 – 20 ч.
Оптимально заливать бетон в форму при 20 градусах. Тогда при условии, что раствор затворен за час до заливки, схватывание начнется через один час и завершится через 60 мин. Жаркая погода способствует практически моментальному схватыванию раствора за 10 – 20 мин.
Вернуться к оглавлению
Твердение
Оптимальное течение гидратации при твердении раствора: температурный коридор от 18 до 20 град. , влажность близкая к 100%. Отклонения от данных параметров в значительной степени изменяют скорость твердения камня. Полное вызревание бетона длиться несколько лет.
Вместе с тем на этой стадии скорость твердения закономерно изменяется со временем. К примеру, для бетона М300 к концу 3-го дня она достигает 50%, на 14–й день составляет до 90%, а на 28 день — 100%. Далее через три месяца прочность повышается еще на 20%, а через 3 года может стать на 100% больше, чем была к концу 28 суток после затворения.
Вернуться к оглавлению
Особенности набора прочности
Снижение температурных показателей среды ведет к замедлению твердения. Нулевая отметка на термометре останавливает процесс из-за замерзания воды в камне (снижается качество бетона), а подъем значений снова его возобновляет. Смесь начинает высыхать при недостатке или отсутствии влаги, однако это может замедлить и остановить правильное твердение, что воспрепятствует набору заданного свойства бетоном. А вот автоклавное отвердение смесей значительно ускоряется при повышенных значениях температурно-влажностного режима: 80 – 90 град. и 100% влажности, что ведет к ускоренному росту прочностных показателей. За счет влаги в воздухе может сокращаться интервал набора прочности раствором, который уложен открыто.
Бетоны более высоких марок (состоят из большего количества цемента лучшего качества) твердеют и набирают прочность быстрее, поэтому обрабатывать их следует более оперативно. В интервале с 3-х по 10-е сутки после укладки нормативный набор прочности бетона обеспечивается близкими к идеальным условиями выдержки. В теплую погоду раствор укрывается влагоемкими материалами, через которые камень увлажняется круглосуточно 6 – 7 раз, и перекрывается плотной пленкой.
В солнечную погоду он укрывается от прямых лучей. Зимой бетон может искусственно прогреваться изнутри, утепляться, обогреваться тепловыми генераторами, чтобы предотвратить замерзание воды, и изолируется от осадков. Важным параметром для продолжения работ является нормативно-безопасный срок набора прочностных свойств. Таблица 1 показывает зависимость от марки бетона и среднесуточной температуры значений прочностных показателей бетонов через соответствующее количество суток.
Таблица 1
Нормативно-безопасным сроком созревания бетонов можно считать значение 50%, а безопасным — от 72% до 80% от марочного значения, что, к примеру, важно знать при работах на фундаменте.
Вернуться к оглавлению
От чего зависит набор прочности?
Факторы, которые управляют набором прочностных свойств камня, включают: сколько времени прошло после заливки, температурно-влажностный режим выдерживания, качество (активность) и марку цемента, соотношение воды и цемента в растворе, пропорции компонентов в смеси, способ уплотнения, технологию перемешивания, способ и скорость укладки, качество и регулярность увлажнения, наличие пластификаторов (добавок-ускорителей твердения) в смеси зимой и пр. Поднятие марки бетона зависит от увеличения доли и более высокой марки цемента в смеси, пропорций компонентов. Марка прямо влияет на набор прочности бетона. Для низких марок критическая прочность имеет большее значение. Таблица 2 отражает данную закономерность.
Таблица 2
Поэтому прочностью фундамента из бетона высокой марки определяется надежность, долговечность конструкции здания. Камень в холодную погоду приобретает прочность благодаря собственному тепловыделению, но для нормализации графика формирования камня целесообразно применять соответствующие добавки, ускоряющие твердение и снижающие температуру остановки гидратации. С ними смесь набирает марочную прочность уже через 14 суток. Удачным решением также станет изменение составляющих в бетоне. К примеру, глиноземистый цемент набирает прочностные показатели даже в морозы, так как выделяет примерно в 7 раз больше собственного тепла по сравнению портландцементом.
В наборе этого свойства существенную роль играют форма и фракция зерен натуральных наполнителей. Их неправильная форма и повышенная шероховатость обеспечивают лучшие условия сцепления и качество бетона. Известно, что увеличение доли воды в бетонной смеси способно привести к расслоению массы материала. Следствием этого также становится то, что при относительном увеличении доли воды в растворе на 60% от оптимального значения (в/ц = 0,4) происходит недобор прочности на 50% от марочной. Однако при соотношении вода/цемент 1/4 период отвердения (упрочнения) сокращается в два раза.
Чтобы ускорить процесс и минимизировать выдержку бетона, целесообразно применять пескобетоны с низким соотношением вода/цемент. Неуплотненный бетонный раствор имеет шансы вызреть только до 50% от нормативной прочности даже при оптимальном соотношении вода/цемент. Вместе с тем ручное уплотнение способно повысить его прочность на 30 – 40%, а вибротрамбовка повышает прочность до нормативных 95 – 100%.
Вернуться к оглавлению
График набора прочности
Важно знать график набора прочности бетона для прогнозирования последствий изменения температурных условий твердения, которые приводят к увеличению времени выдерживания.
График 1
График 1 показывает на примере бетона М400 через сколько суток смесь при фиксированных температурных значениях набирает определенный процент прочности (за сто процентов взят набор марочной прочности за 4 недели). Температурный режим 30 град. является оптимальным для набора нормативной прочности (97%) за 11 дней, а при показателе в 5 град. значение безопасной прочности не будет достигнуто камнем и за 14 дней. В такой ситуации следует разогревать, утеплять укладку. В соответствии с кривыми определяются сроки распалубки при превышении прочностью 50% марочного значения.
Вернуться к оглавлению
Вывод
В реальности прочностные показатели бетонных конструкций могут изменяться по очень многим причинам. Важно обеспечить оптимальные параметры для реализации по времени графика роста прочностных свойств, соответствующих марке бетона.
набор прочности бетона по времени, часы, сутки.
Таблица — набор прочности бетона по времени, часы, сутки.
Набор прочности бетона (в часах)
Срок твердения, часы | Температура твердения бетона | ||||||
---|---|---|---|---|---|---|---|
0°С | 5°С | 10°С | 15°С | 20°С | 25°С | 30°С | |
прочность бетона на сжатие % от 28-суточной | |||||||
4 | 6 | 7 | 8 | 10 | 12 | 13 | 14 |
8 | 10 | 12 | 13 | 16 | 18 | 20 | 22 |
12 | 13 | 16 | 18 | 21 | 23 | 25 | 27 |
16 | 16 | 19 | 22 | 24 | 27 | 30 | 32 |
20 | 18 | 21 | 24 | 27 | 31 | 33 | 36 |
24 | 20 | 23 | 27 | 30 | 34 | 37 | 39 |
28 | 22 | 25 | 29 | 32 | 37 | 30 | 42 |
32 | 23 | 27 | 31 | 34 | 38 | 42 | 45 |
36 | 24 | 28 | 32 | 36 | 40 | 43 | 47 |
40 | 25 | 29 | 33 | 37 | 42 | 44 | 48 |
44 | 25 | 29 | 34 | 38 | 43 | 46 | 49 |
48 | 26 | 30 | 34 | 39 | 43 | 47 | 50 |
Набор прочности бетона (в сутках)
Срок твердения, сутки | Температура твердения бетона | ||||||
---|---|---|---|---|---|---|---|
0°С | 5°С | 10°С | 15°С | 20°С | 25°С | 30°С | |
прочность бетона на сжатие % от 28-суточной | |||||||
1 | 20 | 23 | 27 | 30 | 34 | 37 | 39 |
2 | 26 | 30 | 34 | 39 | 43 | 47 | 50 |
3 | 30 | 35 | 41 | 45 | 50 | 52 | 56 |
4 | 34 | 40 | 46 | 50 | 55 | 58 | 63 |
5 | 39 | 44 | 51 | 55 | 60 | 63 | 68 |
6 | 42 | 48 | 54 | 59 | 64 | 68 | 72 |
7 | 45 | 52 | 58 | 63 | 68 | 72 | 76 |
10 | 53 | 60 | 67 | 72 | 77 | 82 | 85 |
14 | 60 | 68 | 74 | 81 | 86 | 690 | 95 |
21 | 70 | 76 | 83 | 91 | 97 | >100 | >100 |
28 | 75 | 83 | 90 | 100 | >100 | >100 | >100 |
Набор прочности бетона: графики, особенности, факторы
Все жилые здания и хозяйственные постройки выполняются с применением бетона. В зависимости от его класса, вы можете выложить аллейки, создать фундамент, несущие конструкции, дом, фонтан в саду. Чтобы конструкция прослужила долго, важно использовать правильные марки материалов, соответствующей прочности.
Содержание статьи
Какой бывает прочность бетона
Многие считают бетон прочным и долговечным материалом, и это справедливо. Но есть разные способы оценки его прочности, как и разные виды. Знания о прочности конструкций позволят избежать дефектов и ускоренного разрушения постройки, включая появление трещин и досрочный выход здания из строя.
Прочность на сжатие бетона
Это наиболее известное, распространенное и общепринятое измерение прочности, которое применяют для оценки характеристик конкретной смеси. Прочность на сжатие измеряет способность бетона выдерживать расчетные нагрузки, и соответственно, позволяет уменьшить количество задействованного бетона в конструкции.
Прочность на сжатие проверяют путем разрушения цилиндрических образцов бетона в специальной машине, предназначенной для измерения этого показателя.
Единица измерения кгс/кв. см. Чем выше значение, тем бетонная смесь прочнее и тем больше ее цена. И чем прочнее бетон, тем он долговечнее.
Прочность на сжатие является главным критерием для ответа на вопрос, будет ли конкретно взятая смесь бетона соответствовать потребностям конкретной работы.
Каждая бетонная конструкция имеет свой диапазон прочности на сжатие. Например:
- бетон М100 имеет среднюю прочность (кгс/кв. см.) 98;
- М150 — 131-164;
- М200 — 196;
- М250 — 262;
- М300 — 302;
- М350 — 327;
- М400 — 393.
Прочность на сжатие обычно проверяется через семь дней, а затем снова через 28 суток, чтобы определить диапазон прочности на сжатие. Семидневный тест проводится для определения раннего усиления конструкции, но в стандартах подразумевается результат 28-ми дневного теста.
Для строительной конструкции используют понятие класса прочности, который соотносится с маркой. Например, класс В3,5 соответствует марке бетона М50.
Прочность на разрыв
Прочностью на разрыв называется способность бетона противостоять разрушению или растрескиванию при растяжении. Этот параметр влияет на размер трещин в бетонных конструкциях и степень их возникновения. Трещины появляются, если растягивающие усилия превышают предел прочности бетона.
Обычно бетон имеет более низкую прочность на разрыв по сравнению с прочностью на сжатие. Из чего следует, что бетонные конструкции, испытывающие растягивающее напряжение, должны быть усилены материалами с высокой прочностью на разрыв, например, сталью.
Непосредственно проверить прочность бетона на разрыв сложно, поэтому используются косвенные методы. Наиболее распространенными косвенными методами являются прочность на изгиб и разделенная прочность на растяжение. Параметр определяют с помощью испытания на разрыв бетонных цилиндров.
Прочность бетона на изгиб
Такой вид прочности используется как еще один измеритель прочности на разрыв. Он определяется, как мера неармированной бетонной плиты или балки, способная противостоять разрушению при изгибе. Другими словами, это способность бетона сопротивляться изгибу. Прочность на изгиб обычно составляет от 10 до 15 процентов прочности на сжатие, в зависимости от конкретной бетонной смеси.
Измеряют прочность на изгиб для влажного бетона. Поэтому при описании прочности на бетона, чаще используются результаты испытаний прочности на сжатие, поскольку эти числа более надежны.
От чего зависит набор прочности бетона?
Главные причины, которые влияют на прочность бетона дополняются химическими процессами, влиянием атмосферы, взаимодействием с влагой. Все это факторы, которые влияют на прочность. Избежать этого невозможно. Но можно учесть на этапе проектирования.
Дополнительные причины, влияющие на проектную прочность бетона, включают:
- Соотношение вода / цемент. Чем меньше воды, тем прочнее цемент, но тем труднее работать. Например, бетонная смесь, содержащая 400 кг цемента и 240 литров (= 240 кг) воды, будет иметь отношение вода / цемент 240/400 = 0,6. В смесях, где соотношение выше, можно говорить о наличии пор, заполненных водой или воздухом.
- Пористость бетона: пустоты в бетоне можно заполнять воздухом или водой. Чем пористее бетон, тем он слабее. Вероятно, наиболее важным источником пористости в бетоне является соотношение воды и цемента в смеси.
- Дозирование. Традиционный бетон состоит из воды, цемента, воздуха и смеси песка, гравия. Правильное соединение этих ингредиентов является ключевым для достижения более высокой прочности бетона. Например, смесь, в которой много цемента легче заливать, но она легко растрескивается и не выдержит испытания временем. И наоборот, при малом количестве цемента получится грубый и пористый бетон.
- Смешивание. Прочность имеет тенденцию усиливаться до определенного момента. Чем дольше вы размешиваете, тем больше испарится воды и смесь станет менее прочной.
Дополнительные факторы:
- температуру;
- влажность;
- марку бетона;
- время.
Температура
Чем холоднее на улице, тем медленнее повышается прочность бетона. При отрицательных температурах процесс останавливается, так как замерзает вода, обеспечивающая гидратацию цемента. Как только температура воздуха повысится, набор прочности бетона продолжится. При снижении температуры может опять остановиться.
При наличии в составе различных модификаторов время твердения может уменьшаться, а температура, при которой процесс останавливается, снижаться. Производители предлагают специальные быстротвердеющие составы, способные набрать марочную прочность уже через две недели.
Потепление способствует ускорению твердения бетона. При 40 °C марочное значение может быть достигнуто уже через неделю. Именно поэтому заливку бетона на приусадебном участке для сокращения сроков строительства лучше производить в жаркую погоду.
Зимой может потребоваться прогрев бетона, что выполнить собственными силами крайне проблематично: требуется специальное оборудование и знание технологии выполнения работ. Следует учесть, что нагрев раствора свыше 90 °C недопустим.
Чтобы понять, как температура оказывает влияние на процесс твердения, стоит изучить график набора прочности бетона. Кривые построены на основании информации, собранной для марки М400 при различных температурах. По графику можно определить, какой процент от марочного значения будет достигнут через определенное количество суток. Каждая кривая соответствует конкретной температуре. Первая линия 5°C, последняя – 50° С.
График набора прочности бетона по суткам
График позволяет определить срок распалубки монолитной конструкции. Опалубку можно снимать, как только прочность превысит 50% от своего марочного значения. Следует обратить внимание, что согласно графику, если температура воздуха ниже 10 °C, марочное значение не будет достигнуто даже через две недели. При таких погодных условиях уже стоит задуматься о подогреве заливаемого раствора.
Время
Для определения нормативно-безопасного срока начала работ часто используется следующая таблица. В ней в зависимости от марки бетона и его среднесуточной температуры приведена информация о наборе прочности через определенное количество суток:
Марка бетона | Среднесуточная температура бетона в °C | Срок твердения в сутках | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 5 | 7 | 14 | 28 | ||
Прочность бетона на сжатие (процент от марочной) | ||||||||
М200–300, замешанный на портландцементе М 400–500 | -3 | 3 | 6 | 8 | 12 | 15 | 20 | 25 |
0 | 5 | 12 | 18 | 28 | 35 | 50 | 65 | |
+5 | 9 | 19 | 27 | 38 | 48 | 62 | 77 | |
+10 | 12 | 25 | 37 | 50 | 58 | 72 | 85 | |
+20 | 23 | 40 | 50 | 65 | 75 | 90 | 100 | |
+30 | 35 | 55 | 65 | 80 | 90 | 100 | – |
Если нормативно-безопасный срок установлен на уровне приблизительно 50%, то безопасным сроком начала работ можно считать 72 – 80% от марочного значения.
В зависимости от времени выдержки искомое значение можно определить по следующей формуле:
прочность на n-ый день = марочная прочность *(lg (n) / lg (28)). Причем n не может быть меньше 3-х дней.
Состав и характеристики цемента
Если сразу после заливки цемент способен набирать прочность благодаря своему тепловыделению, то после замерзания воды процесс неизменно остановится. Именно поэтому при выполнении работ в зимний и осенне-весенний период предпочтительно использовать смеси с противоморозными добавками.
Глиноземистый цемент после укладки способен выделить в семь раз больше тепла, чем обычный портландцемент. Именно поэтому приготовленный на его основе бетон набирает марочную прочность даже при отрицательной температуре.
Марка также оказывает влияние на скорость процесса. Чем ниже марка, тем выше критическая прочность. Таблица наглядно отражает такую зависимость:
Марка бетона (по прочности на сжатие) | Критическая прочность (процент от марочной), минимум |
---|---|
для предварительно напряженных конструкций | 70 |
М15 – 150 | 50 |
М200 – 300 | 40 |
М400 – 500 | 30 |
Влажность
Пониженная влажность негативно отражается на процессе. При полном отсутствии влаги гидратация цемента становится невозможной, и твердение бетонов практически останавливается.
При максимальной влажности и высокой температуре (70 – 90 °C) скорость нарастания прочности значительно повышается. В таком режиме осуществляется пропаривание состава в автоклавах паром высокого давления.
Нагрев до столь высоких температур при минимальной влажности неизбежно приведет к высыханию бетона и снижению скорости набора. Чтобы этого не произошло, следует своевременно производить увлажнение. В таком случае в жаркую погоду прочность будет набрана в минимально возможные сроки.
Способы определения прочности бетона на сжатие в лабораторных условиях
Все испытания проводятся в сертифицированной лаборатории и соответствуют требованиям, описанным в ГОСТ 10180-2012. Согласно правилам, описанным в документе, для исследования подходят:
- кусок бетона кубической формы с длиной ребра 100-300 мм и шагом 50 мм;
- бетонный цилиндр с диаметром основания 100-300 мм и шагом 50 мм; высота цилиндра должна быть равна или больше диаметра основания.
Один из способов определения прочности бетона
Лабораторный образец изготавливается также, как это происходило бы по правилам в реальных условиях. Затем его загружают в испытательную машину-пресс и начинают прилагать равномерное усилие до тех пор, пока испытательный образец не будет разрушен. В испытании используют несколько образцов для того, чтобы определить среднее значение. Метод применяется в заводских или лабораторных условиях.
Неразрушающие методы контроля прочности бетона или способы определения прочности на месте
Оценка прочности бетона на месте является основной проблемой при оценке состояния существующей инфраструктуры или при контроле качества нового строительства. Поэтому кроме лабораторных методов определения прочности строителям важны и те, которые позволяют измерить ее на месте. Это неразрушающие методы, использующие показания приборов.
Регламентируется такой способ измерения другим ГОСТом — 22690-2015 «Бетоны. Определение прочности механическими методами». Для тестирования тоже применяют электронный измеритель прочности бетона, который изучает прочность при помощи ударного импульса.
К неразрушающим методам относится метод отскока. Он состоит в ударе и последующем измерении отскока массы молота с пружинным приводом после его удара о бетон. Благодаря простоте и дешевизне способ используется довольно часто. Существуют эмпирические корреляции между прочностными характеристиками и числом отскока. Поэтому его считают достаточно надежным.
Достоинства метода:
- его легко можно применить в полевых условиях;
- подходит для изучения однородности бетона.
Минусы:
- наличие подповерхностных пустот, включение в состав стальной арматуры, состояние поверхности могут повлиять на результаты испытаний.
Также существует ультразвуковой метод измерения. Концепция, лежащая в основе данной технологии, состоит в измерении времени, за которое расширятся акустические волны с последующим сравнением с плотностью и упругостью материала. Время прохождения ультразвуковых волн отражает внутреннее состояние испытываемой поверхности. Применяется для измерения колонн, балок, ригелей.
Плюсы:
- УПВ можно использовать для обнаружения других подповерхностных недостатков.
Минусы:
- на способ влияет наличие арматуры, пустот и трещин.
Схватывание бетона
Бетоном пользуются не сразу после затвердения, так как может потребоваться некоторое количество времени, чтобы довезти материал до объекта. Смесь должна оставаться подвижной, чему способствует механическое перемешивание раствора в миксере автосмесителя. Тиксотропия позволяет сохранить основные свойства смеси до ее заливки, откладывая старт начальной стадии созревания. Однако следует знать, что если время затянуть или температура поднимется, развивается необратимый процесс «сваривания» раствора, в результате которого занизятся его характеристики.
Схема возможного расслоения бетонной смеси: а — в процессе транспортирования и уплотнения, б — после уплотнения; 1 — направление, по которому отжимается вода, 2 — вода, 3, 4 — мелкий и крупный заполнители.
Длительность схватывания находится в зависимости от температуры воздуха — от 20 мин. до 20 часов. Наибольшая продолжительность данного процесса зимой при температурных значениях около 0 град. Заливка монолитного фундамента в этот период будет сопровождаться удлинением интервала начала схватывания от 6 до 10 часов, а сама стадия растянется на 15 – 20 ч.
Оптимально заливать бетон в форму при 20 градусах. Тогда при условии, что раствор затворен за час до заливки, схватывание цемента начнется через один час и завершится через 60 мин. Жаркая погода способствует практически моментальному схватыванию раствора за 10 – 20 мин.
Стадия твердения бетона
После схватывания бетон начинает твердеть. Для завершения процесса и окончательного набора прочности может потребоваться несколько лет. Марку бетона можно будет определить через четыре недели.
Стоит учесть, что прочность бетон набирает с различной скоростью. Наиболее интенсивно процесс протекает в первую неделю после заливки бетона. Уже в первые трое суток данный показатель в нормальных условиях составляет около 30% от марочного значения, определяемого через 28 дней после заливки.
В течение первых 7 – 14 суток раствор набирает до 70 % от указанного значения, а через три месяца на 20 % превышает его. После этого процесс замедляется, но не прекращается.
Через три года показатель может вдвое превысить значение, полученное через 28 дней после заливки. Специальная справочная таблица позволяет узнать, какой процент от марочного значения наберет состав при конкретной температуре через определенное количество дней.
Графики набора прочности бетона при сжатии в сутках и часахНарастание прочности бетона класса В25…В30 на портладцементе марки 500 в % от R28 при температуре твердения от 00С до +600С График набора прочности бетона в зависимости от температуры
Комбинированные методы контроля
Отбойный молоток и скорость ультразвукового импульса являются наиболее широко используемыми методами неразрушающего контроля для оценки прочности бетона в существующих конструкциях. Если использовать их вместе, то получится комбинированный метод. А комбинированные методы проверки включают в себя сочетание методов неразрушающего контроля. Это позволяет повысить точность полученных значений.
Комбинированный метод проверки
Виды бетонных смесей и сфера их использования
От того, какова степень сжатия бетона зависит сфера применения материала.
Класс бетона по ГОСТ 26633-91 | Класс бетона по СНБ 5.03.01-01 | Применение |
---|---|---|
В0,35-В2,5 | — | используется при проведении подготовительных работ, для бетонирования конструкций, не несущих нагрузку |
В3,5-В5 | — | применяется для монтажа бордюров в дорожном строительстве, для создания подушки или подбетонки под фундаментом |
В7,5 | — | используется также, как и предыдущая позиция, а также при бетонировании дорожек, для заливки фундамента, для формирования дорожных плит |
В10-В12,5 | С 8/10 | Самая популярная смесь, используемая в домашнем и коммерческом строительстве. Этот бетон обычно используется для неструктурных строительных элементов, таких как плиты патио и дорожки. Также подходит для создания конструктивных элементов, например, перемычек. |
В15 | С12/15 | Идеальная бетонная смесь для заделки дорожек и бордюров. |
В20 | С16/20 | Бетон с такой прочностью часто применяется для внутренних полов и фундаментов, где вес общих конструкций на бетон будет меньше. Он идеально подходит для оснований домашних мастерских и гаражей, а также для подъездных путей и внутренних плит перекрытия. |
В25 | С20/25 | Универсальный бетон, который используется на многих коммерческих и бытовых строительных площадках. Часто используется при заливке фундаментов (опор). Это также идеальный бетон для плитных фундаментов для полов в домах и бунгало. |
В30 | С25/30 | Универсальный бетон, который используется на многих коммерческих и бытовых строительных площадках. Он часто используется при заливке фундаментов (опор). Это также идеальный бетон для плитных фундаментов для полов в домах и бунгало. |
В35 | С 28/35 | Конструктивно прочная смесь для интенсивного использования, которая идеально подходит для коммерческих структур и объектов, которые должны выдерживать интенсивное использование. Он обычно используется для несущей конструкции и создания внешних перекрытий и стен. Другие области применения включают коммерческие плиты, включая металлическую арматуру, а также зоны сдерживания сельскохозяйственной и строительной промышленности, такие как дворы и сараи. |
В40 | С32/40 | Конструктивно прочная смесь для интенсивного использования, которая идеально подходит для коммерческих структур и объектов, которые должны выдерживать интенсивное использование. Он обычно используется для несущей конструкции и создания внешних перекрытий и стен. Другие области применения включают коммерческие плиты, включая металлическую арматуру, а также зоны сдерживания сельскохозяйственной и строительной промышленности, такие как дворы и сараи. |
Использование бетонных конструкций для частных построек
Использование тех или других бетонных конструкций и смесей в рамках проекта одобряется квалифицированными инженерами, имеющими соответствующий опыт работы. Планы и проекты проходят утверждение в соответствии с требованиями и только после согласования всех технических деталей, можно приступать к началу строительства.
Подъемное оборудование должно иметь маркировку с указанием номинальной грузоподъемности и должно выдерживать, вес, в 2,5 раза превышающий тот, который будет фактически подниматься подъемной установкой.
Прочность бетона — обязательный и важный параметр для проектирования конструкций. Она зависит от ряда факторов, таких как характеристики и свойства конструкции. Ее можно измерить в заводских условиях или в полевых условиях и для этого используют разные методы.
youtube.com/embed/8lcQELUH8hg»/>
Набор прочности бетона: время затвердевания бетона, таблица
Набор прочности бетона — Время затвердевания бетона на 100%. По ГОСТу оно составляет 28 суток с момента заливки бетонной смеси. Но при оптимальной температуре, уже в первую неделю смесь застывает более интенсивно и набирает около 75% прочности. После 28 дней процесс набора прочности не останавливается, и свойство материала может измениться спустя 200-300 суток даже в два раза. Так, например, бетон М200-М250 через несколько лет может набрать прочность, соответствующую бетону М300- М350.
Бетон — надежный строительный материал и имеет широкий спектр применения, как в индивидуальном, так и в промышленном строительстве. В зависимости от пропорций и качества его состава меняется прочность конечного материала. Именно от этого параметра зависит назначение марки и класса бетона. Чем выше обозначение, тем выше прочность.
Таблица прочности бетона
Как увеличить скорость застывания бетонной смеси
Чтобы набор прочности бетона, происходил быстрее, в процессе приготовления в бетон добавляют специальные химические элементы. Под воздействием химических добавок, необходимые свойства приобретаются за 14 суток. Дозы средства рассчитываются исходя из количества цемента в составе бетона. В зимнее время заливки, так же применяют противоморозные добавки, чтобы поддержать плюсовую температуру бетона на период схватывания. В течение нескольких недель залитая бетонная смесь отвердевает под наблюдением инженеров, которые контролируют каждый этап.
Залитый состав отвердевает и набирает прочность несколько недель. При прочих равных, чем выше марка бетона, тем меньше времени нужно для его затвердевания. Процесс проходит под наблюдением инженеров, поскольку каждый этап набора прочности требует постоянного контроля специалистов.
Этапы застывания бетона
- Этап застывания. Время начального схватывания бетонной массы сразу после заливки. Для максимального сохранения свойств материала, готовый раствор подвозят в бетоносмесителе либо подготавливают смесь на месте. На данном этапе осматривается опалубка на предмет протечек и деформаций. Среднее время первичного застывания 1 час, с учетом теплого времени года (выше 20 градусов), в более низкие температуры время варьируется от 6 до 20 часов;
- Основной этап твердения. Время, когда материал набирает до 70% прочности, составляет от 7 до 14 дней и зависит от марки бетона. Именно на этом этапе рекомендуется снимать опалубку конструкции;
- Контрольный этап. Официально принятый период по стандарту ГОСТ (18105-86) составляет 28 дней. Именно столько нужно времени, чтобы полностью прошел процесс гидратации, когда выходит влага из бетонной смеси. На данном этапе специалисты сопоставляют полученные данные с нормами в специальной документации.
До окончания всех стадий застывания бетонной смеси, строго избегается любое механическое воздействие на конструкции, а так же тщательно контролируется температурный режим.
В готовой бетонной смеси, как вовремя, так и после укладки происходят сложные и долгие химические процессы, которые необходимо учитывать при строительном расчете. Чем лучше условия превращения раствора в крепкий бетонный материал, тем качественнее и надежнее будет результат.
Твердение и набор прочности бетона
Содержание статьи:
.
Схватывание и твердение
Прочность бетона считается его основным свойством и отражает качество монолитной конструкции, так как напрямую связана со структурой бетонного камня. Твердение бетона – сложный физико-химический процесс, при котором взаимодействуют цемент и вода. В результате гидратации цемента образуются новые соединения, и формируется бетонный камень.
При твердении бетон набирает прочность, но происходит это не одномоментно, а в течение длительного периода времени. Набор прочности бетона происходит постепенно – в течение многих месяцев.
Набор прочности условно делят на два этапа:
1. Стадия первая — схватывание бетона
Схватывание происходит в первые сутки с момента приготовления бетонной смеси. Время схватывания бетонной смеси напрямую зависит от температуры окружающего воздуха. При температуре 20 °С процесс схватывания занимает всего 1 час: цемент начинает схватываться примерно через 2 часа с момента затворения цементного раствора, а окончание схватывания происходит примерно через 3 часа. С понижением температуры начало этой стадии отодвигается, а длительность значительно увеличивается. Так, при температуре воздуха около 0 °С период схватывания бетона начинается через 6-10 часов после затворения бетонной смеси и растягивается до 15-20 часов. При повышенных температурах период схватывания бетонной смеси сокращается и может достигать 10-20 минут.
В течение периода схватывания бетонная смесь остается подвижной и на неё можно воздействовать. Благодаря механизму тиксотропии (уменьшение вязкости субстанции при механическом воздействии) при перемешивании несхватившегося до конца бетона, он остается в стадии схватывания, а не переходит в стадию твердения. Именно это свойство бетонной смеси используют при её доставке на бетоносмесителях: смесь постоянно перемешивается в миксере, чтобы сохранить её основные свойства. Во вращающемся миксере автобетоновоза бетон не твердеет в течение длительного времени, но при этом с ним происходят необратимые последствия (говорят бетон «сваривается»), что в дальнейшем значительно снижает его качества. Особенно быстро бетонная смесь сваривается летом.
2. Стадия вторая — твердение бетона
Твердение бетона наступает сразу после схватывания цемента. Процесс твердения и набор прочности продолжается в течение нескольких лет. При этом марка бетона определяется в возрасте 28 суток. Процесс набора прочности и график набора прочности описаны ниже.
.
Как и сколько бетон твердеет и набирает прочность
Класс бетона по прочности оценивают в возрасте 28 суток. Для испытаний берут образцы в форме стандартного куба со стороной 15 см, испытуемый образец при этом выдерживают при температуре 20±3°С и относительной влажности воздуха 95±5%. Эти параметры хранения бетонной смеси и есть нормальные условия твердения бетона, а сама камера для хранения испытуемых образцов называется камерой нормального хранения (НХ).
При отклонении температуры твердения в большую сторону от «нормальной» получают твердение бетона при повышенной температуре, а при отклонении в меньшую – твердение при пониженной температуре.
В таблице приведена информация о наборе прочности бетона марок М200 — М300 на портландцементе М-400, М-500 в первые 28 суток в зависимости от среднесуточной температуры:
График набора прочности при различных температурах твердения приведен ниже (за 100% берется набор марочной прочности в первые 28 суток):
Для справки: данными вышеприведенной таблицы и графика можно воспользоваться для определения срока распалубки монолитной железобетонной конструкции, который в соответствии с нормативными документами наступает с того момента, когда бетонная смесь наберет 50-80% от своей марочной прочности (подробнее в статьях «Когда снимать опалубку» и «Уход за бетоном»).
Для твердения бетона характерны следующие особенности:
- чем ниже температура окружающего воздуха, тем медленнее происходит твердение и нарастает прочность;
- при температуре ниже 0°С вода, необходимая для гидратации цемента, замерзает и твердение прекращается. При последующем повышении температуры твердение и набор прочности возобновляются;
- при прочих равных условиях во влажной среде к определенному сроку бетон приобретает прочность выше, чем при твердении на воздухе;
- в сухих условиях дальнейшее твердение замедляется и практически прекращается, из-за отсутствия влаги, необходимой для гидратации цемента;
- при повышении температуры до 70-90° С и максимальной влажности скорость нарастания прочности значительно увеличивается. Именно такие условия создают при пропаривании бетона паром высокого давления в автоклавах.
Заметим, что скорость набора прочности бетона – величина непостоянная. Твердение имеет наибольшую интенсивность в первые 7 суток с момента заливки бетонной смеси. При нормальных условиях твердения через 7—14 дней бетон набирает 60—70% от своей 28-дневной прочности. В дальнейшем набор прочности не прекращается, но происходит гораздо медленнее, а к трехлетнему возрасту прочность бетона может достигать 200-250% от величины, определенной в возрасте 28 суток.
.
От чего зависит набор прочности и твердение
На набор прочности бетона влияют множество факторов, среди них можно выделить следующие:
- тип цемента, используемого при производстве бетонной смеси;
- температура, при которой происходит твердение бетона;
- водоцеметное отношение;
- степень уплотнения бетонной смеси.
Влияние каждого из вышеперечисленных факторов на твердение и набор прочности приведено ниже в виде таблицы и графиков.
Зависимость от типа цемента и температуры твердения:
Ниже приведены данные по набору тяжелым бетоном относительной прочности в зависимости от вышеуказанных двух параметров (типа цемента и температуры твердения).
Время твердения, | Тип цемента | Относительная | |||
30 оС | 20 оС | 10 оС | 5 оС | ||
1 | Б | 0,45 | 0,42 | 0,26 | 0,16 |
Н | 0,37 | 0,34 | 0,21 | 0,12 | |
М | 0,23 | 0,19 | 0,11 | 0,06 | |
2 | Б | 0,58 | 0,58 | 0,37 | 0,22 |
Н | 0,52 | 0,5 | 0,32 | 0,19 | |
М | 0,38 | 0,34 | 0,21 | 0,12 | |
3 | Б | 0,65 | 0,66 | 0,43 | 0,26 |
Н | 0,6 | 0,6 | 0,38 | 0,23 | |
М | 0,47 | 0,45 | 0,28 | 0,17 | |
7 | Б | 0,78 | 0,82 | 0,54 | 0,33 |
Н | 0,75 | 0,78 | 0,51 | 0,31 | |
М | 0,67 | 0,68 | 0,44 | 0,27 | |
14 | Б | 0,87 | 0,92 | 0,61 | 0,38 |
Н | 0,85 | 0,9 | 0,6 | 0,37 | |
М | 0,81 | 0,85 | 0,56 | 0,34 | |
28 | Б | 0,93 | 1,0 | 0,71 | 0,45 |
Н | 0,93 | 1,0 | 0,7 | 0,43 | |
М | 0,93 | 1,0 | 0,67 | 0,41 | |
56 | Б | 0,98 | 1,06 | 0,8 | 0,51 |
Н | 1,0 | 1,08 | 0,79 | 0,49 | |
М | 1,0 | 1,12 | 0,76 | 0,47 |
М – медленнотвердеющий портландцемент;
Н – нормальнотвердеющий портландцемент;
Б – быстротвердеющий портландцемент.
Промежуточные значения – определяются интерполяцией;
1 (единица) относительной прочности – прочность бетона через 28 суток при температуре твердения 20 оС. При включении в состав бетонной смеси добавок, способных повлиять на динамику процесса твердения, – скорость набора прочности изменяется.
Зависимость прочности бетона от уплотнения и водоцеметного отношения:
Марки и классы бетона: твердение и набор прочности
Наши цены на бетон всех марок >>>
Главные параметры бетонной смеси
Базовые показатели степени качества бетона – это марка или
класс бетонной смеси. При покупке продукции на эти параметры следует
обратить особое внимание. К второстепенным факторам относят
коэффициенты водонепроницаемости, подвижности и морозостойкости.
Самое главное – выбрать товар по типу марки или класса: они
неизменны в течение всего периода эксплуатации.
А вот прочность бетонной смеси, например, напротив, параметр
достаточно изменчивый. Он может варьироваться в течение всего периода
терпения, увеличиваясь и нарастая. Так, при соответствующих
климатических и погодных условиях прочность наберет расчетный
(проектный) показатель только через 28 суток твердения. Вообще
процессы твердения бетонной смеси и набора прочности могут идти
несколько лет.
Марка бетона определяется в зависимости от количества цемента в
общем составе.
Какие диапазоны классов и марок существуют?
Показатель | Диапазоны и пример |
марка бетона | Общий диапазон: от М50 до М1000 (например, М200, М400, М450, М500 и т.д.). Основной диапазон: чаще всего применяют марки от м100 до |
класс | Общий диапазон: от В 3,5 до 80 (например, В 10, В 12,5, В 22,5, В 30 и т. д.). Основной диапазон: в большинстве случаев используют |
Методы определения основных показателей и контрольные пробы
Выбор и последующая покупка зависят от указанного в проекте типа
марки и класса бетонной смеси. Если такой документ отсутствует,
следует обратиться за помощью к строителям. Специалисты выдадут
соответствующие рекомендации. Однако можно попробовать разобраться в
данном деле самостоятельно.
Итак, что обозначают цифры на маркировке? Значения 200, 400 и т.д.
(на маркировках м200, м400 и т.д.) – это соотношение предела
прочности на сжатие, выраженное в расчете 1 кгс. на 1 кв.см.
Показатель указывает среднее значение. Большинство строительных
компаний и организаций подобного профиля чаще всего заказывают бетон
именно в марках. Однако класс бетона является также довольно часто
встречающимся параметром, используемым в современном строительстве.
Цифры класса указывают не средний, как цифры марки, а гарантированный
показатель прочности.
Как проверить бетонную смесь на соответствие указанным
показателям марки и класса?
Для начала во время разгрузки бетона возьмите пробу смеси, отлив
два-три кубика размером 15х15х15 см. Чтобы это сделать, достаточно,
например, сколотить из дощечек формы такого размера. Кстати, перед
взятием пробы полученные ящики следует увлажнить, иначе сухое дерево
впитает в себя большое количество влаги (это может негативно повлиять
на гидратацию важного компонента – цемента).
Пробу необходимо проверить, прощупав смесь куском арматуры или
уплотнив ее ударом молотка по бокам кубиков-ящиков. Отлитую бетонную
смесь нужно хранить в течение 28 суток при температуре 20 градусов и
влажности 90%.
Затвердевшую смесь по истечению срока необходимо отнести в
независимую лабораторию. Специалисты вынесут окончательные вердикт –
принадлежит ли данная марка бетона к указанным на маркировке данным. Кстати, 28
дней – срок необязательный. Известно, что основную часть
расчетной прочности (70%) бетонная смесь набирает за первые 7 суток.
! Обратите внимание
- не стоит разбавлять смесь водой в автобетоносмесителе;
- брать пробу необходимо с самого лотка бетоносмесителя;
- нужно как можно тщательнее уплотнить бетон штыкованием;
- хранить кубики с образцами бетонной смеси следует только в
соответствующих условиях: оптимальные варианты – прохладный
подвал или любое помещение в тени.
Таблица соотношения класса, прочности и марки бетона
Марка бетона по прочности на сжатие | Соотношение прочности бетона, соответствующих марок и классов бетона по прочности на сжатие | ||||
Класс бетона по прочности на сжатие | Условная марка бетона*, соответствующая классу бетона по прочности на сжатие | ||||
Бетон всех видов, кроме ячеистого | Отличие от марки бетона, % | Ячеистый бетон | Отличие от марки бетона % | ||
М15 | В1 | — | — | 14,47 | -3,5 |
М25 | В1,5 | — | — | 21,7 | -13,2 |
М25 | В2 | — | — | 28,94 | 15,7 |
М35 | В2,5 | 32,74 | -6,5 | 36,17 | 3,3 |
М50 | В3,5 | 45,84 | -8,1 | 50,64 | 1,3 |
М75 | В5 | 65,48 | -12,7 | 72,34 | -3,5 |
М100 | В7,5 | 98,23 | -1,8 | 108,51 | 8,5 |
М150 | В10 | 130,97 | -12,7 | 144,68 | -3,55 |
М150 | В12,5 | 163,71 | 9,1 | 180,85 | — |
М200 | В15 | 196,45 | -1,8 | 217,02 | — |
М250 | В20 | 261,93 | 4,8 | — | — |
М300 | В22,5 | 294,68 | -1,8 | — | — |
М300 | В25 | 327,42 | 9,1 | — | — |
М350 | В25 | 327,42 | -6,45 | — | — |
М350 | В27,5 | 360,18 | 2,9 | — | — |
М400 | В30 | 392,9 | -1,8 | — | — |
М450 | В35 | 458,39 | 1,9 | — | — |
М500 | В40 | 523,87 | 4,8 | — | — |
М600 | В45 | 589,35 | 1,8 | — | — |
М700 | В50 | 654,84 | -6,45 | — | — |
М700 | В55 | 720,32 | 2,9 | — | — |
М800 | В60 | 785,81 | -1,8 | — | — |
Твердение бетона
В результате процесса взаимодействия воды и цемента общая
прочность бетонной смеси возрастает. Такой процесс называют
гидратацией цемента. Если в непрочном молодом бетоне вода высыхает
или вымерзает, гидратация останавливается. Замерзание, безусловно,
очень негативно влияет на эксплуатационные характеристики смеси,
ухудшает базовые свойства и снижает показатель прочности. Кстати,
молодым бетон называют в течение первых двух-трех недель твердения.
Итак, что делать с потерей влаги? Для положенного твердения и
нормальной гидратации необходимо поддерживать оптимальную влагу.
Только тогда бетонная смесь будет иметь соответствующие
эксплуатационные свойства и характеристики (включая показатель
прочности) и прослужит исправно в течение несколько десятков лет.
! Обратите внимание
- при высоких температурах (в жаркое время года) следует
накрыть только что уложенный бетон мокрой мешковиной или пленкой
ПВХ; - молодые бетонные конструкции (1-5 дневные) нужно периодически
поливать водой.
В холодное время хода наблюдается процесс замораживания бетонной
смеси. Замерзает здесь не сам бетон, а находящаяся в смеси вода. В
данном случае весь процесс взаимодействия воды и цемента –
гидратации – затормаживается и останавливается. Об этом можно
прочитать в материалах про зимнее бетонирование.
Любопытно, что если всю построенную конструкцию не размоет к
весне, процесс гидратации также может расстроиться, когда снег
растает. Безусловно, показатели морозостойкости и общей прочности
такой бетонной смеси буду существенно ниже показателей при
достаточной норме твердения. Разработаны специальные технологии и
методики, позволяющие предотвратить негативные последствия. Такие
разработки называют методиками раннего замораживания бетонной смеси.
С помощью современных технологий и добавления специальных
противоморозных добавок бетон твердеет, замерзая, при низких
температурных условиях (от -15 до -30 градусов по Цельсию). А весной
запускается процесс гидратации воды и цемента.
Какую роль здесь играют противоморозные добавки? Заполнители
служат некими стабилизаторами и регуляторами всего процесса
гидратации. Например, при температуре заливания бетона в -25 градусов
по Цельсию вводятся добавки с расчетом на -10 градусов. Тогда
завершается процесс твердения, и бетон замерзает. С помощью добавок
бетонная смесь не реагирует на колебания температуры в диапазоне от
-5 до +5 градусов, стойко перенося цикличные изменения погодных
условий. Бетон не будет замерзать или оттаивать. Однако существует
одно ограничение – монолитные конструкции в этот период
эксплуатировать нельзя.
Критическая прочность бетона
Этим термином называют допустимый порог показателей прочности.
Такой порог – своеобразная грань и для каждой марки он
индивидуален. Так, высокие марки обладают более низким процентом
критической прочности (в среднем, треть от проектного показателя
прочности), а низкие – высоким процентом. Критичные показатели
набираются за первые сутки жизни бетонной смеси.
Как бороться с замораживанием бетона?
Способов существует несколько. Перечислим основные, часто
используемые и проверенные меры:
- добавление противоморозных смесей в бетон. Их еще называют
ПМД – противоморозные добавки. Такие вещества не позволяют
воде замерзнуть, а также увеличивают скорость твердения. Когда-то
такие препараты заменялись солями. Однако подобные составы разъедали
оболочку арматуры со временем, поэтому их сменили на более щадящие
ПМД; - электропрогрев бетона. Разработаны специальные
электроподогреваемые опалубки, электроды и трансформаторы. Приборы
отлично подходят для заливки бетонной смеси в зимнее время года.
Однако данный вариант, скорее всего, экономически невыгоден и
недоступен частным предприятиям-застройщикам. Оплата услуг монтажа и
доставки, аренда, а также оплата электроэнергии (системам необходимо
огромное количество кВт в час) формируют конечную стоимость проекта; - укрытие конструкции. Авральная мера – укрытие
построенной конструкции пленкой. Метод оптимален при температуре в
один-два градуса. Однако положительные результаты при данном способе
не гарантированы. Весь период гидратации цемента идет параллельно с
выделением тепла. Выделяемое тепло можно и нужно сберегать и
сохранять. Возможно поставить дизельную или газовую пушки: они будут
способствовать задуванию теплого воздуха под специальное укрытие.
Важно помнить, что первые дни жизни бетонной смеси – самые
ответственные.
Кстати, на предприятиях ЖБК и ЖБИ рассмотренной проблемы не
существуют. Все железобетонные материалы (плиты перекрытия, сваи,
дорожные плиты и бетонные фундаментные блоки ФБС) проходят
специальную обработку. Изделия в течение нескольких часов
пропариваются в камерах. После процедуры любая марка бетона может быстро набрать
нужную прочность.
Изменение прочности бетона на сжатие со временем — Технология бетона
🕑 Время чтения: 1 минута
Возраст бетонных конструкций во многом зависит от их прочности и долговечности. Понимание зависимости прочности бетона от времени помогает узнать эффект нагрузки в более позднем возрасте.
В этом разделе объясняется различное влияние на прочность бетона с возрастом.
Изменение прочности бетона во времени
Согласно исследованиям и исследованиям, прочность бетона на сжатие будет увеличиваться с возрастом.Большинство исследований проводилось для изучения прочности бетона на 28-е сутки. Но на самом деле сила на 28-й день меньше по сравнению с долгосрочной силой, которую он может набрать с возрастом.
Изменение прочности бетона с возрастом можно изучать разными методами. На рисунке 1 ниже показано изменение прочности бетона в сухом и влажном состоянии. Этот график основан на исследовании, проведенном Байкофом и Сиглофом (1976).
Они обнаружили, что в сухих условиях через 1 год прочность бетона не увеличивается, как показано на рисунке 1.С другой стороны, прочность образцов, хранящихся во влажной среде (при 15 ° C), значительно увеличивается.
Рис.1: Изменение прочности бетона во времени
Рис. 2: Изменение прочности бетона на сжатие со временем (Washa and Wendt (1989))
Скорость увеличения силы с течением времени
Процесс постоянного увлажнения повысит прочность бетона. Если условия окружающей среды, которым подвергается бетон, способствуют гидратации, прочность с возрастом постоянно увеличивается.Но эта скорость гидратации высока на ранних стадиях и задерживается позже.
Таким образом, прочность на сжатие, полученная бетоном, измеряется на 28-й день, после чего показатель прочности снижается. Прочность на сжатие, полученная в более позднем возрасте, проверяется неразрушающими испытаниями.
Подробнее: Почему мы проверяем прочность бетона на сжатие через 28 дней?
В таблице 1 ниже показан темп набора силы с первого по 28 день.
Таблица 1: Прочность бетона с возрастом
Возраст | Прирост силы (%) |
1 день | 16% |
3 дня | 40% |
7 дней | 65% |
14 дней | 90% |
28 дней | 99% |
Правильные условия отверждения помогут предотвратить утечку влаги, которая облегчит реакции набора прочности.На рисунке 3 ниже показано изменение прочности на сжатие с возрастом для различных условий отверждения.
Рис.3. Прочность на сжатие в зависимости от возраста для различных сред отверждения (Мамлук и Заневски)
Факторы, влияющие на длительную прочность бетона на сжатие
Достижение прочности бетона на сжатие в долгосрочной перспективе отличается от набора прочности в раннем возрасте. На долговременную прочность бетона на сжатие влияют следующие факторы:
1.Соотношение вода-цемент
Адекватное водоцементное соотношение необходимо для прохождения реакций гидратации в более позднем возрасте. Реакции гидратации улучшают прочность бетона на сжатие.
Недостаточное содержание воды приведет к образованию огромного количества пор до 28 дней, что со временем увеличит шансы сползания и усадки. Это отрицательно скажется на прочности бетона на сжатие.
Также читайте: Технологичность бетона — типы и влияние на прочность бетона
2.Условия отверждения
Правильные условия отверждения — это своего рода подготовка бетона перед его эксплуатацией. Степень отверждения бетона определяется в зависимости от предполагаемых условий воздействия на конструкции.
Правильно затвердевший и качественный бетон не подвержен старению в экстремальных условиях. Следовательно, эффективное отверждение улучшает сжимаемость бетона.
Также читайте: Отверждение цементного бетона — время и продолжительность
3. Температура
Исследования показали, что высокая температура ускоряет реакцию гидратации, но получаемые продукты не будут однородными или хорошего качества.В результате могут остаться поры, влияющие на прочность бетона.
4. Условия окружающей среды
Бетонная конструкция с возрастом подвергается воздействию таких условий окружающей среды, как дождь, замерзание и таяние, химические воздействия и т. Д. Непроницаемый бетон может подвергаться проникновению влаги, частому замерзанию и оттаиванию, что приводит к образованию трещин в бетоне.
Химические воздействия могут вызвать коррозию арматуры, что снизит предел текучести арматуры. Все это может повлиять на прочность бетона.
Коэффициент набора прочности бетона
Сила можно определить как способность сопротивляться изменениям. Одно из самых ценных свойств бетона — его прочность. Прочность — самый важный параметр, который дает представление об общем качестве бетона. Прочность бетона обычно напрямую связана с цементным тестом. Многие факторы влияют на скорость увеличения прочности бетона после смешивания.Прежде чем перейти к факторам, влияющим на увеличение прочности бетона, важно иметь представление об этих терминологиях:
Закалка — это процесс роста прочности. Это часто путают с «настройкой», но настройка и закрепление — это не одно и то же.
Параметр — это укрепление бетона после его укладки. Отверждение может продолжаться в течение недель или месяцев после того, как бетон был замешан и уложен.
Факторы, влияющие на прирост прочности и скорость набора прочности бетона
Пористость бетона
Пустоты в бетоне можно заполнять воздухом или водой.Вообще говоря, чем пористее бетон, тем он слабее. Вероятно, наиболее важным источником пористости в бетоне является соотношение воды и цемента в смеси, известное как соотношение воды и цемента.
Соотношение вода / цемент
Это определяется как масса воды, деленная на массу цемента в смеси. Отношение вода / цемент может быть сокращено до «водоцементного отношения» или просто «вод / цемент». В смесях, в которых соотношение воды к воде превышает примерно 0,4, весь цемент может реагировать с водой с образованием продуктов гидратации цемента.При более высоких соотношениях w / c следует, что пространство, занятое дополнительной водой выше w / c = 0,4, останется как поровое пространство, заполненное водой или воздухом, если бетон высохнет.
Следовательно, по мере увеличения соотношения вода / цемент пористость цементного теста в бетоне также увеличивается. По мере увеличения пористости прочность бетона на сжатие будет уменьшаться.
Прочность агрегата
Если заполнитель в бетоне слабый, бетон также будет слабым.Камни с низкой прочностью, такие как мел, явно непригодны для использования в качестве заполнителя.
Связка агрегатной пасты
Плотность связи между пастой и заполнителем имеет решающее значение. Если нет связи, заполнитель фактически представляет собой пустоту, а пустоты являются источником слабости в бетоне.
Параметры, связанные с цементом
Многие параметры, относящиеся к составу компонентов цемента и их пропорциям в цементе, могут влиять на скорость увеличения прочности и конечную достигаемую прочность.К ним относятся:
- Содержание алита (трехкальциевые силикаты) и белита (двухкальциевые силикаты)
- Реакционная способность алита и белита
- Содержание сульфатов
Алит — наиболее реактивный цементный минерал, который значительно увеличивает прочность бетона. Больше Alite должно дать лучшие ранние силы («ранний» означает примерно до 7 дней).
Сульфат в цементе, как сульфат клинкера, так и добавленный гипс, замедляет фазу гидратации.Если сульфата недостаточно, может произойти мгновенное схватывание (быстрое затвердевание свежеприготовленного цементного теста с заметным тепловыделением). с другой стороны, слишком высокое содержание сульфатов может вызвать ложное схватывание (быстрое затвердевание свежесмешанного цементного теста с минимальным тепловыделением)
Некоторые физические параметры цемента также играют роль в повышении прочности бетона, например, Площадь поверхности цемента и гранулометрический состав .
Тонкость частиц часто выражается через общую площадь поверхности частиц.Более мелкий — цемент; больше будет скорость его гидратации. Гранулометрический состав также является очень важным фактором увеличения прочности бетона. Цемент с очень мелко измельченным гипсом и частицами клинкера замедляет гидратацию.
Испытания для определения увеличения прочности и коэффициента увеличения прочности бетона
В бетонной практике прочность бетона характеризуется значением 28 дней, а некоторые другие свойства также связаны с прочностью в течение 28 дней. По истечении 28 дней обычно проводятся различные испытания для определения прироста прочности бетона.Это как под:
для увеличения силы:
Испытание на прочность при сжатии
- Тест цилиндра
- Кубический тест
Испытание на разрыв
Испытание на разделенный цилиндр
Испытание на прочность при изгибе
- Испытание на двухточечную нагрузку
- Испытание на трехточечную нагрузку
Скорость прироста прочности бетона:
Для определения скорости набора прочности бетона необходимо выбрать период короче 28 дней, так как 28 дней считается эталонным временем.В конкретной практике принято, что через 28 дней бетон обычно набирает большую часть своей прочности. Прочность, определенную на ранней стадии, например, после 7-го дня укладки бетона, можно сравнить с прочностью, определенной через 28 дней, что считается эталонным временем. Таким образом можно определить скорость набора прочности бетона.
Сообщите нам в комментариях, что вы думаете о концепциях в этой статье!
взаимосвязей между семидневными и 28-дневными сильными сторонами | Журнал Concrete Construction
- Вопрос: Перед укладкой бетона для последней опоры фундамента с пробуренной опорой мастер решил долить воду в автобетоносмеситель.Инспектору не понравился вид разводненного бетона, и он взял испытательные цилиндры, которые представляли тот самый пирс. Спецификации требуют 28-дневной силы 3000 фунтов на квадратный дюйм. После того, как лаборатория сломала семидневные цилиндры, цилиндр от пирса с добавленной водой сломался при давлении 1980 фунтов на квадратный дюйм. В других семидневных цилиндрах давление достигало 2620 фунтов на квадратный дюйм. Инженер обеспокоен тем, что бетон не будет соответствовать указанной прочности. Я понимаю, что добавление воды было неправильным решением, но я не хочу удалять пирс, если он достаточно прочен.Достигнет ли он указанных 3000 фунтов на квадратный дюйм?
Ответ: Как показывает этот случай, часто бывает полезно экстраполировать 28-дневные сильные стороны из семидневных. Конечно, количество прироста силы варьируется между семидневными и 28-дневными тестами. Тип цемента и условия отверждения — это два фактора, которые влияют на ожидаемый прирост прочности. Concrete, разработанная Mindness and Young, дает общее правило: отношение 28-дневной к 7-дневной силе составляет от 1,3 до 1,7 и обычно меньше 1.5, или семидневная сила обычно составляет от 60% до 75% от 28-дневной силы и обычно превышает 65%. Цилиндр, который сломался при 1980 фунтах на квадратный дюйм, составляет 66% от указанных 3000 фунтов на квадратный дюйм. Согласно правилу Mindness and Young, он должен достичь указанной силы через 28 дней. Скорее всего, смесь была рассчитана не на 3000 фунтов на квадратный дюйм, а на более высокую прочность на сжатие, чтобы учесть изменчивость. Добавляя дополнительную воду в смесь, вы увеличиваете водоцементное соотношение, что, в свою очередь, снижает прочность. Опоры, установленные до добавления воды, вероятно, будут иметь прочность выше указанных 3000 фунтов на квадратный дюйм.Однако рассматриваемый пирс, скорее всего, будет соответствовать указанной прочности. Если по прошествии 28 дней цилиндры по-прежнему не соответствуют указанной прочности, возьмите стержни для проверки прочности перед выполнением дорогостоящего удаления сваи.
Развитие прочности бетона
Многие факторы влияют на скорость увеличения прочности бетона после смешивания. Некоторые из них обсуждаются ниже. Во-первых, хотя несколько определений могут быть полезны:
Часто путают процессы «установки» и «упрочнения»:
Параметр — это укрепление бетона после его укладки.Бетон можно «затвердеть» в том смысле, что он больше не жидкий, но все еще может быть очень слабым; например, вы не сможете ходить по нему. Отверждение связано с образованием эттрингита и гидрата силиката кальция на ранних стадиях. Обычно используются термины «начальный набор» и «окончательный набор»; это произвольные определения раннего и позднего множества. Существуют лабораторные процедуры для их определения с помощью утяжеленных игл, проникающих в цементное тесто.
Отверждение — это процесс увеличения прочности, который может продолжаться в течение недель или месяцев после того, как бетон был замешан и уложен.Затвердевание происходит в основном из-за образования гидрата силиката кальция по мере того, как цемент продолжает гидратировать.
Скорость схватывания бетона не зависит от скорости его затвердевания. Быстротвердеющий цемент может иметь время схватывания, подобное обычному портландцементу.
Измерение прочности бетона
Традиционно это делается путем изготовления бетонных кубиков или призм, затем
отверждать их в течение указанного времени. Обычное время отверждения: 2, 7, 28 и 90.
дней.Температура отверждения обычно составляет 20 градусов по Цельсию. После
по достижении возраста, необходимого для испытаний, кубики / призмы измельчаются в
большой пресс.
Единицей измерения прочности бетона в системе СИ является мегапаскаль, хотя «ньютоны на квадратный миллиметр» все еще широко используются, поскольку числа более удобны. Таким образом, «бетон на пятьдесят ньютонов» означает бетон, плотность которого составляет 50 ньютонов на квадратный миллиметр, или 50 мегапаскалей.
В то время как измерения на основе бетонных кубов широко используются в строительной отрасли, европейский стандарт для производства цемента EN 197 определяет процедуру испытаний, основанную на призмах из раствора, а не на бетонных кубах.Например, можно ожидать, что цемент, описанный как соответствующий стандарту EN 197-1 CEM I 42,5 N, достигнет не менее 42,5 МПа за 28 дней при использовании указанного теста с призмой из раствора. Будет ли «настоящий бетон», изготовленный из этого цемента, достичь 42,5 МПа при испытаниях бетонных кубов, зависит от ряда других факторов в дополнение к любым внутренним свойствам цемента.
Факторы, влияющие на прочность бетона
Есть много важных факторов; Вот некоторые из наиболее важных:
Пористость бетона: Пустоты в бетоне можно заполнить воздухом или водой.Воздушные пустоты — очевидный и легко различимый пример пор в бетоне. Вообще говоря, чем пористее бетон, тем он слабее. Вероятно, наиболее важным источником пористости в бетоне является соотношение воды и цемента в смеси, известное как соотношение воды и цемента. Этот параметр настолько важен, что мы поговорим о нем отдельно ниже.
Соотношение вода / цемент: определяется как масса воды, деленная на массу цемента в смеси. Например, бетонная смесь, содержащая 400 кг цемента и 240 литров (= 240 кг) воды, будет иметь соотношение вода / цемент 240/400 = 0.6. Соотношение вода / цемент может быть сокращено до «вод / цемент» или просто «вод / цемент». В смесях, в которых соотношение воды к воде больше примерно 0,4, весь цемент теоретически может реагировать с водой с образованием продуктов гидратации цемента. При более высоких соотношениях w / c следует, что пространство, занятое дополнительной водой выше w / c = 0,4, останется как поровое пространство, заполненное водой или воздухом, если бетон высохнет.
Следовательно, по мере увеличения соотношения вода / цемент пористость цементного теста в бетоне также увеличивается.По мере увеличения пористости прочность бетона на сжатие будет уменьшаться.
Прочность заполнителя: будет очевидно, что если заполнитель в бетоне слабый, бетон также будет слабым. По своей природе слабые породы, такие как мел, явно не подходят для использования в качестве заполнителя.
Связка заполнитель-паста: целостность связи между пастой и заполнителем имеет решающее значение. Если облигации нет, совокупность фактически представляет собой пустоту; как обсуждалось выше, пустоты являются источником слабости в бетоне.
Параметры, связанные с цементом: Многие параметры, относящиеся к составу отдельных минералов цемента и их пропорциям в цементе, могут влиять на скорость роста прочности и конечную достигнутую прочность. К ним относятся:
- содержание алита
- реакционная способность алита и белита
- содержание сульфата цемента
Т.
алит — самый реактивный цементный минерал, который способствует
значительно влияет на прочность бетона, большее количество алита должно давать лучшие результаты на ранней стадии
сильные стороны («рано» в этом контексте означает примерно до 7 дней).Тем не мение,
это утверждение должно быть тщательно оговорено, так как многое зависит от сжигания
условия в печи. Возможно, что более легкое горение
конкретный клинкер может привести к более высокой начальной прочности из-за
образование более реактивного алита, даже если его немного меньше.
Не все алиты созданы равными!
Для конкретного цемента существует
будет то, что называется «оптимальным содержанием сульфата» или «оптимальным содержанием гипса».
содержание.’ Сульфат в цементе, сульфат клинкера и добавленный гипс,
замедляет гидратацию алюминатной фазы.Если недостаточно
сульфат, может произойти мгновенное схватывание; и наоборот, слишком много сульфата может вызвать
ложная установка.
Следовательно, требуется баланс между
способность основных минералов клинкера, особенно алюминатной фазы,
вступать в реакцию с сульфатами на ранних стадиях после смешения и способности
цемента для подачи сульфата. Оптимальное содержание сульфатов будет
зависит от многих факторов, включая содержание алюмината, алюмината
размер кристаллов, реакционная способность алюмината, растворимость различных
источники сульфата, размеры частиц сульфата и наличие примесей
использовал.
Если это не было достаточно сложно, сумма
сульфат, необходимый для оптимизации одного свойства, например прочности, может
не должно быть таким же, как это требуется для оптимизации других свойств, таких как
усадка при высыхании. Бетон и раствор также могут иметь разные оптимальные
сульфатное содержание.
Эта увлекательная область обсуждается далее в разделе «Изменчивость прочности бетона, связанная с цементом».
В дополнение к параметрам состава, рассмотренным выше, также важны физические параметры, в частности площадь поверхности цемента и гранулометрический состав.
Тонкость помола цемента, очевидно, повлияет на скорость гидратации цемента и, следовательно, на скорость роста прочности; Более мелкое измельчение цемента приведет к более быстрой реакции. Если производитель цемента обнаруживает, что его сила уменьшается, часто первое, что он делает, чтобы исправить проблему, — это измельчать цемент более мелко.
Тонкость частиц часто выражается через общую площадь поверхности частиц, например: 400 квадратных метров на килограмм.Однако не менее, если не более важно, гранулометрический состав цемента; полагаться только на измерения площади поверхности может ввести в заблуждение. Некоторые минералы, например, гипс, могут измельчаться, в результате чего получается цемент с большой площадью поверхности. Такой цемент может содержать очень мелко измельченный гипс, а также относительно крупные частицы клинкера, приводящие к более медленной гидратации.
Более подробная информация о прочности бетона
Мы только что рассмотрели некоторые из основных факторов, влияющих на прочность бетона.Конечно, есть еще много других, некоторые из которых связаны с внутренними проблемами с цементом, а некоторые из них довольно тонкие. Другие относятся к тому, как используется цемент, очевидным примером является то, что в смеси недостаточно цемента, но есть много других, которые менее очевидны.
Я написал книгу именно по этой теме — чтобы получить более подробную информацию, просто щелкните кубик ниже.
Дополнительные статьи по этой или смежным темам можно найти в Каталоге статей.
Поведение при повышении прочности на сжатие и прогнозирование цементно-стабилизированного щебня при низкотемпературном отверждении
Для материалов на основе цемента температура отверждения определяет скорость прироста прочности и значение прочности на сжатие.В этой статье используется смесь щебня, стабилизированная 5% цемента. Три сценария отверждения с контролируемой температурой в помещении и один сценарий естественного отверждения на открытом воздухе разработаны и реализованы для изучения сценария развития прочности закона прочности на сжатие, и это стандартная температура отверждения (20 ° C), отверждение при постоянной низкой температуре (10 ° C), дневное взаимодействие отверждение при температуре (от 6 ° C до 16 ° C) и одно отверждение при естественной температуре на открытом воздухе (при температуре воздуха от 4 ° C до 20 ° C).Наконец, на основе метода зрелости модель оценки зрелости и силы получается путем использования и анализа данных, собранных в ходе внутренних испытаний. Модель проверена с высокой точностью на основании подтвержденных результатов, полученных на основе данных наружных испытаний. Это исследование обеспечивает техническую поддержку строительства цементно-стабилизированного щебня в регионах с низкими температурами, что способствует процессу строительства и контролю качества.
1. Введение
Цементно-стабилизированный щебень представляет собой низкодозированную смесь, стабилизированную цементным основанием, и его дозировка цемента составляет около 5%; он обычно используется в качестве основного слоя дорожного покрытия в Китае [1].Хорошо известно, зависит ли прочность на сжатие материалов на основе цемента в значительной степени от процесса отверждения, в котором особенно важны как температура, так и время отверждения [2, 3]. Для обычных лабораторных испытаний прочности на сжатие отверждение обычно проводится при постоянной температуре окружающей среды при 20 ° C во многих национальных спецификациях [4–6]. Но для проекта строительства дорожного покрытия фактическая температура отверждения на открытом воздухе зависит от погоды. Спецификация требует, чтобы при строительстве выдерживалась температура более 5 ° C [4].Однако в северных сезонных районах замерзания, таких как китайская провинция Хэйлунцзян, несмотря на то, что в апреле температура превышает 5 ° C, температура сильно меняется и очень нестабильна. Из-за большой разницы температур между днем и ночью и того факта, что обычно не достигает 20 ° C во время отверждения, прочность на сжатие иногда не может соответствовать требованиям, что приводит к ослаблению керна. Поскольку сила не может быть подтверждена, нельзя разумно организовать следующий процесс [7].Исходя из этого особого температурного режима, существует острая необходимость в изучении законов увеличения прочности на сжатие при таких различных условиях низкотемпературного отверждения. В связи с этим в данной статье разработаны несколько экспериментов в помещении и на открытом воздухе для проведения такого исследования.
Было предпринято множество исследований для изучения влияния температуры отверждения на материалы на основе цемента, такие как грунт, стабилизированный портландцементом, легкий цементированный грунт, песок, угольная летучая зола и смеси извести [8–10].Что касается температуры отверждения, во многих исследованиях сообщалось о высокой температуре, и большинство результатов показали, что отверждение при высокой температуре может повысить начальную прочность на сжатие [11, 12]. Прочность на сжатие и предел прочности на разрыв морских грунтов, стабилизированных цементом, которые использовались в качестве материалов для строительства дорог, были изучены при температурах отверждения от 40 ° C до 60 ° C в исследовательской работе Ванга [13]. Escalante-Garcia et al. [14] проверили прочность на сжатие при гидратации при пяти температурах в диапазоне от 10 ° C до 60 ° C, и результаты показали, что высокая температура может улучшить начальную прочность на сжатие, но на самом деле может снизить прочность в долгосрочной перспективе.Wang et al. [15] провели испытания цемента на основе сульфоалюмината кальция при различных температурах отверждения (т. Е. От 0 ° C до 80 ° C) с целью изучения влияния эволюции гидратации на прочность на сжатие. Результаты показали, что прочность на сжатие в раннем возрасте увеличивается с повышением температуры, но уменьшается в диапазоне температур от 40 ° C до 80 ° C, а прочность на сжатие в основном зависит от степени гидратации.
О низкотемпературном отверждении в литературе сообщалось о нескольких исследованиях.Прайс [16] показал, что прочность бетонной смеси при низкой температуре развивается значительно медленнее, чем при комнатной температуре. Husem et al. [17] проверили прочность на сжатие обычного и высококачественного бетона при стандартном отверждении (при 23 ± 2 ° C) и другом низкотемпературном отверждении (при 10, 5, 0 и –5 ° C, соответственно). Результаты показали, что прочность при 10 ° C и менее 10 ° C была ниже, чем при стандартном отверждении. Kim et al. [18] исследовали развитие прочности для историй отверждения при температуре 5 ° C, 20 ° C и 40 ° C, которые показали, что прочность бетона при низкой температуре была меньше, чем прочность при стандартной температуре изначально, но была почти такой же со временем.Marzouk et al. [19] провели испытания при пяти температурах в диапазоне от -10 ° C до 20 ° C в течение 3 месяцев и обнаружили, что существует пропорциональная зависимость между прочностью на сжатие и температурой.
Кроме того, с точки зрения прогнозирования прочности, многие литературные источники показали, что теория зрелости подходит и лучше для прогнозирования прочности, чем некоторые другие методы [20, 21]. В 1951 году Саул и др. [22] впервые предложили концепцию «зрелости», которая была определена как произведение времени отверждения и температуры.В знаменитой функции зрелости «Медсестра-Сол» было указано, что при одинаковой зрелости и сила будет примерно такой же. Хорошо известно, что модель зрелости Медсестра-Сол постоянно совершенствовалась и изменялась позже, и для прогнозирования силы были приняты различные математические модели. Например, в модели Читамбира эквивалентный возраст был предложен в качестве индекса, который сочетал в себе возраст и температуру отверждения [23]. Существует линейная зависимость между двойной логарифмической прочностью и логарифмической зрелостью при различных температурах отверждения.Jeong et al. [24] откалибровали соотношение относительной прочности и зрелости по фактору влажности.
Обзор существующей литературы показал, что, хотя было проведено много исследований по другим материалам на основе цемента, меньше исследований было предпринято для 5% стабилизированного цементом щебня. Многие исследования были посвящены влиянию температуры отверждения на прочность. Однако большинство из них были ориентированы на высокие температуры, и, кроме того, почти все отверждение (будь то при высокой или низкой температуре) проводилось при переменной постоянной контролируемой температуре в лабораторной камере.Важно отметить, что при таком отверждении не учитывались чередующиеся изменения температуры в течение реальных дней и ночей (как в строительном проекте), и не проводились испытания в естественных условиях на открытом воздухе. Таким образом, цель данного исследования состоит в том, чтобы сосредоточить внимание на законе увеличения прочности 5% цементно-стабилизированной смеси щебня при низкой температуре, которая соответствует фактической температуре строительного проекта. Теория зрелости будет использоваться для прогнозирования прочности на сжатие.Будет выбрана соответствующая функция, и соответствующие параметры будут откалиброваны и получены путем использования и анализа экспериментальных данных. Результаты исследований обеспечат техническую поддержку строительства цементно-стабилизированного щебня в регионах с низкими температурами, что благоприятно сказывается на качестве строительства и управлении процессом.
2. Описательный анализ температур в районе Харбина
Город Харбин, провинция Хэйлунцзян, Китай, расположен на северной широте 44 ° 04′∼ 46 ° 40 ′, в основном равнине, относящейся к континентальному муссонному климату северной умеренной зоны. и температура быстро меняется весной и осенью.Годовое количество осадков достигает 400–600 мм, коэффициент влажности находится в пределах 0,25–1,25, а средний максимум вечной мерзлоты составляет 120–240 см.
Распределение температуры от 15 -го до 30 -го апреля с 2012 по 2014 год в Харбине показано на Рисунке 1. Тенденция высокой и низкой температуры в период строительства в основном схожа. Большинство высоких температур распределяются в диапазоне от 15 ° C до 20 ° C, а большинство низких температур находятся в диапазоне от 5 ° C до 10 ° C.Средняя высокая температура составляет 16 ° C, а средняя низкая температура — 6 ° C.
На рисунке 2 показаны данные о суточной температуре с 15 -го до 30 -го апреля 2014 г. в городе Харбин. Данные других лет следуют аналогичной схеме. Примерно с 2:00 до 4:00 температуры были самыми низкими, с 5:00 температура начала стабильно повышаться в течение 9 часов с высокой скоростью, в 12:00 — 14:00 температуры достигли максимума, а затем температуры начали непрерывно снижаться. в течение 15 часов по относительно низкой цене.
3. Планы тестирования в помещении и на открытом воздухе
В соответствии с законом изменения температуры были разработаны три варианта тестирования в помещении и один тест на открытом воздухе. Температуры трех испытаний в помещении были определены в соответствии с данными почти за 3 года в Харбине, как показано на Рисунке 3, а испытания на открытом воздухе начались 17 -го числа апреля 2015 года.
Образцы цилиндров диаметром 150 мм. Размер × 150 мм с 5% -ным содержанием щебня, стабилизированного цементом, были приготовлены в соответствии с конструкцией смеси из стабилизированного щебня.Ежедневно проводились испытания прочности на неограниченное сжатие при трех различных температурах отверждения.
Случай 1. (отверждение при стандартной температуре): стандартное отверждение в полном соответствии с требованиями спецификации операции, при которой температура составляла 20 ° C. Испытание на безусловное сжатие проводилось с 3 -го -го дня по 7 -го -го дня. Прочность на сжатие 7 th (то есть стандартная прочность 7 th ) использовалась в качестве эталона для справки.
Случай 2. (постоянное низкотемпературное отверждение): температура отверждения составляла 10 ° C, которая была определена по средним высоким и средним низким температурам, взвешенным по времени в течение почти трех лет. Прочность на сжатие была проверена, и испытания не прекращались до тех пор, пока прочность на сжатие не превысила стандартную прочность 7 th .
Случай 3. (отверждение при дневной температуре взаимодействия): температура была изменена в испытательной камере для имитации больших колебаний дневной и ночной температур.Как показано на рисунке 3, высокая температура поддерживалась на уровне 16 ° C с 7:00 до 15:00 в течение 8 часов, а низкая температура составляла 6 ° C с 16:00 до 6:00 в течение 14 часов. С 6:00 до 7:00 температура повысилась с 6 ° C до 16 ° C, а с 15:00 до 16:00 температура снизилась с 16 ° C до 6 ° C. Кроме того, прочность на сжатие будет продолжаться после 7 -го дней, пока прочность не превысит стандартную прочность 7 -го .
Случай 4. (отверждение при естественной температуре наружного воздуха): согласно данным прогноза погоды, испытание началось 17 апреля 2015 года.Образцы помещали в яму для испытаний. Базовый слой дорожного покрытия и методы отверждения были смоделированы, а прочность на сжатие была испытана с 7 -го -го дня до тех пор, пока прочность не превысила стандартную прочность 7 -го . Конкретный рабочий процесс и метод измерения температуры обсуждаются ниже.
Сначала вырыли яму глубиной 15 см, а дно выровняли. Затем образцы были аккуратно помещены в яму, и промежуток был заполнен мелким заполнителем и уплотнен.Верх был покрыт белым геотекстилем для сохранения влаги, а вода разбрызгивалась на поверхность каждый день в полдень. Фотографии размещения образцов показаны на рисунке 4.
Для измерения температуры использовались три образца. На каждом образце четыре датчика температуры были встроены в верхнюю, среднюю внешнюю, нижнюю и центральную части тела, которые использовались для измерения температуры различных частей каждого образца. На рис. 5 схематически показано расположение датчиков температуры, среди которых центральный датчик был встроен в процесс производства образца, а три внешних датчика были позже закреплены на поверхности.Изображения, показывающие центральные датчики и средние внешние датчики, приведены на рисунке 6. Во время периода отверждения на открытом воздухе для измерения температуры использовался ручной термометр, и частота измерений составляла 1 показание / час.
4. Характеристики материала и методы испытаний
4.1. Характеристики цемента
В эксперименте использовался цемент Harbin TIANE 425 #. Технические показатели цемента приведены в таблице 1. Обратите внимание, что дозировка цемента составляет 5% от массы заполнителя.
|
4.2. Агрегат, марка
. Используемые агрегаты были четырех размеров: 2 см – 3 см, 1 см – 2 см, 0,5 см – 1 см и 0 см – 0,5 см. Используемый гравий соответствовал требованиям «Технических условий для строительства дорожного покрытия (JTJ034-2000)». Марка композитного заполнителя представлена в таблице 2.
|
4,3. Испытание на уплотнение
Для подготовки к изготовлению образца максимальная плотность в сухом состоянии и оптимальное содержание воды в смеси были определены путем испытаний на уплотнение. В соответствии с процедурами, описанными в «Методике испытаний стабилизированных материалов для неорганического связующего вещества для дорожного строительства (JTG E51-2009)», оптимальное содержание воды составляло 6.8%, а максимальная плотность в сухом состоянии составляла 2,144 г / см 3 .
4.4. Испытание на неограниченную прочность на сжатие
Образцы были изготовлены и хранились в камере для отверждения. В соответствии с требованиями температуры отверждения в трех случаях контролировались на уровне 20 ° C и 10 ° C и в диапазоне от 6 ° C до 16 ° C. Образцы были подвергнуты испытаниям на безусловное сжатие в соответствии с разработанным планом испытаний.
5. Результаты и обсуждение
5.1. Результаты испытаний в помещении
На рис. 7 показан закон увеличения прочности на сжатие для трехкомпонентных испытаний в помещении.Что касается стандартной температуры отверждения, равной 20 ° C (Случай 1), прочность увеличивается с увеличением времени отверждения, и коэффициент усиления изначально высокий, но постепенно снижается до 7 -го дня. Прочность составляет 3,5 МПа, что соответствует требованиям стандарта. В условиях постоянной низкой температуры 10 ° C (Случай 2) прочность на сжатие непрерывно увеличивается с увеличением времени отверждения, но скорость прироста меньше, чем при стандартных условиях отверждения. Прочность на сжатие — 2.2 МПа в день 7 -го , что составляет лишь 62,9% от стандартной прочности 7 -го . Прочность на сжатие не достигает стандартной прочности 7 th до 14 th дня. При дневной температуре взаимодействия от 6 ° C до 16 ° C (Случай 3) прочность на сжатие также увеличивается с увеличением времени отверждения, но скорость прироста меньше, чем при стандартном отверждении, а также немного меньше, чем что в условиях постоянного низкотемпературного отверждения.Прочность на сжатие составляет 2,1 МПа в день 7 th , что составляет только 60% от стандартной прочности 7 th при стандартных условиях отверждения. Прочность на сжатие не достигает стандартной прочности 7 th до 14 th дня.
5.2. Результаты испытаний на открытом воздухе
5.2.1. Закон переноса температуры образцов в естественной окружающей среде на открытом воздухе
На рисунке 8 показана кривая дневной температуры в каждом положении образцов 20 апреля 2015 г.Видно, что изменение температуры в образцах было аналогично изменению температуры воздуха, а диапазон колебаний в верхней части был больше, чем в средней и нижней частях. Разница между центральной и средней внешней стороной была небольшой, что указывало на небольшой перенос температуры в горизонтальном направлении. Закон переноса температуры образцов в естественной среде на открытом воздухе представлен следующим образом: (1) С 6 часов утра температура начала повышаться, и разница температур между верхней, средней и нижней частями также постепенно увеличивалась.(2) В 11:00 — 14:00 разница температур между верхней и нижней частями достигла максимума 8 ° C, в то время как разница между верхней и средней температурой составила около 6 ° C, а разница температур средней и нижней составляла около 2 ° C. С. Это ясно указывало на то, что температура демонстрировала нелинейную картину в направлении глубины. Другими словами, тепло, полученное поверхностью, было самым значительным; затем тепло заметно уменьшилось, когда оно перешло в середину, и почти не существовало до дна.(3) В 13 часов дня верхняя температура достигла максимума, а в 14 часов средняя и нижняя температуры достигли максимума днем. После этого температура всех частей постепенно снижалась, при этом температура верхней части падала с максимальной скоростью, а средняя и нижняя температуры медленно понижались. (4) С 20 часов вечера до почти 5 часов утра или около того температуры в каждой позиции были в основном то же самое, в котором разница температур между верхней, средней и нижней частями находится в пределах 2 ° C.
Данные «Температура × Время» использовались в качестве индекса для анализа статуса отверждения в каждой позиции образцов. Кумулятивная сумма «Температура × Время» для каждого положения образцов в естественной окружающей среде была рассчитана для 7 -го дней и показана в Таблице 3. «Температура × Время» для 7 -го дней стандартного отверждения была рассчитано как 3360 ° C · ч.
|
Как видно из Таблицы 3, когда отверждение продолжалось до 12 -го дня, значение «Температура × Время» в верхнем положении достигло 3569 ° C · ч, что превысило стандартное отверждение на 7 чт день 3360 ° C · час.Однако она составляла всего 2498 ° C · ч в нижнем положении и 2979 ° C · ч в центральном положении. Основываясь на теории зрелости, можно считать, что прочность на сжатие в верхнем положении достигла стандартной прочности 7 th , а в среднем и нижнем положениях не достигла стандартной прочности 7 th . Это также может быть хорошим объяснением того, почему бурение керна на строительной площадке иногда может дать сбой, когда только верхняя часть является твердой, а нижняя часть довольно рыхлая, как показано на рисунке 9.
5.2.2. Закон увеличения прочности при отверждении при естественной температуре на открытом воздухе
На рисунке 10 показан закон увеличения прочности при отверждении при естественной температуре на открытом воздухе. Прочность на сжатие увеличивается с увеличением количества дней выдержки. Прочность на 7-й день составляла 2,2 МПа, что составляло лишь 62,9% от стандартного отверждения, и достигла стандартной прочности 7 th , когда количество дней достигло 13.
6. Сравнение закона увеличения прочности и установление зрелости-прочности Модель
6.1. Сравнение закона увеличения прочности при четырех условиях отверждения
На рисунке 11 представлены сравнения кривых увеличения прочности на сжатие при различных условиях отверждения. Можно сделать следующие выводы: (1) Во всех четырех случаях прочность на сжатие увеличивалась с увеличением времени отверждения. Прирост скорости отверждения при низкой температуре был ниже, чем при отверждении при стандартной температуре отверждения. Коэффициенты усиления можно отсортировать в порядке убывания (от высокого к низкому): отверждение при стандартной температуре> отверждение при естественной температуре на открытом воздухе> отверждение при постоянной низкой температуре> отверждение при дневной интерактивной температуре, в котором разница между двумя последними была незначительной.(2) Кривые увеличения прочности для четырех случаев соответствовали логарифмической кривой с видом функции. После калибровки модели было обнаружено, что средний коэффициент усиления для стандартной температуры составлял a = 1,0152, для постоянной низкой температуры 10 ° C он составлял a = 1,4635, для дневной интерактивной температуры он составлял a. = 1,5106, а для естественной температуры наружного воздуха средний коэффициент усиления составил a = 1,6107. (3) Для достижения той же силы 3.При 5 МПа количество дней, необходимое для каждого из этих четырех случаев, было показано следующим образом: 7 дней для стандартной температуры, 14 дней для постоянной низкой и дневной температуры взаимодействия и 13 дней для температуры наружного воздуха. (4) 7 th day стандартная прочность достигла 3,5 МПа, в то время как остальные три составляли 2,2 МПа, 2,1 МПа и 2,2 МПа, соответственно, что составляло только 62% или около того. (5) Среди трех случаев низкотемпературного отверждения Кривые постоянной низкой температуры и естественной наружной температуры были такими же до 11 -го дней, оба из которых также были очень близки к случаю дневной температуры взаимодействия, хотя дневной интерактивный прирост был самым медленным среди этих трех случаев.Теория зрелости будет использована для объяснения этого результата в следующем разделе.
6.2. Оценка и прогноз модели зрелости-прочности
Смесь щебня, стабилизированная цементом, состоит в основном из цемента, рассортированного щебня и воды. По составу аналогичен цементобетону. Единственная разница заключается в дозировке цемента. Теория зрелости широко используется для прогнозирования прочности цементного бетона. Таким образом, с точки зрения состава материала, функция прогнозирования может быть установлена на основе теории зрелости для прогнозирования прочности на сжатие 5% -ной цементно-стабилизированной смеси щебня.Поскольку цементно-стабилизированный щебень можно рассматривать как цементный бетон с низкой дозой цемента, есть четыре функции, которые можно использовать на основе существующих исследований цементного бетона, включая степенную функцию, логарифмическую функцию, экспоненциальную функцию и гиперболическую функцию [25 ].
Зрелость трех экспериментов в помещении была рассчитана и показана в таблицах 4 и 5. Взаимосвязь между зрелостью и силой в трех случаях показана на рисунке 12. Кажется, что логарифмические функции являются лучшими прогностическими кривыми во всех трех случаях. и, следовательно, он использовался в качестве предпочтительной функции для цементно-стабилизированной щебеночной смеси.Кроме того, путем объединения данных по всем трем случаям и разработки единой прогнозной модели параметры a = 1,9358 и b = 12,183 были получены путем аппроксимации данных прочности на сжатие и зрелости, а коэффициент корреляции составил R . 2 = 0,9907. Короче говоря, модель прогнозирования зрелости и прочности 5% цементно-стабилизированной щебеночной смеси была.
|
|
Для случаев естественного отверждения на открытом воздухе данные центрального положения использовались для расчета зрелости. Следует отметить, что один час использовался в качестве диапазона температур, затем накапливались в один день и снова накапливались по дням, чтобы получить стоимость погашения.Используя полученную функцию для прогнозирования прочности на сжатие при отверждении на открытом воздухе, результаты были показаны в таблице 6. Обратите внимание, что эти результаты были очень близки к испытанной прочности, а коэффициент корреляции достиг 99,865%, что ясно указывает на высокий точность модели. Согласно модели, прочность на сжатие при низкотемпературном отверждении может быть спрогнозирована по достижении зрелости, что дает ориентир для расчета прочности и определения графика строительного проекта для инженерных приложений.
|
7. Заключение
В настоящем исследовании обсуждается закон увеличения прочности на сжатие 5% -ного цементного щебня при низкотемпературном отверждении, с особым акцентом на отверждение при различных температурах, которые аналогичны различным температурам воздуха в реальный мир.
В этой статье были проведены эксперименты при трех вариантах отверждения при температуре в помещении и одном естественном отверждении на открытом воздухе. Экспериментальные результаты показали, что прочность на сжатие увеличивалась с увеличением времени отверждения во всех четырех случаях и что скорость увеличения при низкой температуре была меньше, чем при стандартной температуре. Коэффициенты усиления можно отсортировать в порядке убывания: отверждение при стандартной температуре> отверждение при естественной температуре на открытом воздухе> отверждение при постоянной низкой температуре> отверждение при дневной интерактивной температуре.Стандартная прочность достигла 3,5 МПа на 7 -й -й день, в то время как остальные составляли только 62% или около того. Численные результаты также показали, что для достижения той же прочности 3,5 МПа количество дней, необходимых для каждого случая низкой температуры, составило 14 дней как для постоянной низкой, так и для дневной температуры взаимодействия и 13 дней для температуры наружного воздуха.
Согласно температурным данным и информации о прочности, собранной в ходе нескольких испытаний в помещении, была создана оценочная модель для прогнозирования прочности на основе теории зрелости.Доказано, что модель обладает способностью прогнозировать с высокой точностью на основе подтвержденных результатов, полученных на основе данных наружных испытаний.
По мере развития направления исследований в будущем характеристики, связанные с прочностью на сжатие в долгосрочной перспективе, также могут быть исследованы с большим количеством данных, собранных с течением времени.
Доступность данных
Данные, использованные для подтверждения выводов этого исследования, можно получить у соответствующего автора по запросу.
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов.
Благодарности
Авторы выражают искреннюю благодарность Национальной программе ключевых исследований и разработок Китая (2017YFF0205600) за финансовую поддержку.
Как оценить прочность бетона на месте
Бетон должен набрать достаточную прочность, чтобы выдерживать свой вес и строительные нагрузки, прежде чем снимать опалубку, перекладывать шоры или задвигать. Инженеры часто определяют минимальную прочность бетона на месте, прежде чем подрядчики смогут выполнить последующее натяжение, засыпать стены, открыть тротуары для движения или прекратить защиту в холодную погоду.По этим причинам подрядчики должны знать, как правильно оценить прочность бетона на месте для недавно уложенного бетона, особенно в холодную погоду. В противном случае безопасность рабочих и качество конструкции могут быть поставлены под угрозу.
Испытательные цилиндры для испытаний в полевых условиях и коэффициенты зрелости часто используются для оценки прочности бетона на месте. Однако испытание цилиндров, отвержденных в полевых условиях, является стандартной процедурой, установленной строительными нормами. Другие методы — включая факторы зрелости и монолитные цилиндры для плит, сопротивление проникновению и прочность на вырыв — требуют одобрения архитектора / инженера и могут потребовать одобрения строительного чиновника.
Температура и время
Прирост прочности бетона зависит от комбинации температуры и времени выдержки. Скорость гидратации или химической реакции между цементом и водой зависит от температуры бетона. По мере повышения температуры бетона скорость гидратации и, как следствие, увеличение прочности увеличивается. И наоборот, скорость набора прочности снижается с понижением температуры бетона. По этой причине замедленная прочность бетона является обычным явлением в холодную погоду, если подрядчики не соблюдают меры предосторожности.Конечно, прочность бетона со временем увеличивается, если есть соответствующие условия отверждения, способствующие гидратации.
Полевые испытательные цилиндры
Стандартное и полевое отверждение — это разные процедуры, определенные ASTM C31 для отверждения бетонных испытательных цилиндров. Испытательные цилиндры стандартного отверждения, иногда называемые цилиндрами лабораторного отверждения, представляют идеальную или номинальную прочность бетона. Диапазон температур для стандартного отверждения составляет от 60 ° F до 80 ° F в течение периода до 48 часов (начальное отверждение) и 73.5 ± 3,5 ° F для баланса 28-дневного периода отверждения (окончательное отверждение) для бетонов с указанной прочностью до 6000 фунтов на квадратный дюйм. Бетон с указанной прочностью 6000 фунтов на квадратный дюйм или выше должен соответствовать более жесткому диапазону температур от 68 ° F до 78 ° F для начального отверждения. Для стандартного отверждения температура и время стандартизированы для обеспечения однородных условий отверждения. Вот почему значения прочности, полученные из испытательных цилиндров стандартного отверждения, используются для определения прочности бетона.
Полевое отверждение отличается от стандартного.Он заключается в хранении испытательных цилиндров как можно ближе к бетону на месте и защите цилиндров от элементов таким же образом, как и бетон на месте. Условия отверждения испытательных цилиндров должны быть такими же, как и условия отверждения монолитного бетона. Подвергая испытательные цилиндры той же зависимости температуры от времени, что и бетон на месте, предполагается, что прочность испытательных цилиндров представляет собой прочность бетона на месте.
Испытательные цилиндры, отверждаемые в полевых условиях, обычно недооценивают истинную прочность бетона на месте из-за тепловой массы испытательного цилиндра (4 дюйма.x 8 дюймов или 6 дюймов x 12 дюймов) по сравнению со значительно большей тепловой массой представленного бетонного элемента. Как правило, температуры отверждения для испытательных цилиндров ниже, чем фактические температуры бетона на месте, даже когда испытательные цилиндры заправлены под отверждаемое одеяло и хранятся рядом с представленным бетоном.
Значения прочности, полученные на испытательных цилиндрах, отвержденных в полевых условиях, обычно являются консервативными. Тем не менее, отвержденные в полевых условиях цилиндры могут сильно завышать прочность бетона на месте, если отвержденные в полевых условиях цилиндры хранятся и отверждаются в рабочем прицепе.
За некоторыми исключениями, прочность цилиндров стандартного отверждения выше прочности цилиндров, отвержденных в полевых условиях, поскольку стандартные температуры отверждения обеспечивают более высокие скорости гидратации и увеличения прочности, чем при типичных температурах отверждения в полевых условиях. По этой причине всегда используйте цилиндры стандартной прочности для определения прочности бетона. Что еще более важно, используйте только прочность цилиндров, отверждаемых в полевых условиях, для принятия строительных решений, таких как определение того, когда следует снимать опалубку и опоры, начинать последующее натяжение или определять, когда вводить конструкцию в эксплуатацию.Никогда не используйте испытательные цилиндры стандартного отверждения вместо испытательных цилиндров, отвержденных в полевых условиях. Неспособность правильно оценить прочность бетона на месте может поставить под угрозу безопасность рабочих и привести к повреждению конструкции.
Метод погашения
Метод зрелости (ASTM C1074) более точен, надежен и экономичен для оценки прочности бетона на месте, чем испытательные цилиндры, отверждаемые в полевых условиях. Он основан на концепции, согласно которой температура и время отверждения бетона напрямую связаны с прочностью бетона.В частности, этот метод использует заранее установленное соотношение температура-время-прочность для данной бетонной смеси для оценки прочности бетона на месте.
Шаги по оценке прочности бетона на месте с использованием метода зрелости включают:
1. Подготовьте не менее 15 цилиндров для лабораторных испытаний и вставьте датчики температуры, по крайней мере, в два цилиндра для данной бетонной смеси, отвердите при комнатной температуре и вычислите коэффициенты зрелости M (t) для различного времени, соответствующего испытаниям на прочность с использованием следующее уравнение:
M (t) = СУММ (Ta минус To) Δt
где:
M (t) = коэффициент зрелости в возрасте (t), градусы – часы, ° F – ч
Δt = временной интервал, час
Ta = средняя температура бетона за интервал времени (Δt), ° F
To = температура, ниже которой не происходит увеличения прочности, ° F (от 14 ° F до 32 ° F)
Затем создайте гладкую кривую зависимости прочности от зрелости, построив рассчитанные коэффициенты зрелости M (t) в зависимости от соответствующей прочности бетона.
2. Измерьте зависимость температуры и времени бетона на месте путем встраивания датчиков температуры в критические места в зависимости от степени воздействия бетона и условий нагрузки.
3. Считайте данные температура-время и рассчитайте коэффициент зрелости для прошедшего времени бетона на месте, используя уравнение коэффициента зрелости M (t). Современное оборудование для погашения автоматически рассчитывает и записывает коэффициенты погашения.
4. Оцените прочность бетона на месте, введя предварительно установленную кривую зависимости прочности от зрелости с вычисленным M (t) для бетона на месте и считайте расчетную прочность, как показано на Рисунке 1.Опять же, этот шаг обычно выполняется автоматически с помощью современного современного оборудования и программного обеспечения.
Пример
Из-за приближения холодного фронта подрядчик установил датчики температуры в стене, помещенные в 9:00 1 сентября. Поставщик бетона предоставил кривую зависимости зрелости от прочности для используемого бетона, как показано на Рисунке 1. Технические характеристики для Проект требовал минимальной прочности бетона 3000 фунтов на квадратный дюйм перед укладкой и уплотнением обратной засыпки у стены.
Как показано в Таблице 1, прошедшее время и температура бетона на месте были записаны в столбцах 2 и 3 для дат, указанных в столбце 1. Используя столбец 3, средние температуры бетона на месте были вычислены и записаны в столбец 4. Затем, подрядчик вычел 23 ° F, или температуру, при которой рост прочности практически прекращается, из средних температур, показанных в столбце 4, и ввел скорректированные температуры в столбец 5. Истекшее время в часах из столбца 2 было вычислено и введено в столбец 6.Затем подрядчик умножил температуры в столбце 5 на истекшее время в столбце 6 и ввел значения (° F-h) в столбец 7. Для столбца 8 были вычислены совокупные коэффициенты зрелости и введены для различных прошедших периодов времени.
Наконец, подрядчик ввел предварительно установленную кривую зависимости прочности от зрелости (рис. 1), предоставленную поставщиком бетона с учетом совокупных коэффициентов зрелости на месте из столбца 8, и прочитал соответствующие значения прочности бетона на месте.Расчетная прочность бетона на месте была введена в столбец 9 (например, для коэффициента зрелости 5070 ° F-ч соответствующая прочность бетона составила 3100 фунтов на квадратный дюйм из Рисунка 1).
Поскольку спецификации требовали прочности бетона не менее 3000 фунтов на квадратный дюйм для обеспечения достаточной прочности стены для установки обратной засыпки, подрядчик должен подождать, пока бетон достигнет коэффициента зрелости не менее 5000 ° F в час. Чтобы сократить период отверждения, подрядчик может использовать горячую воду для замеса, добавить химически ускоряющую добавку к бетону или добавить дополнительные теплоизоляционные покрытия, чтобы можно было генерировать и поддерживать больше тепла.
Ограничения
Ошибочные оценки прочности могут произойти, если бетон на месте значительно отличается от бетона, используемого для построения предварительно установленной кривой зависимости температуры от времени и прочности. Изменения в материалах, содержании воды и воздуха, а также в точности дозирования могут привести к ошибкам при оценке прочности. ASTM C1074 рекомендует проводить дополнительные испытания для периодической проверки кривой зависимости температуры от времени и прочности, особенно когда опасные для жизни строительные работы основаны на расчетной прочности бетона на месте.
Список литературы
ACI306R-10 Руководство по бетонированию в холодную погоду, Американский институт бетона, www.concrete.org, Mindness, S., Young, J.F, and Darwin, D., Concrete, 2nd Edition, Prentice Hall, 2003.
Ким Башам, PhD, P.E. FACI является президентом компании KB Engineering LLC, которая предоставляет инженерные и научные услуги бетонной промышленности. Бэшем также проводит семинары и мастер-классы, посвященные всем аспектам бетонных технологий, строительства и устранения неисправностей.С ним можно связаться по электронной почте [email protected].
Вот несколько альтернатив испытательным цилиндрам, отверждаемым в полевых условиях, для оценки прочности бетона на месте.
ASTM C31 / C31M-12 Стандартная практика изготовления и отверждения бетонных образцов для испытаний в полевых условиях — Описано в этой статье.
ASTM C873 / C873M-10a Стандартный метод испытаний прочности на сжатие бетонных цилиндров, отлитых на месте в цилиндрических формах. — Включает в себя заливку на месте испытательных цилиндров в плиты, только с глубиной от 5 до 12 дюймов.
ASTM C803 / C803M-03 (2010) Стандартный метод испытаний на сопротивление проникновению затвердевшего бетона — Включает в себя выстреливание штифтов в бетон с помощью инструмента с механическим приводом и проникновение измерительного штифта.
ASTM C900-06 Стандартный метод испытаний прочности на вырыв затвердевшего бетона — Перед укладкой бетона требуется установка болтов в опалубку.
ASTM C1074-11 Стандартная практика для оценки прочности бетона по методу зрелости — Описано в этой статье.
Все, что вам нужно знать о прочности бетона
Бетон многие считают прочным и долговечным материалом, и это справедливо. Но есть разные способы оценки прочности бетона.
Возможно, что еще более важно, каждое из этих прочностных свойств придает бетону различные качества, что делает его идеальным выбором в различных случаях использования.
Здесь мы рассмотрим различные типы прочности бетона, почему они важны и как они влияют на качество, долговечность и стоимость бетонных проектов.Мы также демонстрируем разницу в прочности между традиционным бетоном и новой инновационной технологией бетона — бетоном со сверхвысокими характеристиками (UHPC).
Терминология: Прочностные свойства бетона и почему они важны
Прочность бетона на сжатие
Это наиболее распространенное и общепринятое измерение прочности бетона для оценки характеристик конкретной бетонной смеси. Он измеряет способность бетона выдерживать нагрузки, которые уменьшают размер бетона.
Прочность на сжатие испытывают путем разрушения цилиндрических образцов бетона на специальной машине, предназначенной для измерения этого типа прочности. Он измеряется в фунтах на квадратный дюйм (psi). Тестирование проводится в соответствии со стандартом C39 ASTM (Американское общество испытаний и материалов).
Прочность на сжатие важна, поскольку это главный критерий, используемый для определения того, будет ли конкретная бетонная смесь соответствовать потребностям конкретной работы.
Бетон, фунт / кв. Дюйм
фунтов на квадратный дюйм (psi) измеряет прочность бетона на сжатие.Более высокое значение psi означает, что данная бетонная смесь прочнее, поэтому обычно она дороже. Но эти более прочные бетоны также более долговечны, то есть служат дольше.
Идеальный бетонный фунт на квадратный дюйм для данного проекта зависит от различных факторов, но абсолютный минимум для любого проекта обычно начинается от 2500 до 3000 фунтов на квадратный дюйм. Каждая бетонная конструкция имеет обычно приемлемый диапазон фунтов на квадратный дюйм.
Бетонные опоры и плиты на уровне грунта обычно требуют плотности бетона от 3500 до 4000 фунтов на квадратный дюйм. Подвесные плиты, балки и фермы (часто встречающиеся в мостах) требуют от 3500 до 5000 фунтов на квадратный дюйм.Традиционные бетонные стены и колонны, как правило, имеют диапазон от 3000 до 5000 фунтов на квадратный дюйм, в то время как для дорожного покрытия требуется от 4000 до 5000 фунтов на квадратный дюйм. Бетонным конструкциям в более холодном климате требуется более высокое давление на квадратный дюйм, чтобы выдерживать большее количество циклов замораживания / оттаивания.
Прочность на сжатие обычно проверяется через семь дней, а затем снова через 28 дней для определения psi. Семидневный тест проводится для определения раннего прироста силы, а в некоторых случаях его можно проводить уже через три дня.
Но конкретные psi основаны на результатах 28-дневных испытаний, как указано в стандартах Американского института бетона (ACI).
Прочность бетона на разрыв
Прочность на растяжение — это способность бетона противостоять разрушению или растрескиванию при растяжении. Это влияет на размер трещин в бетонных конструкциях и степень их возникновения. Трещины возникают, когда растягивающие усилия превышают предел прочности бетона.
Традиционный бетон имеет значительно более низкую прочность на разрыв по сравнению с прочностью на сжатие. Это означает, что бетонные конструкции, испытывающие растягивающее напряжение, должны быть усилены материалами с высокой прочностью на разрыв, такими как сталь.
Непосредственно проверить прочность бетона на разрыв сложно, поэтому используются косвенные методы. Наиболее распространенными косвенными методами являются прочность на изгиб и разделенная прочность на растяжение.
Прочность бетона на раздельное растяжение определяют с помощью испытания на раздельное растяжение бетонных цилиндров. Испытание следует проводить в соответствии со стандартом ASTM C496.
Прочность бетона на изгиб
Прочность на изгиб используется как еще один косвенный показатель прочности на разрыв.Он определяется как мера неармированной бетонной плиты или балки, способная противостоять разрушению при изгибе. Другими словами, это способность бетона противостоять изгибу.
Прочность на изгиб обычно составляет от 10 до 15 процентов прочности на сжатие, в зависимости от конкретной бетонной смеси.
Существует два стандартных теста ASTM, которые используются для определения прочности бетона на изгиб — C78 и C293. Результаты выражаются в модуле разрыва (MR) в фунтах на квадратный дюйм.
Испытания на изгиб очень чувствительны к приготовлению, обращению и отверждению бетона. Испытание следует проводить, когда образец влажный. По этим причинам результаты испытаний прочности на сжатие чаще используются при описании прочности бетона, поскольку эти числа более надежны.
Дополнительные факторы
Прочие факторы, влияющие на прочность бетона, включают:
Соотношение вода / цемент (Вт / см)
Относится к соотношению воды и цемента в бетонной смеси.Более низкое соотношение воды и цемента делает бетон более прочным, но также затрудняет работу с ним.
Необходимо соблюдать правильный баланс для достижения желаемой прочности при сохранении удобоукладываемости.
Дозировочный
Традиционный бетон состоит из воды, цемента, воздуха и смеси песка, гравия и камня. Правильная пропорция этих ингредиентов является ключом к достижению более высокой прочности бетона.
Бетонную смесь со слишком большим количеством цементного теста легко залить, но она легко потрескается и не выдержит испытания временем.И наоборот, при слишком малом количестве цементного теста получается грубый и пористый бетон.
Смешивание
Оптимальное время перемешивания важно для прочности. Хотя прочность имеет тенденцию увеличиваться со временем перемешивания до определенного момента, слишком долгое перемешивание может фактически вызвать испарение избыточной воды и образование мелких частиц в смеси. В результате бетон становится труднее работать и становится менее прочным.
Не существует золотого правила для оптимального времени перемешивания, так как оно зависит от многих факторов, таких как: тип используемого миксера, скорость вращения миксера, а также конкретные компоненты и материалы в данной партии бетона.
Методы отверждения
Чем дольше бетон остается влажным, тем он прочнее. Для защиты бетона необходимо соблюдать меры предосторожности при отверждении бетона при очень низких или высоких температурах.
Неопровержимые факты: традиционный бетон против UHPC
Доступна новая технология производства бетона, которая имеет более высокие прочностные характеристики, чем традиционный бетон, во всех диапазонах прочности. Этот инновационный материал называется бетоном со сверхвысокими характеристиками (UHPC), и он уже внедряется во многих инфраструктурных проектах штата и федерального правительства, учитывая его исключительную прочность и долговечность.
UHPC очень похож на традиционный бетон по составу. Фактически, примерно от 75 до 80 процентов ингредиентов одинаковы.
Что делает UHPC уникальным, так это интегрированные волокна. Эти волокна добавляются в бетонную смесь и составляют от 20 до 25 процентов конечного продукта.
Волокна варьируются от полиэстера до стержней из стекловолокна, базальта, стали и нержавеющей стали. Каждое из этих интегрированных волокон создает все более прочный конечный продукт, причем сталь и нержавеющая сталь обеспечивают наибольший прирост прочности.
Вот более подробное сравнение UHPC с традиционным бетоном:
- Прочность на разрыв —UHPC имеет предел прочности на разрыв 1700 фунтов на квадратный дюйм, в то время как у традиционного бетона обычно измеряется от 300 до 700 фунтов на квадратный дюйм.
- Прочность на изгиб —UHPC может обеспечить прочность на изгиб более 2000 фунтов на квадратный дюйм; Традиционный бетон обычно имеет прочность на изгиб от 400 до 700 фунтов на квадратный дюйм.
- Прочность на сжатие — Повышенная прочность на сжатие UHPC особенно важна по сравнению с традиционным бетоном.В то время как традиционный бетон обычно имеет прочность на сжатие в диапазоне от 2500 до 5000 фунтов на квадратный дюйм, UHPC может иметь прочность на сжатие до 10 раз больше, чем у традиционного бетона.
Всего через 14 дней отверждения UHPC имеет прочность на сжатие 20 000 фунтов на квадратный дюйм. Это число увеличивается до 30 000 фунтов на квадратный дюйм при полном отверждении в течение 28 дней. Некоторые смеси UHPC даже продемонстрировали прочность на сжатие 50 000 фунтов на квадратный дюйм.
Другие преимущества UHPC включают:
- Устойчивость к замерзанию / оттаиванию — Исследования показали, что UHPC выдерживает более 1000 циклов замораживания / оттаивания, в то время как традиционный бетон начинает разрушаться всего за 28 циклов.
- Ударопрочность —UHPC может поглощать в три раза больше энергии, чем обычный бетон. При ударной нагрузке UHPC был вдвое прочнее обычного бетона и рассеивал до четырех раз больше энергии. Это делает материал отличным кандидатом для сейсмостойких мостов и зданий.
- Влагостойкость — Из-за более высокой плотности, чем у традиционного бетона, воде труднее проникать в сверхвысокий полиэтилен.
- Пластичность —UHPC может быть растянут на более тонкие секции под действием растягивающего напряжения, в отличие от обычного бетона.
- Более длительный срок службы —UHPC служит более 75 лет по сравнению с 15–25 годами для традиционного бетона.
- Меньший вес — Несмотря на то, что UHPC прочнее, требуется меньше материала, поэтому торцевая конструкция легче, что снижает требования к опорам и опорам.
Неудивительно, что UHPC используется во многих американских инфраструктурных проектах для ремонта стареющих мостов и дорог страны. Материал увеличивает срок службы мостов, снижая общую стоимость жизненного цикла этих конструкций.