Различие газобетона и пенобетона: что выбрать для строительства дома и основные характеристики материалов

Содержание

Пенобетон и газобетон: сравнение характеристика. Различия между пенобетоном и газобетоном

Перед постройкой жилища необходимо задать себе вопрос, из какого материала будет строится дом. Учитываются многие факторы: климатические условия, материальные возможности, предназначение постройки. От материала зависит крепость и комфортность сооружения. Необходимо учитывать, чтобы стены дома были пожаробезопасными, экологически чистыми, защищали от шума. Очень часто становится вопрос, что приобрести: пенобетон или газобетон. Казалось бы, особой разницы нет, но давайте рассмотрим внимательно, так ли это. Может, какой – то из этих материалов приоритетнее и почему.

Оглавление:

  1. Преимущества газобетона
  2. Преимущества пенобетона
  3. Состав пенобетона
  4. Состав газобетона
  5. Различие между пенобетоном и газобетоном
  6. Недостатки пенобетона
  7. Недостатки газобетона
  8. Сравнение пенобетона и газобетона

Преимущества газобетона

При выборе между газобетоном, пенобетоном, кирпичом или деревом необходимо учитывать преимущества каждого из материалов. Говоря о газобетоне, стоит отметить, что для возведения дома из данного продукта не обязательно обладать навыками строительства. Постройки из газобетона легко возводить, отделывать, осуществлять ремонты и перепланировки. Из – за этого, газобетон широко применяется в современном строительстве.  Изготавливается газобетон из извести, песка и цемента. Это искусственно созданный стройматериал, с пористой структурой, более чем на восемьдесят процентов наполнен воздухом и газом. Благодаря таким особенностям газобетон имеет низкую теплопроводность, небольшой вес, легкость в использовании и обработке.

Среди основных преимуществ газобетона можно выделить следующее:

  • невысокая стоимость – газобетон считается одним из самых недорогих материалов для строительства домов;
  • отличные теплоизоляционные способности – материал превосходно сохраняет тепло, что дает возможность уменьшить затраты на отопление  зимой, и не чувствовать высоких температур летом;
  • легкость в использовании – с газобетоном легко работать, даже новичок сможет осуществить кладку из газобетона, он достаточно большой, легкий, что дает возможность перевозить, укладывать, разрезать и шлифовать поверхность;
  • паропроницаемость – структура блоков обеспечивает оборот пара из помещения наружу;
  • использование газобетона позволяет возвести постройку в один слой без дополнительного утепления;
  • очень быстро высыхает, не рекомендуется покрытие штукатуркой, которая перекроет доступ воздуха;
  • безопасный для здоровья, нетоксичен, благодаря тому, что в основе изготовления только натуральные материалы;
  • помогает возвести добротный качественный дом.

Газобетон позволяет построить:

  • перегородки;
  • внешние стены;
  • внутренние несущие стены;
  • стены для армирования.

Основные характеристики газобетона:

  • высокая теплопроводность;
  • плотность;
  • прочность, зависящая от плотности;
  • огнеупорность;
  • паропроницаемость;
  • звукоизоляция;
  • большие размеры.

Дома из газобетона отличаются прочностью, не подвергаются атакам грызунов, обладают высокими показателями теплоизоляции.

Преимущества пенобетона

Пенобетон – материал, который служит для изготовления домов. Основные требования, выставляемые к современным продуктам для постройки домов, являются:

  • невысокая стоимость материала;
  • долгий срок службы;
  • высокий уровень теплоизоляции.

Пенобетон идеально подходит под эти требования. Материал сравнительно недорогой, срок службы блоков составляет более восьмидесяти лет, материал способен выдержать даже самые суровые зимы, при этом способен удерживать тепло.

Пенобетон относится к группе ячеистых бетонов с высокими показателями теплоизоляции. Изготавливается блок путем смешивания цементного раствора, песка, воды и алюминиевой пудры. Именно пудра вступает в реакцию с другими компонентами и придает составу вспененный вид. В середине материала оказывается большое количество воздуха, который придает такие высокие теплоизоляционные способности блокам.

Говоря о достоинствах пенобетона, стоит отметить следующие преимущества сырья:

  • способность пропускать воздух, что позволяет поддерживать ы уровень влажности в помещении;
  • материал сравнительно небольшого веса, что уменьшает нагрузку на фундамент;
  • благодаря большим размерам блока постройка жилища осуществляется в более короткие сроки;
  • при возведении стен можно использовать заменитель раствора-клей, который обойдется дешевле;
  • наносить отделочный материал на стены из пенобетона гораздо легче, чем на поверхности из других материалов;
  • пеноблок экологически чистый материал, полностью безопасен для здоровья проживающих членов семьи;
  • обладает огнеупорной способностью, при возникновении пожара не возгорается.

Как видно из описанных достоинств продукта, пенобетон идеально подходит для строительства жилья и является конкурентом другим материалам для строительства.

Состав пенобетона

Пенобетон можно приобрести в строительном магазине или изготовит самостоятельно. Для этого необходимо изучить состав продукта. Как уже было сказано, в окончанию работы, получается блок, по своему составу и внешнему виду напоминающий губку для мытья посуды. Количество воздушных отсеков зависит от плотности материала и варьируется в зависимости от этого. Состав пенобетона регламентирован документом, именно он регламентирует количественное и качественное наполнение блока. Требования к материалу такие:

  • использование цемента особой марки, в составе которого отсутствуют примеси;
  • использование воды определенного количества и качества;
  • песок подходящего качества, содержание кварцевой части которого не должно превышать семьдесят процентов;
  • количество вспенивателей согласно рецептуре изготовления продукта.

В пенобетоне могут присутствовать вспениватели двух вариантов:

  • натуральный;
  • синтетический.

Использование натурального продукта позволяет получить блоки высокого качества и экологически безопасные. Искусственный вспениватель дает возможность уменьшить стоимость материала. Иногда используются дополнительные компоненты, такие как зола, фиброволокно.

Также существуют обычные стандартные пеноблоки и усиленные. Последние необходимы при высоких нагрузках на стены.

Состав газобетона

Газобетон – искусственный материал, предназначенный для возведения жилищ. Из него могут быть изготовлены внешние и внутренние стены. Благодаря своей пористой структуре материал не оказывает большую нагрузку на фундамент. Высокие теплоизоляционные способности делают данный материал широко востребованным.

Тип классификации газобетона зависит от его предназначения, формы, технологии изготовления и состава:

  • способ обработки материала может быть – автоклавный и неавтоклавный;
  • по своему предназначению блок могут быть материалом для теплоизоляции, для конструкции, и смешанные – конструкционно – теплоизоляционные;
  • по форме блока- У-образные прямые и с пазами.

Для изготовления блоков необходимо использовать:

  • песок;
  • цемент;
  • воду;
  • гипс, алюминий;
  • вода.

Как дополнительный компонент это может быть шлак или зола. В зависимости от дополнительных примесей, блоки разделяются на такие виды:

  • цементный;
  • шлаковый;
  • известковый;
  • зольный;
  • смешанный.

Газобетон – пористый и губкообразный материал. Для приготовления автоклавного блока, его специально обрабатывают в автоклавах для затвердения. Те блоки, которые застывали в естественных условиях, называются неавтоклавными. В отличии от автоклавных блоков, эти подвержены механическому влиянию в большей мере, поэтому рационально использовать неавтоклавные блоки при небольших нагрузках.

Различие между пенобетоном и газобетоном

На первый взгляд может показаться, что разницы между пенобетоном и газобетоном нет. С одной стороны, и первый и второй материал являются продуктом, называющимся ячеистый бетон.  Благодаря ячейкам и содержащемуся там воздуху, материал становится ценнее с физической и технической стороны. Каждый из этих видов бетона бывает изготовленным автоклавным, искусственным, или неавтоклавным, естественным, способами. Автоклавный требует использования специального оборудования для затвердения сырья, а неавтоклавный доходит до кондиции в естественных условиях. Между пенобетоном и газобетоном большая разница, проявляющаяся в таких особенностях:

  • состав продуктов;
  • характеристики;
  • эксплуатационные способности.

Недостатки пенобетона

Даже обладая таким количеством полезных свойств, пенобетон имеет и свои недостатки, о которых многие не знают. Если вы решились возводить дом из пенобетона, изучите сильные и слабые стороны материала. Знание о минусах и недостатках, поможет вовремя устранить их и сориентироваться, чтобы после возведения готового проекта не возникли неприятные и неожиданные последствия.

Среди недостатков материала можно выделить такие:

  • состав – в основе пенобетона лежит алюминиевая пудра, которая вступает в реакцию с другими компонентами, и хотя производители утверждают, что данный состав полностью безопасен, лучше провести тщательные работы по отделке поверхности, хотя это увеличит стоимость строительства, но сможет обезопасить проживающих в жилище;
  • продукция для соединения блоков – чтобы блоки хорошо соединялись между собой и не разрушались швы, рекомендуется использовать не цементный раствор, а специальную клейкую основу, использование клея помогает усилить теплоизоляционные свойства постройки;
  • стоимость материалов для склеивания блоков – цена клея гораздо выше стоимости цементного раствора, это ощутимо увеличивает расходы на строительство, но также, с другой стороны, делает укладку блоков максимально качественной;
  • состав блока – так как в состав блоков входит известь, постепенно с течением времени она вызывает процессы окисления в арматурных соединениях дома, с годами прочность стены нарушается, чтобы этого избежать, рекомендуется покрывать арматуру антикоррозийным покрытием, что также существенно влияет на стоимость постройки.

Недостатки газобетона

Газобетон, прочно вошедший в строительную индустрию, часто используется для постройки частных жилищ. Для возведения дома не требуется особые знания или специальная техника. Структура блоков позволяет производить с ними различные манипуляции. Материал является пожаробезопасным и «дышащим».

Но даже при таком большом количестве положительных свойств материала, газобетон имеет много недостатков, которые следует учесть при возведении дома:

  • Повышенная влагопроницаемость и водопоглощение – это обусловлено структурой блоков, пористая внутренняя поверхность поглощает воду и накапливает ее, если не побеспокоится об этом на этапе строительства, то постепенное накопление большого количества влаги ухудшить качество материала и его свойства.
  • Недостаточная теплоизоляция – такая особенность материала появляется после того, как блоки накапливают влагу, но если была проведена достаточная гидроизоляция, то пустоты заполнены воздухом и это обеспечивает высокую гидроизоляцию. Также несли материал укладывался не на специальный клей, а на цементный раствор, его теплоизоляционные свойства будут снижены.
  • Высокая газопроницаемость позволяет стенам дышать, но так происходит только в теплое время года, при отрицательных температурах и сильных ветрах, тепловая защита газобетона снижается.
  • Недостаточная прочность блоков – из-за недостаточной прочности материала необходимо использовать специальный армирующий слой, опорная подушка. Это снижает тепловую защиту, а специальные дополнительные средства делают строительство дороже.
  • Низкая холодоустойчивость – влага, попавшая в поры материала приводит к снижению холодоустойчивых качеств, это можно предотвратить при качественно выполненной гидроизоляции.
  • Появление трещин – блоки недостаточно эластичны, они склонны к разломам, плохо переносит усадку фундамента, может ломаться в результате этого, через несколько лет появляются трещины. Это не становится причиной разрушения дома, но приводит к снижению качеств.
  • Плохое качество штукатурки – штукатурка, уложенная на блоки со временем разрушаются.

Недостатки газобетона можно сгладить при правильном использовании и наслаждаться уютным и качественным помещением. Можно найти большое количество предложений и объяснений, как устранить вероятные проблемы с продукцией в будущем.

Сравнение пенобетона и газобетона

Между пенобетоном и газобетоном существует разница, не только в технологии производства, но и в технических характеристиках материалов. Рассмотрим эти различия:

  • Блоки отличаются по составу: для изготовления газобетона используется известь, песок, цемент и вода, для пенобетона необходимы цемент, песок и пенообразователь.
  • Материалы отличаются по стоимости – пеноблоки стоят дешевле, не требуют специального клея для соединения поверхностей, как газоблоки.
  • Качество внешнего вида у материалов различное – у газобетонных блоков лучше соблюдена пропорция, чем у пеноблоков. Как результат, укладка облегчается, нет необходимости выравнивать ряды при помощи раствора.
  • Материалы отличаются по прочности, газобетон в несколько раз прочнее.
  • Из –за того, что структура пор в пенобетоне имеет закрытую форму, поверхность из пенобетона хуже «дышит». С другой стороны, он лучше удерживает тепло.
  • Пенобетон более устойчив к воздействию воды и защитить его при помощи гидроизоляции гораздо легче, чем газобетон.

Сделать выбор в пользу какого – то одного материала непросто. Оба варианта бетона обладает небольшим весом и не перегружают фундамент. У них отличная тепло и звукоизоляция по сравнению с другими строительными материалами. Большая поверхность блоков позволяет возвести жилье в короткий срок. Материалы не горят, не повреждаются грызунами, не гниют.

Ответить на вопрос, что из них лучше – не просто, да и однозначного ответа не получить – в некоторых случаях предпочтительнее использовать пеноблоки, в других – газоблоки.  Следует учитывать климатическую зону, погодные условия и многие другие объективные факторы.

Если у вас остались вопросы, как построить дом из газобетона или из подобного материала, посмотрите видео, там вы найдете ответы на все возникающие вопросы и сможете принять решение, какой материал лучше использовать в конкретно вашем случае.

в чем разница и как отличить блоки

Пенобетон (слева) и газобетон. На фото хорошо видно количество открытых пор

Пенобетон (слева) и газобетон. На фото хорошо видно количество открытых пор

Эти материалы привлекают застройщиков своей ценой, простотой и скоростью укладки. В чем разница, пенобетон и газобетон – оба легкие, обладающие высокими теплоизоляционными свойствами, ячеистые бетоны. Маркировка различных классов ячеистых бетонов означает их плотность.

Пример: для марок D500 и D800 показатель составит 500 и 800 кг/м3 соответственно. Прочность определяется классом, цифровой индекс указывает предельное усилие в МПа на разрушение материала. Пример: классы В2 и В3 — прочность составит 2 и 3 МПа соответственно, 1 МПа = 10,2 кгс/см2.

Ниже будут рассмотрены все отличительные особенности материалов.

Содержание статьи

Технология изготовления

Основной принцип общий — смешиваются цемент, песок и добавки, обеспечивающие образование пены. После этого, вещество застывает в разных условиях, и его можно использовать. Однако, особенности процесса производства обуславливают существенные отличия в возможностях материалов.

Пенобетон

В чем разница между пенобетоном и газобетоном? В большом количестве плохого пенобетона.

Производить его можно своими руками в сарае, с помощью электродрели. Часть производителей так и делает. В этом случае, не произойдет полного смешивания ингредиентов. Качественное сырье в мелких партиях имеет высокую цену. В целях экономии, покупают более дешевые составляющие — отсюда и результат.

Заводская мобильная установка для производства пенобетона

Заводская мобильная установка для производства пенобетона

Установка для производства пенобетона в "сарае", и это еще «хорошее» оборудование

Установка для производства пенобетона в «сарае», и это еще «хорошее» оборудование

Правильный процесс состоит из следующих этапов:

  1. В смеситель загружаются: чистая вода, портландцемент высоких марок прочности (от М400), просеянный песок и пенообразователь.
  2. Оборудование может находиться в производственном цехе или на стройплощадке.
  3. Компоненты тщательно смешиваются.
  4. Масса переходит во вспененное состояние, увеличивается в объеме и в ней образуются пустоты.
  5. Готовая смесь выгружается из смесителя и может использоваться по назначению.

Совет! Такая простота технологии приводит к тому, что пенобетон производят на приспособленном оборудовании из самого дешевого сырья. Не стоит в погоне за низкой ценой покупать продукт в сомнительном месте.

Применение пенобетона

Важно! Используя газобетон и пенобетон, разница состоит в том, что пенобетон позволяет производить изделия без разрезания заготовки. В результате, пенные пустоты остаются закрытыми, что резко снижает влагопроницаемость материала.

  • Наиболее простым методом применения пенобетона, является заливка монолитных конструкций, каркасов перекрытий и наливных полов. В этом случае, мобильную установку доставляют на объект.

Устройство наливного пола из пенобетона

Устройство наливного пола из пенобетона

  • Для производства пеноблоков, жидкую смесь разливают в формы и дают застыть. Каждая форма рассчитана на один блок.

На фото хорошо видны не полностью залитые формы. Нарушается геометрия блоков

На фото хорошо видны не полностью залитые формы. Нарушается геометрия блоков

Фибропенобетон

У материалов газобетон и пенобетон, разница способов производства не допускает внесение в тесто газобетона дополнительных составляющих. Пенобетон может быть армирован фиброволокном.

Такая добавка значительно улучшает эксплуатационные характеристики блоков или монолита, исключает риск растрескивания застывшей массы.

Характеристики фибропенобетона марки D500 по прочности на сжатие и изгиб

Характеристики фибропенобетона марки D500 по прочности на сжатие и изгиб

Как видно из таблицы, добавление фиброволокна может повысить прочность на изгиб в три раза. Этот показатель важен потому, что после постройки здание дает усадку. Нагрузка в это время распределяется в разных направлениях, и материал может треснуть.

Кроме того, грунт замерзает и оттаивает, дожди и грунтовые воды изменяют его влажность. В таких условиях фундамент может прогнуться, что повлечет за собой сдвиг стен.

Газобетон

Материал имеет два метода производства — автоклавный и неавтоклавный. Первый требует серьезного оборудования, и применяется только на крупных предприятиях. Второй схож с изготовлением пенобетона. По этому методу могут работать мелкие мастерские, или изготавливают газобетон своими руками.

Важно! Вспенивание газобетона происходит в результате химических реакций. Присутствие посторонних веществ нарушает процесс. По этой причине, армирующие элементы могут быть добавлены в смесь только в незначительном количестве.

Составляющие

Основные компоненты газобетона — портландцемент марки от М400 и выше, песок, негашеная известь, алюминиевая пудра и вода. Пропорции зависят от требующихся плотности и прочности конечного продукта. Могут добавляться различные специфические модификаторы.

Неавтоклавный газобетон

Самый простой метод, позволяющий получить наиболее дешевый ячеистый бетон. Вспенивание и отвердение вещества происходит в естественных условиях.

На практике осуществляется тремя способами:

  1. На объекте в обычной бетономешалке приготавливается раствор. Готовую массу заливают в опалубку монолитной конструкции или формы для блоков. Формы можно купить (на фото) или сделать своими руками.
    Газобетон из бетономешалки.

    Газобетон из бетономешалки

    Совет! Вспениваясь, масса увеличивается в объеме. Опалубку заполняют до половины, после отвердения доливают нужное количество. Заполнение форм для блоков устанавливается опытным путем, в зависимости от состава смеси.

  2. В условиях небольшого производства, изготавливаются более крупные заготовки, которые в дальнейшем разрезают на отдельные элементы.

Производство газобетонных блоков в мастерской

Производство газобетонных блоков в мастерской

Важно! При этом методе невозможно точно рассчитать количество смеси для каждой формы, и распределить массу ровным слоем без механического вмешательства. По мере вспенивания, вещество разравнивают и перекладывают излишки в незаполненные места. Такие действия существенно снижают качество блоков, так как нарушается естественный процесс.

Разрезание куба на блоки

Разрезание куба на блоки

Внимание! На резаных сторонах открываются пустоты, которые будут поглощать влагу. Требуется улучшить гидроизоляцию или использовать такие блоки для внутренних стен. При осмотре блока, следы разрезания будут хорошо видны на материале.

  1. На заводах начальная заготовка имеет огромные размеры. Большое количество раствора само создает необходимые для химической реакции условия.

Большой куб неавтоклавного газобетона

Большой куб неавтоклавного газобетона

Сравнение характеристик автоклавного и неавтоклавного газобетонов одной плотности

Сравнение характеристик автоклавного и неавтоклавного газобетонов одной плотности

В случае с неавтоклавным методом, анализируя пенобетон и газобетон, в чем разница определить не представляет труда.

  • Вспенивание и застывание неавтоклавного газобетона, происходит в естественных условиях, и является результатом химической реакции.
  • Пенобетон вспенивается механически, тяжелые частицы песка и цемента принудительно поднимаются в растворе.

Эти особенности не позволяют производить высокие марки прочности газобетона, доступные пенобетону. Рациональное применение неавтоклавного газобетона — заполнение монолитных и кладочных внутренних перегородок без несущей нагрузки.

Автоклавный

В этом случае, начальное тесто помещают в автоклав, где создают повышенное давление, температуру и влажность. В таких условиях, пена испытывает сопротивление и запекается в твердую решетку. В результате, может быть достигнута более высокая плотность.

Автоклавы для газобетона

Автоклавы для газобетона

Сравнивая, в чем разница между пенобетоном и газобетоном автоклавного способа производства, видна невозможность применения такого газобетона для монолитного строительства. Но этот газобетон имеет лучшие показатели по прочности на сжатие.

Газобетон и пеноблок - отличия

Газобетон и пеноблок — отличия

Однако, само вещество автоклавного газобетона представляет собой запекшуюся корку. Его прочность на изгиб практически равна нулю. Производители и продавцы газобетона никогда не публикуют сведения об этом показателе, или приводят фантастические цифры.

Справедливости ради следует отметить, что не хуже разбивается и неармированный пеноблок.

Справедливости ради следует отметить, что не хуже разбивается и неармированный пеноблок.

Чаще всего, применяется автоклавный газобетон для заполнения кладочных стен каркасных сооружений. Несущие конструкции из газобетона, используются только в малоэтажных зданиях.

Совет! Бытует мнение, что малая масса газобетонных блоков позволяет сэкономить на фундаменте. Не нужно увлекаться этой возможностью. Основание под несущими стенами из газобетона должно обеспечить 100% гарантию неподвижности сооружения. В противном случае, блоки могут лопнуть.

Цена газобетона и пенобетона одинаковых характеристик особо не отличается. Общая сумма расходов во многом зависит от доставки и качества материала.

Технические характеристики

Рассматривая, в чем разница между пенобетоном и газобетоном, стоит отметить, что одним из важнейших факторов является более высокая способность газобетона поглощать воду.

  • При образовании пены, в газобетоне выделяется газ. Прокладывая себе путь к выходу, молекулы создают пустоты, которые могут заполняться влагой.
  • В пенобетоне масса взбивается механически, ее «пузырьки» окружены раствором.

Водопоглощение газобетона

Водопоглощение газобетона

Водопоглощение пенобетона

Водопоглощение пенобетона

Важно! Используя газобетон, требуется повышение степени гидроизоляции.

В то же время, газобетон имеет более высокие показатели прочности на сжатие.

Прочность пенобетона на сжатие

Прочность пенобетона на сжатие

Характеристики автоклавного газобетона по прочности

Характеристики автоклавного газобетона по прочности

Разобраться, как отличить газобетон от пенобетона легко — пенобетон серый, гладкий, с небольшим количеством пор. Газобетон намного светлее, почти белый. По сторонам видны следы разрезания, имеет много открытых пор.

Видео в этой статье даст дополнительную информацию.

Блоки из пено- и газобетона

Эти строительные материалы могут иметь ряд существенных отличий. Кроме того, часто люди задают вопросы типа: «Газобетон и пеноблок — разница?». Они не имеют ответа, поскольку газобетон — это вещество, а пеноблок — готовое изделие.

Точность формы

Один из показателей сравнения, чем газобетонный блок отличается от пенобетонного блока, является высокая точность геометрических размеров первого. Обуславливается эта разница тем, что газобетонный куб разрезается на элементы прямыми линиями на стандартно настроенном оборудовании. Блоки из пенобетона отливаются в индивидуальных формах, которые могут иметь отличия.

Куб газобетона, разрезанный на блоки. Хорошо видно точное совпадение геометрии

Куб газобетона, разрезанный на блоки. Хорошо видно точное совпадение геометрии

Кроме того, чтобы избежать вытекающих из форм излишков, их не заполняют полностью, а оставляют пространство до края по принципу «на глазок». Фото приведено выше, в разделе «Применение пенобетона». Такая экономия приводит к нарушению размеров со стороны недолива смеси.

Возможные различия по форме

Сравнивая, чем газобетонный блок отличается от пенобетонного блока, следует отметить, что производятся газобетонные блоки только путем распиливания большого куба на отдельные элементы. Такой способ обуславливает исключительно прямоугольную форму изделий.

Блок из газобетона

Блок из газобетона

Смесь для блоков из пенобетона заливают в отдельные формы, что позволяет придать элементу любую конфигурацию. В частности, производятся блоки с пазогребневой системой стыков.

Такая конструкция увеличивает точность кладки, исключает продуваемость и промерзание швов. В то же время выпускаются и обычные, ровные блоки.

Пазогребневый замок

Пазогребневый замок

Комбинирование материалов

Сравнивая, чем газобетонный блок отличается от пенобетонного блока необходимо отметить возможность комбинирования пеноблока с другими материалами. В этом случае в форму помещают элемент, который следует соединить с пенобетоном, и заливают раствор. Таким образом, изготавливаются блоки, уже имеющие лицевую отделку.

Для газоблоков, вырезанных из большой заготовки, такое украшение недоступно. Задавшись вопросом — «пенобетон и газобетон в чем разница?» прежде всего требуется определить какие параметры имеют основное значение.

В следующей части будет предпринята попытка ответить на вопрос: «пенобетон или газобетон, что лучше?», и мы очень надеемся, что и наша следующая инструкция не останется без внимания.

Пенобетон и газобетон – в чем разница?

В возведении жилища своими силами может быть использован пенобетон и газобетон. Сегодня мы рассмотрим, в чем разница между ними, приведём плюсы и минусы, изучим другие важные аспекты. Если имеются вопросы, пользуйтесь формой комментариев ниже.

Плюсы газобетона

Что лучше – пеноблок или газоблок для дома, изучим в конце статьи. Начнём с того, что газоблок производится на основе цемента, извести, песка. Строительный материал создают искусственным путём, вследствие чего он на 80% состоит из газа и воздуха. Из газобетона строят внешние и несущие внутренние стены, перегородки, стены для армирования.

К положительным особенностям можно отнести следующие характеристики:

№1. Низкая ценовая политика

Этот стройматериал на сегодняшний день считается наиболее дешёвым, если сравнивать с другими аналогичными материалами.

№2. Простота в работе

Газоблок лёгок в использовании. Даже человек, не имеющий абсолютно никакого опыта, сможет провести работы собственноручно. Блоки большие и лёгкие, их можно шлифовать, резать, перевозить.

№3. Высокая пропускная способность пара

Если в помещении накапливается пар, за счёт воздушно-газовой структуры весь внутренний оборот выйдет наружу. Это позволяет поддерживать уровень влажности в помещении на необходимой отметке.

№4. Безопасность

Пенобетон и газобетон – искусственно созданные материалы. В чем разница, расскажем ниже. Но общая их черта заключается в безопасности и нетоксичности.

№5. Хорошая изоляция

Представленный материал обладает отличными изоляционными характеристиками, длительно держит тепло, благодаря чему в зимнее время можно снизить расходы на отопление жилища. В летнюю пору вам не придётся мучиться от жары, потому что блоки сохраняют прохладу.

№6. Нет необходимости в утеплении

Отличие пеноблока от газоблока в том, что лучше выбирать материал для однослойного строительства. Газобетон сдерживает тепло, его можно выложить однорядно, поэтому отсутствует необходимость в дополнительном утеплении.

№7. Быстрое высыхание

Отличается быстрой степенью высыхания. Специалисты не рекомендуют штукатурить эти блоки, чтобы не перекрывать поступление воздушных масс.

№8. Звукоизоляция, габариты, огнеупорность

Перечисленные выше характеристики сделают ваш дом тихим, не подверженным пожарам. Благодаря габаритам блоков удастся возвести качественное жилище без траты средств. Также газобетон не подвержен атакам грызунов.

Минусы газобетона

Пенобетон и газобетон – в чем разница между ними, спросите вы. Следует рассмотреть отрицательные характеристики, чтобы сделать собственные выводы дальше.

№1. Быстро поглощает влагу

Ранее уже упоминалось, что материал быстро сохнет. Это происходит за счёт ускоренного поглощения воды и влаги в целом. Жидкие массы накапливаются в полости блоков, поэтому те со временем лишаются своих теплоизоляционных характеристик.

№2. Нестабильная теплоизоляция

Имеется несколько нюансов в работе с блоками. Во-первых, если садить их на цемент, теплоизоляция снижается. Во-вторых, если не провести гидроизоляцию сразу после укладки газобетона, в полости блоков будет скапливаться влага. НО, соблюдение указанных условий полностью исключает этот минус.

№3. Разрушение

За счёт газовой структуры в порах скапливается влага, которая в холодное время замерзает, а затем оттаивает. Вместе с этим очень медленно разрушается структура блоков.

№4. Пропускание ветра

Положительной характеристикой считается то, что эти блоки «дышащие». Но при проживании в ветреных регионах данный плюс резко сменится минусом. Холодные потоки воздуха проникают в дом.

№5. Появление трещин

Пенобетон и газобетон – аналогичные материалы. В чем разница: через определённый срок фундамент даёт усадку, поэтому хрупкие газоблоки попросту трескаются. Это может происходить на протяжении нескольких лет. Соответственно, снижаются эксплуатационные характеристики жилища.

№6. Хрупкость

Сами блоки по своей структуре хрупкие и воздушные. При некорректной укладке есть риск повредить край или другой участок. Из-за хрупкости появляется необходимость создания опорной подушки или армирующего слоя.

№7. Не держится штукатурка

Используя пеноблок или газобетон, стоит знать, что лучше не покрывать штукатуркой второй тип блоков. Во-первых, она перекрывает подачу воздуха. Во-вторых, отпадает через определённый срок. Для строительства это важные аспекты.

Плюсы пенобетона

Пенобетон и газобетон широко распространены в строительстве. В чем разница, будем разбираться вместе. Пенобетон имеет высокие показатели теплоизоляции. Он относится к категории ячеистых бетонов. Пеноблок изготавливается посредством соединения песка, цементного раствора, алюминиевой пудры и воды.

№1. Пропускная способность

Пеноблок обладает хорошей пропускной способностью. Благодаря этому в доме поддерживается оптимальный уровень влажности.

№2. Небольшая масса

Рассматриваемый материал имеет относительно небольшую массу. Именно поэтому нагрузка на фундамент немного снижается.

№3. Большой размер

За счёт внушительного размера блока строительство протекает немного быстрее.

№4. Использование заменителей

При строительстве стен вместо классического раствора можно прибегнуть к специальному заменителю — клею. У него стоимость меньше.

№5. Хорошая поверхность

У пенобетона отличная поверхность для нанесения отделочных материалов в сравнении с другими блоками.

№6. Экологичность

Пенобетон выполняется исключительно из экологически чистых компонентов. Поэтому он полностью безопасен.

№7. Огнеупорность

Рассматриваемый строительный материал обладает прекрасной огнестойкостью. Поэтому если возникнет пожар, блок не загорится.

Пенобетон и газобетон – два отличных строительных материала. Каждый из них имеет свои плюсы и минусы. Поэтому изучите всё и поймёте, в чем разница.

Минусы пенобетона

Если вы не знаете, что лучше для строительства дома, необходимо ознакомиться со всеми тонкостями. После этого вы сможете выбрать газобетон или пенобетон.

№1. Обязательность отделки

Производители утверждают, что материал полностью безопасен для здоровья окружающих. Однако наличие алюминиевой пудры в составе блока вызывает сомнение. Поэтому лучше провести отделочные работы.

№2. Использование не цемента, а клея

Если вы будете использовать в качестве соединительного материала цемент вместо специального клея, то со временем на постройке появятся трещины и пострадает теплоизоляция.

Что выбрать – пеноблок или газоблок, мы рассмотрим дальше. В зависимости от характеристик трудно сказать, что лучше для строительства. Разберёмся со всем по порядку.

Что лучше – пенобетон или газобетон?

Chto-luchshe-penobeton-ili-gazobeton

Пенобетон и газобетон относятся к высококачественным строительным материалам. Рассмотрим отличие блоков и разберёмся, в чем разница. Два рассматриваемых материала имеют различия в процессе изготовления и технических характеристиках.

1. В газобетон входит известь, цемент, песок, вода, а в пенобетоне вместо извести применяется алюминиевая пудра (пенообразователь).

2. Стоимость блоков отличается. Пеноблоки имеют немного большую цену в отличие от газоблоков.

3. Если обращать внимание на внешний вид, то газобетонные блоки обладают лучшими пропорциями. Поэтому при их укладке нет необходимости выравнивать поверхность раствором.

4. Состав материалов отличается. Поэтому пенобетонные блоки уступают газоблокам по прочности в несколько раз.

5. Пенобетонные блоки обладают куда лучшей устойчивостью к влаге. К тому же, такой материал гораздо легче защитить посредством гидроизоляции. Подобными качествами не может похвастаться газобетон.

В статье мы рассмотрели пенобетон и газобетон. Выбор остаётся за вами, при необходимости изучите ещё раз, в чем разница. Оба материала по-своему хороши. Они сильно выигрывают по сравнению с другими строительными материалами по многим параметрам. Не забывайте учитывать и климатические условия области проживания.

сходства и отличия – Всё самое интересное!

В разделе: Коттедж | и в подразделах: кирпич, строительство. | Автор-компилятор статьи: Лев Александрович Дебаркадер

В разделе «Коттедж» мы затрагивали строительство коттеджей из дерева и разнообразных композитных материалов (Строительство и эксплуатация каркасных домов). Теперь давайте обратим внимание на такие инновационные материалы, как газобетон и пенобетон. А также их сходства и отличия. 

Кирпич, бетон и дерево – самые распространенные на Украине стройматериалы, из которых построено большинство коттеджей. Но интересно, что сейчас все более прочные позиции завоевывают пенобетонные и газобетонные блоки, сочетающие в себе лучшие качества этих материалов. 

Газобетон и пенобетон – сходства

Поскольку газобетон и пенобетон относятся к бетону с пустотами, то есть, ячейками, то собирательное название для газобетона и пенобетона – ячеистый бетон. Пористая структура ячеистых бетонов определяет их свойства. Ячеистый бетон представляет собой разновидность легкого бетона (плотностью менее 1800 кг/м3) с равномерно распределенными по объему сферическими порами диаметром 0,5-2 мм.

Микроструктура ячеистого пенобетона

Для производства бетона такого типа используют те же составляющие, что и для обычного бетона (цемент, кварцевый песок и вода), но добавляют еще один компонент – порообразователь, в качестве которого могут выступать разные вещества (например, алюминиевая пудра). Приготовленную такими способами массу заливают в формы большого размера, а когда она застынет, распиливают на блоки. 

Так, пенобетонные блоки можно

  • пилить ручной пилой,
  • штробить,
  • строгать,
  • фрезеровать и
  • сверлить.

То есть, пористая структура пенобетонных и газобетонных блоков облегчает их механическую обработку. 

А вот крепление к ячеистым бетонам оконных рам, дверных коробок и других изделий и приспособлений обычными дюбелями и тем более гвоздями не обеспечивает надежного соединения. Рекомендуется применять специальные дюбели с увеличенной распорной частью. Аналогичные дюбели следует использовать и при установке кронштейнов (например, для навесной мебели и техники). 

Нужно учитывать, что для повышения прочности и надежности конструкции дома в целом панели перекрытия должны опираться не на пенобетонные блоки, а на монолитный железобетонный пояс, создаваемый специально для этого в верхней зоне стены. 

Газобетон и пенобетон, если из них построен дом, совсем не обязательно облицовывать кирпичом. Для отделки фасада можно использовать паропроницаемую штукатурку, плитку, а также натуральный и искусственный камень, сайдинг. Хорошая обрабатываемость пенобетона резанием позволяет создавать идеально ровные фронтоны под любой угол наклона кровли, а также такие сложные по геометрии элементы, как полукруглые и многогранные эркеры. 

Поскольку воздух, находящийся в порах, сам по себе является хорошим теплоизолятором, ячеисто-бетонная стена толщиной 30 см по своим теплосберегающим характеристикам аналогична кирпичной кладке толщиной 1,7 м. А это означает, что такие стены не нуждаются в дополнительном утеплении.

Звукоизоляционные показатели у ячеистого бетона примерно в 10 раз выше, чем у кирпича. По огнестойкости – свойству сохранять при пожаре несущую способность – этот тип бетона тоже занимает более высокие позиции, чем кирпич. Как известно, кирпичные стены при пожаре утрачивают прочность и разрушаются. Ячеисто-бетонные же своих прочностных свойств не теряют – при восстановлении дома достаточно счистить копоть, заново возвести деревянные конструкции, кровлю и подремонтировать поврежденную штукатурку.

Газобетон и пенобетон

По паропроницаемости – способности пропускать водяной пар, всегда присутствующий в воздухе жилых помещений, – пенобетонные блоки приближаются к дереву, поэтому в домах из них легко дышится, а микроклимат близок к микроклимату деревянного дома. И плюс к тому материал, производимый из минерального сырья, не гниет, не горит и не размокает в воде, чем выгодно отличается от дерева. Один блок стандартных размеров (40 * 30 * 25 см) заменяет кладку из 15 стандартных кирпичей (25 * 12 * 6,5 см), что сокращает трудоемкость работ и ускоряет их примерно вчетверо.

Малая плотность материала (в среднем 600 кг/м3, что в три раза меньше, чем у кирпича) позволяет значительно снизить транспортно-монтажные расходы.  

Поскольку пенобетонный (и газобетонный) блок поглощает влагу, необходимо защитить наружную поверхность стены от воздействия атмосферных осадков. Однако сделать это надо так, чтобы не снизить паропроницаемость конструкции. В качестве такой защиты могут применяться паропроницаемая штукатурка (с последующим покрытием «дышащей» фасадной краской) или облицовка кирпичом, сайдинг. 

При этом необходимо предусмотреть вентилируемый зазор между стеной и облицовкой. Если отказаться от него, тогда пар, выходящий из ячеистого бетона, не имея возможности выбраться наружу, начнет конденсироваться на поверхности раздела, а то и в толще стен, что при замерзании приведет к их разрушению. Поверхности стен помещений с повышенной влажностью (ванная комната, кухня) также требуют защиты от влаги – облицовки их керамической плиткой.

Отличия газо- и пенобетона

Если при производстве ячеистого бетона в бетон добавляется порообразователь, который реагирует с компонентами бетона выделением газа, то смесь и становится пористой – в результате образуется газобетон

Если же добавляют специальные пеноагенты, то производят вспенивание механическим способом (типа миксером) – получается ячеистый пенобетон.

Следует заметить, что использование в производстве ячеистых бетонов разных порообразователей обеспечивает различные свойства получаемых материалов. 

Так, газобетон отличается значительной сквозной пористостью и газопроницаемостью (иными словами, поры в его толще соединены между собой «ходами»). То есть, стены из газобетона лучше «дышат». 

С другой стороны, пенобетон меньше впитывает атмосферную влагу, так как его поры замкнуты (изолированы друг от друга). Благодаря этому свойству он применяется значительно шире газобетона.

Ещё одно отличие газобетона и пенобетона состоит в особенности их распила собственно на блоки.

Чтобы распилить застывшую массу ячеистого бетона на блоки, отечественные заводы используют разное оборудование. Именно его качество влияет на точность геометрических размеров блоков. Изделия, имеющие значительные отклонения (±3 мм и более), при строительстве укладывают на толстый слой (10-12 мм) цементно-песчаного раствора, что позволяет компенсировать кривизну.

Блоки с минимальными отклонениями размеров (±1 мм) можно монтировать на «клей» (специальный клеевидный кладочный раствор для ячеистых бетонов; выпускается в виде сухих мелкодисперсных смесей, затворяемых водой). Толстые швы из цементно-песчаного раствора имеют большую теплопроводность, чем ячеистый бетон, и играют роль «мостиков холода».

Газобетон и пенобетон

В случае применения «клея» швы в кладке получаются более тонкими (1-2 мм против 10-12 мм на растворе). Такая стена практически однородна, то есть характеризуется минимальными потерями теплосберегающих свойств ячеистого бетона на швах. Кладка на «клей» обладает явным экономическим преимуществом. Конечно, 1 кг «клея» дороже, чем 1 кг раствора, но при меньшей толщине шва на кладку идет значительно меньший объем материала («клея»). В итоге затраты получаются в среднем на 30% ниже, чем при использовании цементно-песчаного раствора. Но еще раз повторим: монтаж на «клей» допустим только для блоков с отклонениями размеров ±1 мм!

Сейчас для производства газобетонных блоков применяют более качественное оборудование, чем для изготовления пенобетонных, поэтому чаще всего встречаются именно газобетонные блоки с допуском размеров ±1 мм . Неудивительно, что на «клей» в основном монтируют газобетон. Разумеется, есть и пенобетонные блоки с размерами высокой точности, но найти их на рынке сложнее. 

Таким образом, применение газобетона отличается большей «однородностью» стены, а применение пенобетона делает стену более влаго- и паронепроницаемой.

Сходство газобетона и пенобетона состоит в отличных теплоизоляционных свойствах этих материалов, их лёкости в транспортировке и укладке.

Чем отличается пенобетон от газобетона

Блочный ячеистый бетон используют в строительстве несущих стен жилых домов и пристроек, всевозможных перегородок и в качестве наполнителей каркасов при возведении домов на основе такой конструкции. Он имеет массу достоинств. По способам изготовления его делят на пенобетон и газобетон. В чем же отличия между этими разновидностями бетонов?

Определение

Пенобетон – это легкий бетон ячеистого типа, образованный из отвердевшего раствора таких компонентов, как цемент, песок, пена и вода. Пузырьки воздуха при затвердевании распределяются равномерно по всей толще бетона.

Газобетон – вид ячеистого бетона, изготовленного методом введения газообразователя в раствор, в состав которого входят вяжущий кремнеземистый компонент и вода. Химическая реакция между гидратом окисикальция и алюминия способствует протеканию процесса газообразования. Освобождающийся водород сопровождается вспучиванием раствора, который затвердевает, но остается пористым.

к содержанию ↑

Сравнение

Итак, что мы имеем. Пенобетон получают путем смешивания специального состава с пенообразующим веществом, а газобетон – при помощи химической реакции в автоклавах с применением алюминиевой пудры.  Газобетон твердеет при высокой температуре и влажности, а пенобетон в естественных условиях.

Пеноблок не такой прочный, как газоблок, поэтому лучше его не применять в строительстве несущих конструкций. В газобетоне же пузырьки воздуха одинаковы по размерам, что позволяет равномерно распределить нагрузку по всей поверхности материала.Поэтому такой бетон признан наиболее прочным среди ячеистых типов, хотя имеет меньшую плотность и вес.

В пенобетоне под воздействием пенообразователя водопроницаемость микропор ниже, поэтому влага впитывается медленнее, чем в газобетоне. Вода, просочившись внутрь, при морозе замерзает, в результате чего материал может дать трещину.

Пенобетон, как более слабый материал, содержит большее количество цемента в своем составе, чем газобетон, поэтому сильнее подвержен усадке. В процессе отделки штукатурка легче ложится на газоблок, чем на пеноблок. Газоблок кладется на клей, а пеноблок на цементно-песчаный раствор, в результате чего при монтаже газобетона устраняется мостик холода.

Затраты на производство пенобетона приблизительно на 20-25% ниже, чем на изготовление газобетона. Просто пенообразователи, применяемые в производстве пенобетона, намного дешевле газообразующих добавок, входящих в состав газобетона.

к содержанию ↑

Выводы TheDifference.ru

  1. Способы изготовления пенобетона и газобетона различны;
  2. Различия в условиях затвердевания;
  3. Газоблок несколько прочнее и легче пеноблока;
  4. Пенобетон менее водопроницаем, чем газобетон;
  5. Пеноблок подвержен усадке больше, на него хуже ложится штукатурка, чем на газоблок;
  6. Монтаж газобетона проще и надежнее;
  7. Себестоимость материала для производства пенобетона намного меньше.

Что такое газобетон?

Газобетон — это продукт, который производится путем добавления различных типов ингредиентов, известных как составляющие, в общую смесь, которые запускают химическую реакцию и приводят к образованию пузырьков газа в бетоне по мере его застывания. Самый распространенный пример этого типа бетона известен как автоклавный газобетон. Этот особый подход часто бывает полезен в строительных проектах, поскольку в результате химической реакции продукт может обеспечивать превосходную изоляцию.

Worker

Одним из наиболее распространенных компонентов или ингредиентов, которые добавляют для образования ячеистого бетона, является алюминиевый порошок. Присутствие порошка в смеси создает взаимодействие, которое приводит к образованию крошечных пузырьков по всему бетону.Конечным результатом является уменьшение плотности бетона, в отличие от использования дрожжей, которые помогают уменьшить плотность в различных типах выпечки. В то же время более низкая плотность не ослабляет бетон. Напротив, отвержденный продукт является прочным, эластичным и способным выдерживать различные климатические условия.

Основное преимущество пенобетона как строительного продукта — это теплоизоляция, которую он придает готовой конструкции.Расширение, вызванное присутствием алюминиевой пудры, позволяет бетону работать так, как изоляция стены. В результате бетон помогает поддерживать внутри конструкции более постоянный уровень температуры и влажности, даже если погода на улице явно некомфортная. Прочная природа бетона также означает, что обслуживание конструкции уменьшается, часто требуется немного больше, чем герметизация бетона, а затем нанесение краски или другого типа покрытия стен для достижения желаемого внешнего вида дома или рабочего места.

Газобетон в виде автоклавного газобетона обычно считается разработанным в Швеции в первые годы 20-го века. С тех пор эта форма бетона использовалась в строительных проектах в ряде европейских стран.К концу 20 века именно этот подход к смешиванию бетона начал находить применение в Соединенных Штатах. В настоящее время газобетон, включающий алюминиевый порошок в составе смеси, продолжает завоевывать популярность во многих других частях мира благодаря тому, что этот продукт относительно недорогой по сравнению с другими строительными материалами, а также отличные изоляционные свойства готовой продукции. товар.

.

Свойства и внутреннее отверждение бетона, содержащего переработанный автоклавный легкий бетон в виде заполнителя

Глобальное потепление является жизненно важной проблемой для всех секторов во всем мире, включая строительную промышленность. Для реализации концепции экологически чистых технологий было предпринято множество попыток разработать продукты с низким уровнем выбросов углерода. В строительном секторе автоклавный газобетон (AAC) стал более популярным и производился для удовлетворения строительных потребностей.Однако ошибки производственного процесса составляли от 3 до 5% производства AAC. Разработка отходов AAC в виде легкого заполнителя в бетоне — один из потенциальных подходов, который подробно изучался в этой статье. Результаты показали, что прочность на сжатие бетона AAC-LWA снижалась с увеличением объема и крупности. Оптимальная пропорция смеси была размером от 1/2 » до 3/8 » агрегата ААС с 20-40% замещением агрегата нормальной массы.Также наблюдалось внутреннее отверждение с помощью AAC-LWA, и было обнаружено, что внутри образцов достаточно воды, что привело к достижению более высокой прочности на сжатие. Основная цель этого исследования заключается не только в утилизации нежелательных промышленных отходов (переработка отходов), но и в накоплении новых знаний об использовании AAC-LWA в качестве внутреннего отвердителя, а также в производстве изделий из легкого бетона с добавленной стоимостью.

1. Введение

Для реализации концепции технологии зеленого строительства было предпринято множество попыток разработать продукты или методы с низким уровнем выбросов углерода.Подход преобразования отходов из любых промышленных секторов в новое сырье для других отраслей получил гораздо большее внимание как общество без отходов. Обычно самый простой способ удаления промышленных отходов — это использовать их в качестве замены цемента или бетона, например, в качестве добавок к цементу или заполнителей бетона. В Таиланде, хотя обычная каменная стена изготавливается из местного глиняного кирпича, с выпуском блоков из легкого автоклавного газобетона (AAC) они становятся новым выбором для инженеров и строителей, поэтому становятся все более популярными в строительной отрасли.Однако сообщалось, что лом и отходы от общего производства блоков AAC составляли приблизительно от 3 до 5% (58 тонн в месяц), в результате чего огромное количество остатков AAC направлялось прямо на площадку, засыпанную землей (Рисунок 1). Разработка отходов AAC в качестве легкого заполнителя при производстве бетона является одним из потенциальных подходов, который не только полезен для использования промышленных побочных продуктов и снижения энергопотребления, но также полезен для повышения прочности за счет внутреннего отверждения и уменьшения конечного бетона. вес [1, 2].

Наружное отверждение — это распространенный метод достижения достаточной гидратации портландцемента, который может быть достигнут за счет предотвращения потери влаги на поверхностях, обертывания мокрыми покрытиями или даже погружения образцов бетона в водяную баню. Однако в некоторых случаях эффективность внешнего отверждения может быть ограничена из-за неудовлетворительного проникновения воды для отверждения в образцы из-за физического барьера или геометрии бетонных компонентов [3]. Внутреннее отверждение — это альтернативный подход, предусматривающий введение внутреннего резервуара для воды для отверждения внутри бетонных смесей.Уже доказано, что внутреннее отверждение может значительно повысить прочность и уменьшить автогенную усадку готовых бетонных изделий [4, 5]. Любой пористый легкий материал может быть использован в качестве заполнителя для внутреннего отверждения (например, вермикулит, перлит, пемза, шлак, керамзит, керамзит и отходы измельченного AAC) [6, 7], поскольку они могут поглощать воду во время приготовления и смешивания и затем постепенно высвобождают оставшуюся воду внутри смесей в процессе твердения [8]. Более того, шероховатая поверхность и крупная пористая структура этих легких заполнителей также могут способствовать взаимному блокированию переходных зон между цементным тестом и заполнителем (взаимосвязанные поверхности), что приводит к улучшению механических свойств [9].

Основная цель данной статьи — использовать имеющиеся местные отходы AAC в качестве легкого заполнителя при производстве бетона, который может позволить преобразовывать промышленные отходы в продукты с добавленной стоимостью. Легкий вес и очень равномерно распределенная пористость — ключевые характеристики AAC, который может служить в качестве материала для внутреннего отверждения для обеспечения достаточных условий отверждения для бетонной конструкции. Подходящие размеры и оптимальный процент замены заполнителя AAC были исследованы, а также окончательные свойства свежего и затвердевшего бетона во время подхода внутреннего твердения.

2. Материалы и препараты

Портландцемент был товарной марки I с удельным весом 3,15. Местный речной песок использовался в качестве мелкого заполнителя с удельным весом и модулем дисперсности 2,39 и 2,90 соответственно. Влажность песка составляла 0,80% при насыпной плотности 1645 кг / м 3 . Крупный заполнитель представлял собой гравий товарного сорта от местных поставщиков. Удельный вес, влажность и насыпная плотность составляли 2,70, 0,50% и 1540 кг / м 3 соответственно.Отходы AAC были собраны в компании PCC Autoclave Concrete Company Limited, Чиангмай, Таиланд. Его удельный вес составлял 1,06 при массе сухой единицы 360 кг / м 3 . ААС в полученном виде со значением водопоглощения от 28 до 30% измельчали ​​до меньшего размера с помощью стандартной щековой дробилки (рис. 2).

Градацию крупных агрегатов AAC затем проанализировали с помощью стандартного ситового анализа США. Эффективный крупный размер, использованный в этом исследовании, составлял от 3/8 » (9,5 мм) до 3/4 » (19.0 мм.), Что составляет около 50% от общего количества заполнителей AAC и имеет средний модуль дисперсности 7,20 (Таблица 1). Следует отметить, что большинство эффективных значений размера AAC-LWA составляли 3/4 ′ ′, 1/2 ′ ′ и 3/8 ′ ′, а классы размеров (как указано с S1 по S4) замены грубых заполнителей были поэтому используется в эксперименте. Этикетки и описания бетонных смесей, включая классы крупности AAC-LWA, показаны в Таблице 2.


Размер сита (мм.) Процент, оставшийся на сите

2 ′ ′ (50,80) 1,31
1 ′ ′ (25,40) 9,18
3/4 ′ ′ (19,05 ) 18,22
1/2 ′ ′ (12,70) 20,12
3/8 ′ ′ (9,53) 11,35
# 4 (4,75) 11,14
Кастрюля 28,67


Этикетка Описание

NC Бетон нормального веса заполнитель
LWA Легкий заполнитель
LWA20 Бетон с заменой 20% легкого заполнителя
LWA40 Бетон с 40 % замена легкого заполнителя
LWA60 Бетон с заменой легкого заполнителя на 60%
S1 Легкий заполнитель с размером класса 1 ′ ′ — 3/4 ′ ′
S2 Легкий заполнитель с размер класса 3/4 ′ ′ — 1/2 ′ ′
S3 Легкий агрегат с классом размера 1/2 ′ ′ — 3/8 ′ ′
S4 Легкий агрегат смешанного класса размер от 1 ′ ′ — 3/4 ′ ′ до 3/4 ′ ′ — 1/2 ′ ′ до 1/2 ′ ′ — 3/8 ′ ′ на 20:40: 40

Распределение крупнозернистого заполнителя, товарного сорта и размера по сравнению с ASTM C33 с номером 67.На рисунке 3 показано распределение по размерам грубых заполнителей нормальной массы (NWCA), используемых в смеси NC. Было обнаружено, что гранулометрический состав заполнителя нормального веса находится между 1/2 » и 3/8 » и в основном соответствует верхней и нижней границам стандарта ASTM C33 номер 67 по размеру. Кроме того, в зависимости от размера класса S1 – S4, распределение по размеру замены AAC-LWA агрегатом нормального веса на 20, 40 и 60% (LWA20, LWA40 и LWA60) также наносится на график относительно верхней и нижней границ ASTM C33 номер 67 критериев.

Поскольку определенные размеры класса AAC-LWA (S1 – S4) были заменены на обычную градацию гравия товарного сорта, графики распределения по размерам начали сдвигаться к верхнему пределу границ ASTM C33 (Рисунок 4). Можно видеть, что связка всех размеров классов LWA20 близко выровнена внутри верхней границы (рисунок 4 (а)). Более того, линии распределения по размерам были явно смещены вправо за верхний предел, когда количество замены AAC-LWA увеличилось с LWA40 (Рисунок 4 (b)) до LWA60 (Рисунок 4 (c)) во всех размерах классов.Таким образом, наличие заполнителей AAC-LWA не только влияет на общую градацию крупного заполнителя бетона, но также может влиять на механические свойства конечного результата затвердевшего бетона.

3. Детали эксперимента
3.1. Обозначения смесей

Обозначение смесей было выполнено в соответствии со стандартом ACI 211.1 для бетонных смесей. В контролируемую смесь (нормальный бетон, NC) с отношением воды к цементу (в / ц) 0,35 были добавлены заполнители нормального веса с наибольшим размером частиц 3/4 ».Требуемая просадка бетона составляла от 5 до 10 см. Кроме того, в смесях с отходами ААС в виде легких заполнителей (AAC-LWA) объем заполнителей нормальной массы был заменен на насыщенный поверхностно-сухой (SSD) AAC-LWA, а именно 20, 40 и 60%, соответственно. Следует отметить, что общий вес замены AAC-LWA был рассчитан из того же объема нормального заполнителя в кубическом метре бетона. Например, замена 20% AAC-LWA (LWA20), поскольку насыпная плотность заполнителей нормального веса и AAC-LWA составляла 1540 и 360 кг / м 3 , соответственно, 188 кг заполнителей нормального веса было заменено 46 кг AAC. -LWA.Все бетонные смеси перемешивали в смесителе с наклонным барабаном до достижения подходящих условий. Свежий бетон затем был подвергнут испытаниям на удобоукладываемость и помещен в подготовленные формы. Спустя 24 часа все образцы бетона были извлечены из формы и выдержаны в специально разработанных условиях отверждения, отверждения на воздухе и воде. Пропорции смеси представлены в Таблице 3.

90 030 S4

9002 9


Смесь Замена ACC-LWA (%) Размер класса Портландцемент Вода Мелкозернистый заполнитель Крупный заполнитель Агрегат ACC

NC 571 200 588 938

LWA20 20 900 S1 571 200 588 750 46
20 S2 571 200 588 750 46
20 S3 571 200 588 750 46
20 571 200 588 750 46

LWA40 40 S1 571 200 588 563 93
40 S2 571 200 588 563 93
40 S3 571 200 588 563 93
40 S4 571 200 588 563 93

LWA60 60 S1 571 200 588 375 139

60 S2 571 200 588 375 139
60 S3 571 200 588 375 139
60 S4 571 200 588 375 139

3.2. Аналитические методы

Свойства свежего бетона определялись с помощью теста на осадку и текучести. Испытания на оседание бетона проводились с использованием ASTM C143. Величина просадки 10 см. был установлен в соответствии с ACI 213R-87, рекомендованным для строительства перекрытий, колонн и несущих стеновых конструкций. Текучесть бетона измерялась с помощью таблицы расхода вместе со стандартом ASTM C124. Свойства затвердевшего бетона были определены как стандартными, так и минутными испытаниями на прочность на сжатие.После извлечения из формы (в течение следующих 24 часов) все образцы были отверждены в воде или на воздухе до достижения их испытательного возраста в 1, 3, 7 и 28 дней. Перед дальнейшим обращением для расчета кажущейся плотности измеряли вес и размер всех образцов. Стандартное испытание на прочность при сжатии всех цилиндрических образцов (диаметром 15 см и высотой 30 см) было проведено с использованием универсальной испытательной машины (UTM) в соответствии с ASTM C39. С помощью оптического микроскопа наблюдали межфазную переходную зону (ITZ) AAC-LWA и цементного теста.

Прочность на сжатие в минуту (кубический образец размером 3 × 3 × 3 мм) была введена и проведена в этом испытании для определения влияния AAC-LWA на внутреннее отверждение [10]. Для подготовки образцов для испытаний на прочность размером 150 × 150 × 150 мм. бетонный куб был перемешан и выдержан в заданных условиях. Три места бетонного куба (внешняя зона и внутренняя зона) были разрезаны на 15 × 15 × 150 мм. призмы (рисунок 5). Затем каждую призму разрезали на слои толщиной 3 мм с размерной длиной 3 × 15 × 15 мм., а именно L1, L2 и L3. Следует отметить, что L1 был слоем рядом с AAC-LWA, а L2 и L3 были дополнительно выровнены (рисунок 6). Эти слои (L1, L2 и L3) были окончательно разрезаны на 3 × 3 × 3 мм. кубиков (рис. 7), а затем протестировали с помощью стандартного контрольного кольца, прикрепленного к UTM.



4. Результаты и обсуждения
4.1. Тест на просадку

Результаты испытания бетона на просадку проиллюстрированы на Рисунке 8. Классы размеров AAC-LWA, как указано S1, S2, S3 и S4 (см. Таблицу 2), не имели существенных различий в испытании.Осадка контролируемого бетона (NC) составляла 5,80 см, в то время как значения осадки бетона AAC-LWA имели тенденцию к увеличению с более высоким процентом замены заполнителя AAC, например, примерно с 7,50 см. (LWA20) примерно до 10,60 см. (LWA60). Фактически, острая форма и шероховатая поверхность AAC-LWA могут уменьшить величину осадки из-за сцепления и внутреннего трения между материалами [11]. Однако в этом случае величина осадки в основном определялась водоудерживающей способностью, избытком воды на поверхности частиц ААС.Соотношение воды и цемента было увеличено, что привело к увеличению величины осадки бетона. О схожем результате также сообщили Сингх и Сиддик (2016) о том, что материалы с высокой абсорбцией (например, угольная зола) могут действовать как резервуар для воды и могут повышать конечное соотношение воды к бетону в бетонных смесях [12].

4.2. Flow Test

Не было значительной разницы в текучести между контролируемой смесью (NC) и смесями AAC-LWA. Средний расход бетона AAC-LWA, казалось, немного уменьшился, когда увеличилась замена заполнителя AAC.Среднее значение расхода NC составляло 53,3%, в то время как средние значения расхода смесей LWA20, LWA40 и LWA60 составляли 55%, 56% и 53% соответственно (Рисунок 9). Однако, поскольку значения текучести находились в диапазоне от 50 до 100%, бетонные смеси AAC-LWA были классифицированы по средней консистенции, которые можно было легко поместить и уплотнить в формы во время процесса литья.

4.3. Кажущаяся плотность бетонных смесей

Как показано на Рисунке 10, кажущаяся плотность контролируемой смеси (NC) составляла около 2380 кг / м 3 в возрасте 28 дней.Кроме того, общая кажущаяся плотность бетона LWA20 была немного уменьшена примерно на 3-4% до примерно 2290-2310 кг / м 3 по сравнению со смесью NC. Для смесей LWA40 и LWA60 кажущаяся плотность непрерывно снижалась на 8-9% (2160-2180 кг / м 3 ) и 13-15% (2030-2070 кг / м 3 ), соответственно. Аналогичные результаты были получены Hossain et al. (2011) и Topçu и Işikdaǧ (2008), которые заменили заполнители нормального веса пемзой и перлитом в качестве крупных заполнителей бетона [13].Можно сделать вывод, что общая плотность бетона AAC-LWA была значительно уменьшена из-за замены LWA, так как его плотность составила всего 360 кг / м 3 . Напротив, прочность на сжатие — это следующий вопрос, который необходимо рассматривать как наиболее важные свойства затвердевшего бетона.

4.4. Стандартное испытание на прочность при сжатии

Стандартное испытание на прочность на сжатие с использованием цилиндрических образцов проводилось в возрасте 1, 3, 7 и 28 дней.Сравнительные измерения прочности при отверждении в воде и сухом воздухе, включая классы размеров, были изучены и представлены на рисунках 11 (a) –11 (c).

Хорошо видно, что все смеси, отвержденные в воде, достигли большей прочности, чем смеси, отвержденные в сухом воздухе, поскольку была получена большая степень гидратации [14]. Размерный класс заполнителя S4-AAC (см. Таблицу 2) получил самую высокую прочность среди классов S1, S2 и S3 благодаря хорошей градации крупных заполнителей в бетонных смесях в соответствии с ASTM C33 номер 67.Также была достигнута более компактная структура, а также соответствующая блокировка хорошо отсортированного крупного заполнителя. Сопоставимое улучшение прочности было очевидно получено за счет более высокой плотности затвердевшего цементного теста в межфазной переходной зоне (ITZ) за счет внутреннего отверждения [15]. Примеры нормального сцепления (NWCA) и хорошего сцепления (AAC-LWA) представлены на рисунке 12. Можно видеть, что разрушение нормально-связанного NWCA произошло в цементном тесте, в то время как хорошо сцепленный AAC-LWA был на агрегате AAC.Помимо прочностных свойств каждого заполнителя, AAC-LWA продемонстрировал на ITZ потрясающие характеристики сцепления. Тем не менее, конечная прочность AAC как заполнителя бетона снизилась, когда количество AAC-LWA увеличилось, потому что AAC имеет чрезвычайно низкую несущую способность по сравнению с заполнителем с нормальным весом.

4.5. Минутное испытание на прочность на сжатие

Минутное сопротивление на сжатие — это метод, используемый для проверки эффекта внутреннего отверждения пористым заполнителем в бетонных смесях.Прочность на сжатие 3 × 3 × 3 мм. кубические образцы смесей LWA20, LWA40 и LWA60 (все с размером класса S4, отвержденные на воздухе) были испытаны и представлены на Рисунке 13. Очевидно, что прочность образцов, собранных из внешней зоны, была ниже, чем прочность. внутренней зоны. Более того, прочность образца L1 (L1; слой рядом с агрегатом AAC), очевидно, достигла более высокой механической прочности, чем у удаленных слоев L2 и L3 (см. Рисунок 6). В целом, более полное завершение процесса внутренней гидратации AAC-LWA может быть достигнуто за счет способности удерживать воду в бетонной смеси.Специально для пористых заполнителей дополнительная вода для внутреннего отверждения была получена не только за счет водопоглощения, но и за счет адсорбции воды, которая непосредственно влияет на воду для затвердевания бетона на более поздней стадии [16]. Более того, внутренний процесс отверждения также может происходить с «капиллярным всасыванием», при котором перенос воды происходит из более крупных пор в более мелкие. В этом исследовании капиллярные поры агрегатов AAC (от 50 до 100 мкм, мкм, мкм) были больше, чем у средних пор цементного теста (от 1 до 100 нанометров, нм).

В соответствии с этим условием, некоторая запасная вода в заполнителях AAC, следовательно, будет перенесена в цементное тесто через ITZ, увеличивая уровень гидратации цементных вяжущих. На улучшение прочности в более старшем возрасте в основном повлияло большее образование C-S-H и более плотная микроструктура [9]. Использование AAC-LWA в насыщенном сухом состоянии (SSD) в этом исследовании обеспечит более высокую прочность во всех случаях, чем AAC-LWA в исходном состоянии / сухом [15]. Причина в том, что AAC-LWA в полученном виде может активно поглощать воду из системы на начальной стадии смешивания.На ITZ могут появиться микропоры и неполные микроструктуры, что отрицательно скажется на конечных свойствах бетона [15]. Те же тенденции и результаты были получены при минимальной прочности на сжатие размеров класса S4 для LWA20, LWA40 и LWA60, отвержденных в воде. Поскольку подано достаточно воды для отверждения как с внешней, так и с внутренней стороны, средняя прочность 3 × 3 мм. Таким образом, куб был немного выше, чем другие, отвержденные в условиях сухого открытого воздуха (рис. 14).

4.6. Развитие прочности и взаимосвязь между стандартной и минутной прочностью на сжатие

Развитие прочности при минутном испытании на сжатие слоя 1 (L1) за 7 и 28 дней представлено в таблице 4. При использовании NC в качестве эталонной смеси показатель LWA20 достиг наибольшая разница в развитии силы во всех условиях: 34,00% (AC L1 Ext.), 51,10% (AC L1 Int.), 33,33% (WC L1 Ext.) и 42,80% (WC L1 Int.). Огромная разница в минимальной прочности на сжатие L1 может наблюдаться между внешней и внутренней зонами LWA20 (26.98% и 35,32%) и LWA40 (39,03% и 54,99%), как показано в таблице 5. Очевидно, что минимальная прочность на сжатие в условиях отверждения на воздухе (AC) может быть улучшена с помощью режимов внутреннего отверждения, особенно для внутренняя зона. Оптимальные пропорции AAC-LWA, которые могут получить наибольшую пользу от внутреннего отверждения, находятся в диапазоне смесей от LWA20 до LWA40.

900,00


Смеси Отверждение на воздухе (AC) Отверждение в воде (WC)
L1 Ext.(МПа) L1 Внутр. (МПа) L1 внешн. (МПа) L1 Внутр. (МПа)
7 d 28 d % Δ 7 d 28 d % Δ 7 d 28 d % Δ 7 d 28 d % Δ

NC 0,64 0,84 31,75 0.95 1,30 36,78 0,77 1,21 57,22 1,03 1,54 49,48
LWA20 0,83 1,12 1,69 51,10 1,11 1,48 33,33 1,41 2,01 42,08
LWA40 0.93 1,00 7,24 1,30 1,55 19,55 1,26 1,32 4,73 1,57 1,73 10,59

1,13 21,37 1,23 1,62 31,42 1,15 1,43 25,06 1.39 1,80 29,04

2

L1 7 дней (МПа)

Смеси Отверждение на воздухе (AC) Отверждение в воде (WC)
L1 28 дней (МПа) L1 7 дней (МПа) L1 28 дней (МПа)
Внеш. Внутр. % Δ Внеш. Внутр. % Δ Внеш. Внутр. % Δ Внеш. Внутр. % Δ

NC 0,64 0,95 48,47 0,84 1,30 54,13 0,77 1,0367 1,21 1,54 27,86
LWA20 0.83 1,12 34,00 1,12 1,69 51,10 1,11 1,41 26,98 1,48 2,01 35,32 1,30 39,03 1,00 1,55 54,99 1,26 1,57 23,82 1.32 1,73 30,74
LWA60 0,93 1,23 32,00 1,13 1,62 42,93 1,15 42,93 1,15 1,39 1,80 25,51

Напротив, наивысшая минутная прочность на сжатие слоя 1 (L1) также была нанесена на график в зависимости от стандартной цилиндрической прочности на сжатие с размером класса S4 для 7 и 28 дни возраста.На рисунке 15 представлена ​​зависимость этой минутной и стандартной прочности на сжатие образцов, отвержденных в условиях отверждения в сухом воздухе (AC), как во внешней зоне (рисунок 15 (а)), так и во внутренней зоне (рисунок 15 (б)). Как упоминалось ранее в разделе 4.4, средняя стандартная прочность на сжатие бетона AAC-LWA уменьшилась, когда количество замены AAC-LWA увеличилось с 35,1 МПа (7 дней) и 41,2 МПа (28 дней) в смесях LWA20 до примерно 26,2 МПа (7 дней). г) и 28,1 МПа (28 д) в смесях LWA60. Однако ясно видно, что смеси LWA20 и LWA40, кажется, достигают более высокой прочности, чем у бетона с нормальным заполнителем (NC).

Прочность на сжатие в минуту (как представлено в Разделе 4.5) внутренней зоны явно выше, чем внешняя из-за внутреннего отверждения AAC-LWA с самым высоким значением смеси LWA20. Исследование показало, что замена от 20% до 40% AAC-LWA (LWA20 и LWA40) может быть оптимальной пропорцией для бетона AAC-LWA.

Этим можно объяснить, что эти пропорции в основном обеспечивали превосходную прочность заполнителя нормального веса, в то время как подходящее количество замены заполнителя AAC служило дополнительному количеству воды для внутреннего отверждения цементного теста.Увеличение образования C-S-H не только укрепляет бетонные матрицы, но также обеспечивает хорошее сцепление между заполнителем AAC и цементным тестом на их ITZ. Подобная тенденция развития прочности была обнаружена у образцов, отвержденных в условиях водного отверждения (WC), как показано на рисунке 16. Кроме того, как упоминалось ранее, общая прочность на сжатие как мелких, так и стандартных образцов была значительно выше, чем при отверждении сухим воздухом. когда было получено достаточно воды для отверждения. Несмотря на небольшую разницу в прочности на сжатие между отверждением в воде и на воздухе, при котором запас воды рециклированного заполнителя AAC не является необходимым для обеспечения влаги для дальнейшего процесса гидратации цемента, эффективность внешнего отверждения может быть ограничена из-за неудовлетворительного проникновения воды для затвердевания в образцы, и внутреннее отверждение затем увеличит положительный режим отверждения изнутри бетонной конструкции в реальных приложениях (например,г., огромная конструкция или бетонный элемент).

5. Выводы

По результатам исследования можно резюмировать следующие выводы.

На значения осадки повлияло количество воды. Величина осадки имела тенденцию к увеличению с увеличением замены AAC-LWA, поскольку на поверхности заполнителя была получена дополнительная вода. Однако значения расхода всех смесей были аналогичны бетону с нормальным весом (NC) и были отнесены к категории средней плотности с расходом от 50 до 60%.

Кажущаяся плотность была уменьшена, когда количество замены AAC-LWA увеличилось с 2380 кг / м 3 (NC) до примерно 2050 кг / м 3 (LWA60). Хотя минимальная плотность в этом испытании (2030 кг / м 3 в смеси LWA60) не соответствовала критериям легкого бетона, рекомендованным ACI 213R-87 при 1850 кг / м 3 , меньшее значение плотности может быть альтернативным достигается за счет увеличения доли AAC-LWA или даже использования легких мелких заполнителей (например,г., легкий песок или зольный остаток).

Стандартная прочность на сжатие цилиндрических образцов была уменьшена с увеличением доли AAC-LWA как при сухом воздухе, так и при отверждении в воде, хотя при отверждении в воде была достигнута немного более высокая прочность на сжатие. Смешанный размер AAC-LWA (размер класса S4) обеспечивал удовлетворительную градацию и более высокую прочность, чем отдельные гранулированные заполнители (S1, S2 и S3).

Наивысшая прочность при минутном испытании на сжатие была достигнута при 3 × 3 × 3 мм.куб, расположенный в слое 1 (L1), за которым следуют слой 2 (L2) и слой 3 (L3) соответственно. Можно сделать вывод, что внутреннее отверждение с помощью AAC-LWA, очевидно, улучшает прочность бетона, обеспечивая дополнительный внутренний водный ресурс для более возможного образования C-S-H. В сочетании с минимальной и стандартной прочностью на сжатие оптимальные пропорции замены AAC-LWA находились в диапазоне от LWA20 до LWA40. Эти пропорции смеси в основном обеспечивают превосходную прочность заполнителя нормального веса, в то время как подходящее количество замены заполнителя AAC обеспечивает дополнительное количество воды для внутреннего отверждения цементного теста.

Разработка AAC в качестве замены грубого заполнителя в бетоне заключается не только в использовании нежелательных промышленных отходов (переработка отходов), но и в создании новых знаний об использовании LWA в качестве внутреннего отвердителя, а также в производстве ценных материалов. добавлены изделия из легкого бетона.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*

*

*