Технология производства полистиролбетона: Рекомендации по приготовлению полистиролбетонной смеси

Содержание

Рекомендации по приготовлению полистиролбетонной смеси

  1. Общие положения.

Настоящие рекомендации разработаны для организации выпуска полистиролбетонной смеси.

Рекомендации разработаны на основе обобщения результатов НИР и ОКР НИИЖБ и других организаций, а также практического опыта выпуска полистиролбетонной смеси различного назначения на предприятиях строительной индустрии.

Соблюдение рекомендаций обеспечивает приготовление полистиролбетонных смесей оптимального качества для получения теплоизоляционного полистиролбетона с достаточно широкой областью применения (см.стр.2) и, соответственно, с широким диапазоном свойств – плотностью в сухом состоянии 200-500 кг/м3 при прочности на сжатие – 0,2-1,75 МПа.

 

  1. Исходные материалы.

В качестве вяжущего для приготовления полистиролбетонной смеси используется шлакопортландцемент (предпочтительно) или портландцемент марки М 400 (М 300), отвечающие требованиям ГОСТ 10178. При необходимости увеличения прочности полистиролбетона, выше значений, приведенных в табл.1, при сохранении марки по плотности рекомендуется применять портландцемент марки М 500.

В качестве заполнителя используется гранулированный вспененный пенополистирол со следующими характеристиками, в зависимости от требований к полистиролбетону (табл.1).

Таблица 1
Характеристики пенополистирола в зависимости
от требуемых показателей качества полистиролбетона

Требования к полистиролбетону

Характеристики пенополистирола

по плотности
кг/м3

по прочности
МПа

насыпная плотность, кг/м3

фракция,
мм

200

0,20-0,25

10-15

2,5-10

300

0,50-0,75

10-15

2,5-10

400

1,00-1,25

15-20

0-10

500

1,50-1,75

15-20

0-10

Примечание: При необходимости получения полистиролбетона D 500 с прочностью 2,0-2,5 Мпа следует применять пенополистирол с рн = 25-30 кг/м3 фракции 0-5 мм.

В качестве воздухововлекающей добавки используется смола древесная омыленная СДО, отвечающая требованиям ТУ 13-0281078-02-93, а также другие воздухововлекающие добавки, отвечающие требованиям ГОСТ 21211.

Для повышения удобоукладываемости смеси, снижения эксплуатационной влажности и коэффициента теплопроводности полистиролбетона могут быть применены пластифицирующие и гидрофобизирующие добавки, отвечающие требованиям ГОСТ 24211. В целях снижения требуемого расхода портландцемента и величины коэффициента теплопроводности изготавливаемого на нем полистиролбетона часть цемента (до 50%) может быть заменена тонкомолотой (S = 2000-2500 см2/г) добавкой доменного гранулированного шлака Нижне-Тагильского металлургического комбината. Введение этой добавки, особенно эффективное в полистиролбетоне низкой плотности (D 200, D 300) будет, кроме того, способствовать улучшению гранулометрии (достижению ее непрерывности) смеси «цемент – граншлак — пенополистирольный графит фр. 2,5-10 мм» и, как следствие, — повышению слитности структуры и удобоукладываемости бетонной смеси.

Вода для приготовления полистиролбетонной смеси должна отвечать требованиям ГОСТ 23732.

  1. Составы полистиролбетонной смеси.

Составы полистиролбетонной смеси должны назначаться расчетно-экспериментальным способом в соответствии с требованиями ГОСТ 27006-85 на основе опытных замесов с учетом характеристик имеющихся материалов и параметров технологического оборудования по приготовлению, укладке, уплотнению смеси, а также с учетом твердения бетона.

Ориентировочные расходы материалов для приготовления полистиролбетонной смеси различных марок могут приниматься по табл. 2.

Таблица 2
Ориентировочные расходы материалов
для приготовления полистиролбетонной смеси
различных марок по плотности

Материалы

Ед. измерения

Расход на 1 м3 полистиролбетона марки по плотности

D 200

D 300

D 400

D 500

Портландцемент (шлакопортландцемент)

кг

160

240

330

410

Пенополистирол

м3

1,0-1,1

1,0-1,1

1,0-1,1

1,0-1,1

Добавка воздухововлекающая СДО (сухое в-во)

кг

0,70-0,80

0,55-0,65

0,50-0,60

0,35-0,45

Вода

л

90-100

110-120

130-150

150-170

Примечания: 1. Расходы воды даны, исходя из условия приготовления полистиролбетонной смеси с маркой по удобоукладываемости У-1. При приготовлении полистиролбетонной смеси с маркой по удобоукладываемости У-2 расходы воды должны быть увеличены на 10-15%.
2. Расходы материалов при приготовлении полистиролбетонной смеси для полистиролбетона промежуточных марок по плотности (D 250, D 350, D 450) определяют способом интерполяции.

  1. Приготовление полистиролбетонной смеси.

полистиролбетонная смесь приготавливается в бетоносмесителе принудительного действия. Предпочтение отдается смесителям с горизонтальным валом (типа СМ-290).  Объем смесителя определяется требуемой производительностью технологической линии.

Дозирование материалов осуществляется следующим способом:

Дозирование вяжущего (портландцемент, шлакопортландцемент) и тонкомолотой минеральной добавки осуществляется по массе в стандартных весовых дозаторах типа ДЦ-500Д или путем взвешивания на торговых весах.

Гранулированный вспененный пенополистирол дозируется по объему в специальном бункере-дозаторе или с помощью оттарированных мерных емкостей. Желательно выполнять и взвешивание отдозированного по объему пенополистирола с целью контроля его насыпной плотности.

Дозировка воды осуществляется по массе при помощи стандартного весового дозатора ДЖ-200Д или по объему при помощи оттарированной мерной емкости.

10%-ный раствор добавки СДО (р10 = 1,017 г/м3) дозируется по объему при помощи оттарированной мерной емкости. Допускается дозировать раствор СДО по массе через весовой дозатор воды ДЖ-200Д. Для повышения точности дозирования рекомендуется использовать добавку в виде 5%-ного раствора (р5 = 1,0085 г/м3). Добавку СДО, поступающую на завод-изготовитель полистиролбетонной смеси в твердом виде в бумажных мешках, разбивают механически на мелкие куски размером не более 20 мм и растворяют до рабочей концентрации в горячей воде с t = 80-900С при постоянном перемешивании или барботации.

Рабочую концентрацию добавки СДО рекомендуется принимать в соответствии с п.4.2. Допускается использовать рабочий раствор СДО без контроля его плотности денсиметрами. При этом 1 кг товарного продукта СДО растворяют в 9 л горячей воды для получения раствора 10%-ной концентрации.
При поступлении СДО в бочках в жидком виде (40-50% концентрация), что наиболее желательно, добавку разводят до рабочей концентрации путем растворения при постоянном перемешивании (барботации) в воде t = 200-250С.

Загрузка компонентов полистиролбетонной смеси в работающий смеситель производится в следующей последовательности.

Сначала в смеситель подается отдозированный по объему пенополистирольный гравий, затем он перемешивается в течение 30с с 1/3 частью воды затворения. После этого в смеситель загружается отдозированный цемент и смесь перемешивается еще 10-20с. Далее заливается оставшаяся порция воды и рабочий раствор добавки СДО. Смесь перемешивается не менее 1 мин. до получения слитной поризованной однородной структуры.

Общая продолжительность перемешивания всех компонентов смеси должна быть не менее 3 мин. в процессе перемешивания должен осуществляться визуальный контроль за слитностью и удобоукладываемостью полистиролбетонной смеси.

После окончания приготовления смеси в начале каждой смены, а также при поступлении новых партий вяжущего, пенополистирольного гравия и СДО проводят отбор проб полистиролбетонной смеси для проверки ее плотности.

Плотность проверяют по ГОСТ 10181.2 в двухлитровой мерной емкости. Она должна находиться в пределах, указанных в табл. 3.
Таблица 3
Рекомендуемые значения плотности полистиролбетонной
смеси, исходя из требований по плотности к полистиролбетону

Марка полистиролбетона
по плотности

Плотность полистиролбетонной смеси, кг/м3,
при марке удобоукладываемости

У-1

У-2

D 200

250-290

260-300

D 300

350-390

360-400

D 400

470-510

480-520

D 500

570-610

590-630

Примечание: Значения плотностей полистиролбетонной смеси при ее приготовлении для полистиролбетона промежуточных марок по плотности (D 250, D 350, D 450) определяют способом интерполяции.

Если плотность отработанной пробы полистиролбетонной смеси окажется выше приведенных в табл. 3 значений, проводят вторичную проверку плотности на вновь отработанной пробе и в случае подтверждения выявленного отклонения осуществляют коррекцию состава полистирольной смеси путем дополнительного введения 5-10% добавки СДО и (или) воды в соответствии с рекомендациями службы контроля.

После коррекции состава смесь перемешивают дополнительно в течение 2 мин. и проводят вторичный контроль плотности. Такие операции повторяют при необходимости 2-3 раза, пока не будут достигнуты требуемые характеристики смеси по плотности.

Если плотность отработанной пробы полистиролбетонной смеси после 2-кратной проверки окажется ниже приведенных в табл. 3 требований, проводят коррекцию состава смеси в следующем замесе путем уменьшения на 5-10% расхода добавки СДО и (или) воды до получения требуемых характеристик смеси по плотности.

 Далее в течение смены приготавливают смесь по откорректированной дозировке, осуществляя периодически (1-2 раза в смену) контроль плотности. Если в процессе корректировки последней в сторону уменьшения требуемая плотность смеси была получена после 2- или 3-кратного повторения замесов, то в следующих замесах дополнительные расходы СДО и (или) воды уменьшают, соответственно, в 1,5 и 2 раза.

 Приготовленную полистиролбетонную смесь с требуемой плотностью выгружают непосредственно в форму, установленную под смесителем, в бункер самоходного бетоноукладчика или в раздаточный бункер, снабженный секторным затвором. Из самоходного бетоноукладчика или из раздаточного бункера смесь поступает в формы.

При использовании бетонной смеси в монолитном варианте ее укладывают в опалубку наружных стен или на комплексные плиты покрытия как теплоизоляцию, или в пустоты кирпичной колодцевой кладки как утеплитель. Высота падения полистиролбетонной смеси при этом не должна превышать 1,5 м.

Наиболее эффективным способом для транспортировки и укладки приготовленной полистиролбетонной смеси является использования героторного насоса, который позволяет перемещать смесь на расстояние до 30 м по горизонтали или на 10 м по вертикали без ее расслаивания.

Для этой цели может быть использована установка типа МПТС, состоящая из, смесителя с горизонтальным валом емкостью 500 л, приемного бункера (550 л) со шнеком для подачи смеси в героторный насос и героторного насоса для подачи и укладки смеси.
При наличии смесителя для транспортирования и укладки смеси могут быть использованы только приемный бункер со шнеком и героторный насос этой установки.

ПЕРЕЧЕНЬ
нормативных документов, на которые имеются ссылки
в настоящих ТУ
ГОСТ 7076-87 Материалы и изделия строительные. Метод определения теплопроводности, п.4.7.
ГОСТ 7473-94 Смеси бетонные. Технические условия, п.3.7.
ГОСТ 9758-86 Заполнители пористые неорганические для строительных работ. Методы испытаний, п.4.2.
ГОСТ 10178-85 Портландцемент и шлакопортландцемент. Технические условия, п.2.1. (приложение А).
ГОСТ 10180-90 Бетоны. Методы определения прочности по контрольным образцам, п.4.1., п.4.6.
ГОСТ 10181.0-81 Смеси бетонные. Общие требования к методам испытаний, п. 4.1.
ГОСТ 10181.2-81 Смеси бетонные. Методы определения плотности, п.4.5., п.4.6 (приложение А).
ГОСТ 12730.1-78 Бетоны. Метод определения плотности, п.4.6.
ГОСТ 18105-86 Бетоны. Правила контроля прочности, п.3.1., п.4.1., п.4.6.
ГОСТ 23732-79 Вода для бетонов и растворов. Технические условия, п.2.5 (приложение А).
ГОСТ 24211-90 Добавки для бетонов. Классификация, п.2.3 (приложение А), п.2.4 (приложение А).
ГОСТ 27005-86 Бетоны легкие и ячеистые. Правила контроля средней плотности.
ГОСТ 27006-86 Бетоны. Правила подбора состава, п.3.1 (приложение А).

ГОСТ 30108-94 Материалы и изделия строительные. Определение удельной эффективной активности естественных радионуклидов, п.3.5.

Оборудование для производства полистиролбетона — АлтайСтройМаш

Большинство строительных объектов сегодня возводят из стройматериалов, созданных новейшими технологиями. Доступная стоимость и высокая прочность делают эти материалы более привлекательными по сравнению с традиционными.

Большую популярность приобрел полистиролбетон — один из видов лёгкого бетона (к этой категории относят также газобетон и пенобетон). В его составе, в качестве наполнителя используются гранулы полистирола. Как показывает европейский опыт, использование полистиролбетона позволяет значительно экономить энергоресурсы. Он легкий, хорошо сохраняет тепло и обеспечивает высокую звукоизоляцию.

Структура полистиролбетонного блока.

Для приготовления, перемещения и заливки смеси необходима мобильная установка для полистиролбетона, которая позволяет изготавливать штучные изделия (блоки, плиты), а также монолитную заливку при тепло- и звукоизоляции крыш; заливке полов; монолитной заливке самонесущих стен.

Технология производства полистиролбетона

Технологические операции изготовления полистрилбетонной смеси достаточно просты: в смеситель для полистиролбетона подается вода, затем цемент и химические компоненты. В течение 1-2 минут состав перемешивается, далее загружаются полистирольные гранулы, и дополнительно перемешивается еще 1 минуту до получения однородной структуры. Продолжительность приготовления раствора, с учетом времени загрузки и смешивания компонентов, должна составлять не менее 3-5 мин. Далее, полученная смесь транспортируется и укладывается при помощи героторного насоса по шлангу. Его конструкция и механизм работы позволяют сохранять требуемый объем воздуха в процессе приготовления.

Транспортирование и укладка монолитного полистиролбетона и формование блоков.

Укладка полистиролбетона в несъемную опалубку при возведении наружных стен осуществляется после сборки опалубки и установки всех необходимых связей. Шланг опускается в нижнюю часть опалубки и постепенно по мере заполнения ее перемещается вдоль опалубки и поднимается вверх (аналогично происходит формовка сборных конструкций). Такой способ укладки при отсутствии виброуплотнения позволяет существенно уменьшить образование воздушных пустот.

При устройстве монолитной теплоизоляции перекрытий над холодными подвалами и проездами укладка полистиролбетона осуществляется в один слой. Разравнивание и уплотнение поверхности уложенного полистиролбетона осуществляется при помощи рейки.

При формовании блоков нужно опустить сливной шланг в форму и сливать смесь до полного заполнения объема ячейки.


Как купить оборудование для производства полистиролбетона?

 

Чтобы купить полистиролбетонную установку, достаточно связаться с нами любым удобным для вас способом: позвонить, написать или заполнить заявку на сайте. Цена оборудования одинакова для всех клиентов России, Узбекистана, Казахстана, Киргизии и др. Мы осуществляем доставку по всему миру и даем гарантию 2 года на все установки. Кроме того, вы получаете полное техническое сопровождение наших специалистов на весь период эксплуатации оборудования.

Полистеролбетоновые блоки: виды, технология производства

Из всех разновидностей стройматериалов следует выделить полистиролбетонные блоки. Сочетание тяжелого бетона с легким гранулированным полистиролом позволило получить новые эксплуатационные характеристики и очертить круг применения материала. Полистиролбетонные блоки идеально подходят для возведения или же утепления ранее сооруженных конструкций.

Что из себя представляют блоки полистиролбетона?

Для легких конструкций, где нужна отличная тепло- и звукоизоляция, это идеальный вариант.

В состав материала, который считается относительно новым, входят:

  • портландцемент;
  • гранулы полистирола с диаметром до 2 см;
  • композиционные добавки;
  • кварцевый песок;
  • вода.

Полистиролбетоннные блоки относят к категории ячеистых, являющих собой композиционный материал. С помощью специального оборудования и металлических форм из него отливают строго установленных размеров блоки или распиливают готовые крупные плиты на части. Учитывая, что полистирол легковесный, всплывает в воде, не намокает, для связки с цементом его обрабатывают поверхностно-активными веществами. Таковыми выступает древесная смола. В результате шарики равномерно вмешиваются в раствор. Требования к составу прописаны в ГОСТ Р 51263—99.

Посмотреть «ГОСТ Р 51263—99» или cкачать в PDF (0 KB)

Виды модифицированного бетона

Согласно области использования подбираются свойства материала и его размеры, что показано в таблице:

Виды бетона по сфере примененияПлотность (нагрузка в кг/м3)Коэффициент теплопроводности, Вт/(м•K)
Конструкционный450—6000,105—0,145
Теплоизоляционный150—3500,055—0,085
Смешанный350—4500,085—0,105

Строительный материал бывает разных видов, которые отличаются выполняемыми функциями, например, вентиляционные блоки.

По функциям блоки делят на такие, как:

  • стеновые, что требуют наружной облицовки;
  • формы с облицовкой;
  • вентиляционные блоки.

Чтобы подобрать правильный вид полистиролбетонных блоков для возведения стен пользуются рекомендациями, представленными в таблице:

Вид блокаВес (кг)Размеры (мм)
Несущие стены5—30588*300*188
Перегородки5—15588*600*92
Перемычки5380*300*1300

Преимущества

К положительным свойствам, благодаря которым полистиролбетон приобретают для строительства, относятся:

  • Хорошая тепло- и шумоизоляция без дополнительных мероприятий.
  • Легкость блоков.
  • Простота монтажа и обработки (достаточно ножовки).
  • Высокая прочность и долговечность сооружения.
  • Влаго- и морозоустойчивость.
  • Экологически чистый материал.
  • Не образует трещин.
  • Экономически выгоден — минимальные затраты на транспортировку, укладку и обработку.

Недостатки

Несоблюдение правил кладки и установки изделий приводит к расшатывание окон и дверей.

Полистиролбетон не универсален. Однако опытным путем бывалые строители выработали эффективные меры по устранению недостатков, к которым относят:

  • Расшатывание окон и дверей при несоблюдении правил установки.
  • Особенности оштукатуривания стен. Требуется применение специальных смесей, четкое соблюдение технологии, временных и температурных условий.
  • Легкое удаление крепежных элементов, поэтому монтировать детали надо в пустотах, где бетон.
  • Повреждения, наносимые ацетоном и бензином.
  • Разрушение полистирола огнем, поэтому требуется защитная обработка и штукатурка.
  • Необходимость включения в проектирование дома вентиляционных систем.

Технология производства

Заводской способ

Он предусматривает использование автоматической линии, которая состоит из таких инструментов и техники, как:

  • пневмогенератор;
  • емкости для полистирола;
  • дозаторы ингредиентов;
  • устройства пневмотранспортировки;
  • бетономешалки;
  • дробилки полистирола;
  • формы для заливки блоков.

Вибропрессование является основным способом изготовления строительного материала.

Основными методами изготовления являются литьевой или вибропрессования. Для промышленных объемов целесообразен второй способ. Замешиваемый раствор содержит минимум воды. Малоподвижный состав помещают в формы и загружают в вибропресс. Через время блоки выдавливают и доводят до кондиции в сушильном шкафу.

Чтобы получить достаточную звуковую и тепловую изоляцию, ширина стены должна составлять не менее 375 мм.

Самостоятельное литье

Решив заняться домашним изготовлением, необходимо тщательно изучить этапы работы и нюансы на каждом из них. Это будет залогом получения качественного результата. Стоит отметить, что формы имеют высокую стоимость, а процесс выемки блоков трудоемкий. Примерный рецепт полистиролбетона плотностью 400 кг/м3 выглядит так:

  • цемент — 330 кг;
  • вода — 150 л;
  • вспененный полистирол — 1 м3;
  • древесная смола — 1 кг.

Технология приготовления включает такие этапы работы:

  1. Длительное (несколько часов) и тщательное замешивание раствора из всех составляющих.
  2. Заполнение подвижных форм. Они должны быть специализированы для полистиролбетона и смазаны особым составом.
  3. По окончании срока затвердевания (3—7 суток) блоки вынимаются.

Области применения

Материал широко используется для возведения многоэтажек, загородных коттеджей, подсобных помещений. Легковесность камня не требует мощного фундамента, снижает усадку, ускоряет и удешевляет строительство. Геометрия форм легко корригируется. Те же качества позволяют использовать полистиролбетонные блоки для надстройки дополнительных конструкций, в реставрационных работах. На кораблях служит для формирования наклонного пола. Отдельной темой идет тепло- и звукоизоляция. Материал хорошо утеплит кровлю, чердаки, стены, применим для сооружения колодцев.

Полистиролбетон производить получится?

Производство полистиролбетона и полистиролбетонных блоков

Нас часто спрашивают — как производить монолитный полистиролбетон или полистиролбетонные блоки? Какие при этом существуют особенности производства полистиролбетона и на какие особенности технологии стоит обратить внимание?

Себестоимость полистиролбетона

Во первых хотелось бы обратить внимание на экономическую составляющую при производстве полистиролбетона.

Себестоимость любого строительного материала помимо стоимости работ складывается так же из стоимости исходных материалов затрачиваемых на его производство.

Так же и в случае с полистиролбетоном часть его себестоимости состоит из стоимости закупаемого полистирола или пенополистирола. Чем ниже его стоимость тем ниже будет стоимость получаемого на выходе полистиролбетона.

Наиболее выгодным производство полистиролбетона становится тогда, когда у вас есть источник дешевого сырья в виде полистирола или пенополистирола. Одним из путей для достижения этого является переработка отходов пенопласта или пенополистирола. Для этих целей можно собрать нехитрую дробилку которая поможет вам получать пенополистирольную крошку. Иногда для этого используют даже отходы в виде строительной пены, или отходы от производства наполнителя сэндвич-панелей.

Если же у вас нет источника подобного рода отходов то полистирольные гранулы нужно будет закупать у производителя или продавца в вашем регионе.

Технология производства полистиролбетона

Для производства полистиролбетона применяются следующие компоненты:

  • цемент
  • песок
  • пенообразователь
  • пластификатор
  • полистирольные гранулы или пенополистирольная крошка
  • фибра (опционально)

Сам процесс производства полистиролбетона не многим отличается от производства обычного пенобетона. Есть конечно свои тонкости. Но в целом процессы схожи.

Состав смеси отличается уменьшенным количеством пенообразователя и добавлением полистирольных шариков или полистирольной крошки.

На видео выше показан процесс производства монолитного полистиролбетона на установке для пенобетона БАС350 присланный нашими клиентами. Он несколько отличается от рекомендуемой нами методики но в целом даёт понятие того как делать полистиролбетон на установке для пенобетона.

При заказе оборудования мы даём базовую рецептуру производства полистиролбетона и методологию процесса. А так же осуществляем технологическую поддержку в дальнейшем.

И на последок — если вы планируете заниматься производством полистиролбетона на нашем оборудовании, то оформляя заказ сообщите нам об этом. По вашему желанию мы можем изготовить увеличенный диаметр выходного коллектора для улучшенной выгрузки смеси из установки.

Блоки из полистиролбетона своими руками: 5 этапов самостоятельного изготовления

Усовершенствованный бетон с широкой сферой применения — от теплоизоляции до возведения ограждающих конструкций.

Одним из самых востребованных в строительной сфере материалов является бетон. Без него, в той или иной мере, не обходится практически ни одно строительство, будь то промышленные масштабы или частный сектор. С развитием технологий появились разновидности бетона с определенным набором характеристик.  Одна из них полистиролбетон, завоевывающий все большую популярность у потребителей, в том числе и на FORUMHOUSE.

  • что собой представляет полистиролбетон;
  • разновидности, сфера применения, характеристики данного материала;
  • производство;
  • как используется нашими умельцами.

Блок: 1/5 | Кол-во символов: 686
Источник: https://www.forumhouse.ru/journal/articles/7190-polistirolbeton-opisanie-harakteristiki-sfera-primeneniya-opyt-umelcev-portala

Плюсы и минусы материала

Производители строительных материалов долго трудились над тем, чтобы получить прочное, легкое и доступное по цене бетонное изделие, которое по физико-техническим характеристикам ничем не уступает другим видам бетонов. Результатом такой работы стало изобретение полистиролбетона, в состав которого вместо тяжелой щебенки стали добавлять легкий, гранулированный полистирол. С тех пор рецептура усовершенствовалась, блоки стали популярными и начали активно применяться для возведения конструкций любого предназначения.

Специалисты строительной отрасли заверяют, что пенополистиролбетон имеет намного больше плюсов, нежели минусов. Главные преимущества легкого материала такие:

  • Экобезопасность. Изделия не содержат в составе токсических или химических добавок.
  • Долговечность. Если технология производства полистиролбетона соответствует стандартам, а также соблюдаются условия эксплуатации, конструкция, возведенная из таких блоков, прослужит 70—100 лет.
  • Огнеупорность. Стройматериал может длительное время выдерживать воздействие высоких температур.
  • Высокий коэффициент теплоизоляции. В помещении, выстроенном из полистиролбетона, даже холодной зимой сберегается комфортная температура, при этом затраты на энергоресурсы существенно снижаются.
  • Шумоизоляция.
  • Простота в обработке, быстрота и легкость монтажа кладки.

Существенный недостаток этого универсального стройматериала один — снижение прочностных характеристик блоков после 20—23 циклов заморозки и оттаивания. Если поверхность, возведенную из полистиролбетонных блочных элементов дополнительно не обработать защитными материалами, на стенах постепенно начнут образовываться трещины, а сама кладка будет разрушаться.

Блок: 2/4 | Кол-во символов: 1685
Источник: https://ZnayBeton.ru/proizvodstvo/izbt/polistirolbeton-svoimi-rukami.html

Особенности полистиролбетона

полимер | Описание, примеры и типы

Полимер , любой из класса природных или синтетических веществ, состоящих из очень больших молекул, называемых макромолекулами, которые кратны более простым химическим единицам, называемым мономерами. Полимеры составляют многие материалы в живых организмах, включая, например, белки, целлюлозу и нуклеиновые кислоты. Более того, они составляют основу таких минералов, как алмаз, кварц и полевой шпат, а также таких искусственных материалов, как бетон, стекло, бумага, пластмассы и каучуки.

химическая структура поливинилхлорида (ПВХ)

Промышленные полимеры синтезируются из простых соединений, соединенных вместе в длинные цепи. Например, поливинилхлорид — это промышленный гомополимер, синтезированный из повторяющихся звеньев винилхлорида.

Encyclopædia Britannica, Inc.

Подробнее по этой теме

life: Производство полимеров

Образование полимеров, длинноцепочечных молекул, состоящих из повторяющихся звеньев мономеров (основных строительных блоков, упомянутых выше), является…

Слово полимер обозначает неопределенное количество мономерных звеньев. Когда количество мономеров очень велико, соединение иногда называют высокополимером. Полимеры не ограничиваются мономерами того же химического состава или молекулярной массы и структуры. Некоторые природные полимеры состоят из одного вида мономера. Однако большинство природных и синтетических полимеров состоит из двух или более различных типов мономеров; такие полимеры известны как сополимеры.

Органические полимеры играют решающую роль в живых существах, обеспечивая основные конструкционные материалы и участвуя в жизненно важных процессах. Например, твердые части всех растений состоят из полимеров. К ним относятся целлюлоза, лигнин и различные смолы. Целлюлоза — это полисахарид, полимер, состоящий из молекул сахара. Лигнин состоит из сложной трехмерной сети полимеров. Смолы для дерева — это полимеры простого углеводорода изопрена. Другой известный изопреновый полимер — это каучук.

натуральный каучук

Латекс, изготовленный из каучукового дерева ( Hevea brasiliensis ) в Малайзии.

© Стюарт Тейлор / Fotolia

Другие важные природные полимеры включают белки, которые представляют собой полимеры аминокислот, и нуклеиновые кислоты, которые представляют собой полимеры нуклеотидов — сложных молекул, состоящих из азотсодержащих оснований, сахаров и фосфорной кислоты. Нуклеиновые кислоты несут генетическую информацию в клетке. Крахмалы, важные источники пищевой энергии, получаемые из растений, представляют собой натуральные полимеры, состоящие из глюкозы.

полинуклеотидная цепь дезоксирибонуклеиновой кислоты (ДНК)

Часть полинуклеотидной цепи дезоксирибонуклеиновой кислоты (ДНК). На вставке показаны соответствующие пентозный сахар и пиримидиновое основание в рибонуклеиновой кислоте (РНК).

Encyclopædia Britannica, Inc.
Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской.
Подпишитесь сегодня

Многие неорганические полимеры также встречаются в природе, включая алмаз и графит. Оба состоят из углерода.В алмазе атомы углерода связаны в трехмерную сеть, которая придает материалу твердость. В графите, который используется в качестве смазки и в «грифелях» карандашей, атомы углерода соединяются в плоскостях, которые могут скользить друг по другу.

Синтетические полимеры получают с помощью различных типов реакций. Многие простые углеводороды, такие как этилен и пропилен, можно превратить в полимеры, добавляя один мономер за другим к растущей цепи. Полиэтилен, состоящий из повторяющихся мономеров этилена, является аддитивным полимером.Он может иметь до 10 000 мономеров, соединенных в длинные спиральные цепи. Полиэтилен кристаллический, полупрозрачный и термопластичный, то есть он размягчается при нагревании. Он используется для покрытий, упаковки, формованных деталей, а также для изготовления бутылок и контейнеров. Полипропилен также кристаллический и термопластичный, но тверже полиэтилена. Его молекулы могут состоять из 50 000–200 000 мономеров. Этот состав используется в текстильной промышленности и для изготовления лепных изделий.

Другие аддитивные полимеры включают полибутадиен, полиизопрен и полихлоропрен, которые играют важную роль в производстве синтетических каучуков.Некоторые полимеры, такие как полистирол, являются стеклообразными и прозрачными при комнатной температуре, а также термопластичными. Полистирол может быть окрашен в любой оттенок и используется при изготовлении игрушек и других пластиковых предметов.

полистирол

Упаковка из полистирола.

Acdx

Если один атом водорода в этилене заменить на атом хлора, образуется винилхлорид. Он полимеризуется в поливинилхлорид (ПВХ), бесцветный, твердый, прочный термопластический материал, который можно производить в различных формах, включая пену, пленки и волокна.Винилацетат, полученный в результате реакции этилена и уксусной кислоты, полимеризуется с образованием аморфных мягких смол, используемых в качестве покрытий и клеев. Он сополимеризуется с винилхлоридом с образованием большого семейства термопластичных материалов.

Трубы из ПВХ

Трубы из поливинилхлорида (ПВХ).

AdstockRF

Многие важные полимеры содержат атомы кислорода или азота наряду с атомами углерода в основной цепи. К таким макромолекулярным материалам с атомами кислорода относятся полиацетали.Самый простой полиацеталь — это полиформальдегид. Он имеет высокую температуру плавления, кристаллический и устойчивый к истиранию и действию растворителей. Ацеталевые смолы больше похожи на металл, чем на любые другие пластмассы, и используются при производстве деталей машин, таких как шестерни и подшипники.

Линейный полимер, для которого характерно повторение сложноэфирных групп вдоль основной цепи, называется полиэфиром. Сложные полиэфиры с открытой цепью представляют собой бесцветные кристаллические термопластичные материалы. Те с высоким молекулярным весом (от 10 000 до 15 000 молекул) используются в производстве пленок, формованных изделий и волокон, таких как дакрон.

Полиамиды включают встречающийся в природе протеин казеин, содержащийся в молоке, и зеин, содержащийся в кукурузе (кукурузе), из которой изготавливаются пластмассы, волокна, клеи и покрытия. К синтетическим полиамидам относятся карбамидоформальдегидные смолы, которые являются термореактивными. Они используются для изготовления формованных изделий, а также в качестве клеев и покрытий для текстиля и бумаги. Также важны полиамидные смолы, известные как нейлон. Они прочные, устойчивые к нагреванию и истиранию, негорючие и нетоксичные, их можно окрашивать.Наиболее известно их использование в качестве текстильных волокон, но у них есть много других применений.

нейлон

Образование нейлона, полимера.

Encyclopædia Britannica, Inc.

Другое важное семейство синтетических органических полимеров состоит из линейных повторов уретановой группы. Полиуретаны используются в производстве эластомерных волокон, известных как спандекс, и в производстве основ покрытий, а также мягких и жестких пен.

Другой класс полимеров — это смешанные органические и неорганические соединения.Наиболее важными представителями этого семейства полимеров являются силиконы. Их основа состоит из чередующихся атомов кремния и кислорода с органическими группами, присоединенными к каждому из атомов кремния. Силиконы с низкой молекулярной массой — это масла и смазки. Соединения с более высокой молекулярной массой представляют собой универсальные эластичные материалы, которые остаются мягкими и эластичными при очень низких температурах. Они также относительно стабильны при высоких температурах.

герметик

Силиконовый герметик наносится из пистолета для герметика.

Achim Hering

Фторуглеродосодержащие полимеры, известные как фторполимеры, состоят из углеродно-фторных связей, которые обладают высокой стабильностью и делают соединение устойчивым к растворителям. Природа углеродно-фторной связи дополнительно придает фторполимерам антипригарные свойства; это наиболее широко проявляется в тефлоне из политетрафторэтилена (PFTE).

ТЕПЛОИЗОЛЯЦИОННЫЕ СВОЙСТВА ПЕРЕДНЕГО ПОЛИСТИРОЛА КАК СТРОИТЕЛЬНЫХ И ИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ РЕФЕРАТ

1 ТЕПЛОИЗОЛЯЦИОННЫЕ СВОЙСТВА ПЕРЕДНЕГО ПОЛИСТИРОЛА КАК СТРОИТЕЛЬНЫХ И ИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ К.T. Yucel 1, C. Basyigit 2, C. Ozel 3 РЕЗЮМЕ Лабораторные испытания изоляционных материалов на теплопроводность дают полезную информацию о природе таких материалов; итоговые данные могут характеризовать эксплуатационные характеристики. В строительных установках изоляция продолжает работать при различных температурах, влажности и общих условиях сборки. Полная сборка теплоизоляции здания важна для контроля и прогнозирования долгосрочных характеристик конструкции согласно результатам лабораторных испытаний.В процессе оценки проектных значений теплопроводности изоляционных материалов очень важно знать плотность, теплопроводность, класс материала, механические свойства изоляционных свойств. В данном исследовании используются экспериментальные испытания пенополистирола в качестве изоляционных и строительных материалов, которые являются однородными или близкими к гомогенным, пористыми, зернистыми или многослойными. Пластинчатый метод использовался для экспериментальных исследований в соответствии со стандартами. На этом аппарате определяют теплопроводность экструдированного полистирола.В этом аппарате, который можно использовать для материалов с теплопроводностью от 0,036 до 0,046 Вт / мК, плотность пенополистирола составляет от 10 до 30 кг / м3. Результаты и экспериментальные методы обсуждаются в соответствии с хорошо известными стандартами. На пенополистирол влияют изменения в составе материалов в ячейках. КЛЮЧОВІ СЛОВА: плитный метод, пенополистирольные плиты, коэффициент теплопроводности. 1 Университет Сулеймана Демиреля, факультет архитектуры и инженерии, факультет гражданского строительства, Испарта, Турция 2 Университет Сулеймана Демиреля, факультет технического образования, Отдел строительного образования, Испарта, Турция 3 Университет Сулеймана Демиреля, факультет технического образования, Отдел строительного образования, Испарта / Турция

2 1.ВВЕДЕНИЕ Мировые запасы ископаемого топлива сокращаются день ото дня. Большая часть энергии уходит на отопление. Несмотря на то, что ресурсы ископаемого топлива сокращаются, в мире все еще есть достаточно ресурсов для использования в целях теплоизоляции или теплоизоляционных материалов. На этапе строительства, оценив эти ресурсы, можно уменьшить тепловые потери; можно получить здоровье и комфорт конструкции. Кроме того, тратя меньше энергии, выиграет индивидуальная и деревенская экономика. Неутепленные наружные стены — самые важные зоны тепловых потерь.Для экономичного утепления выгоднее использовать основную массу наружных стен. За счет теплоизоляции наружной стены можно предотвратить 70% общих потерь тепла [1, 2]. Изоляция должна быть экономичной и предотвращать увеличение статической нагрузки здания. Анализ материалов из полистирола показывает, что при таком же сопротивлении теплопроводности он является наиболее экономичным и самым легким по весу среди полиэтиленовых материалов. [3]. Строительные изделия из полистирола являются подходящими материалами для строительных типов и стеновых систем.[4]. По этой причине выбран полистирол (см. Рис. 2), который имеет коэффициент использования 15% в пластике, являющемся продуктом нефтехимии (см. Рис. 1). Это связано с тем, что полистирол имеет высокую изоляцию и малый вес, что приводит к незначительному увеличению собственных нагрузок на здание. Этот материал имеет широкое применение в строительстве. Транспорт 45% Легкое тепло Электричество и энергетическая изоляция 42% Другое (неэнергетическое использование) 5% Пластмассы 4% Сырье для химии / нефтехимии 4% Рис. 1. Пластмассы основаны на нефти [5].ПВХ 55% Полиолефины 15% Полиуретаны 8% Полистирол 15% Прочие 7% Рис. 2. Пластмассы в строительстве [5].

3 2. Твердый пенополистирол Твердые пенополистирольные плиты представляют собой изоляционные материалы, полученные путем формования распылением полимеризации стирольной смолы под давлением (экструдированный полистирол XPS) или путем прессования зерен полистирола в формы, расширяемые паром или в горячей воде, снова с помощью пара (расширенный Полистирол XPS) (см. Рис.3) [6, 7]. Рис. 3. Процесс производства пенополистирола (EPS) [5]. Неподвижный воздух имеет очень низкий коэффициент теплопроводности. Пеноматериалы из полистирола содержат почти 98% воздуха. Твердая фаза (пенный каркас), проводящая тепло, занимает 2% от общего объема. Кроме того, полистирол, передающий тепло, является очень изоляционным материалом. Из-за того, что пенополистирольный материал формируется из очень маленьких (1 м 3 пенополистирольного материала EPS состоит из 3-6 миллиардов ячеек) закрытых ячеек: диаметром мм (см. Рис.4) скорость теплопроводности за счет движения воздуха уменьшается с уменьшением объема ячеек, таким образом, с точки зрения техники изоляции, это хороший изоляционный материал. Лучше всего предотвратить тепловые лучи, если использовать большее количество ламинатов. Прежде всего; Обращает на себя внимание свойство, меньшее удельный вес пенополистирола. Вес пеноматериала, полученного различными способами с предварительным набуханием, варьируется от кг / м 3. Также величина теплопроводности изменяется в зависимости от плотности изготовления.Обычно стандартный пеноматериал, который используется на строительных площадках, имеет плотность кг / м 3 [3, 8]. Рис. 4. Микроструктура пониженной теплопроводности [5].

4 Наиболее распространенные области применения пенополистирола для теплоизоляции — строительство; стены, потолок, крыша и сборные элементы. Другие области применения — шумоизоляция, декоративные потолочные плиты и отверстия в бетонных формах.Предварительно набухший полистирол используется также при производстве легкого бетона и легкого кирпича. В технологии охлаждения пенополистирол используется для изоляции охлаждаемых складов, железнодорожных вагонов, судов, грузовиков, а также для изоляции труб. Долговечность этого материала при воздействии тепла зависит от периода и градуса Цельсия. Несмотря на то, что она непродолжительна к нагреванию до 100 C в течение короткого периода, она долговечна и может использоваться при температуре до C в зависимости от ее плотности в течение длительного периода [9].Принимая во внимание удельную массу, которая очень мала по сравнению с другими материалами, видно, что произведение прочности на сжатие пенополистирольного материала имеет важное более высокое значение [3]. Прочность пенополистирола под давлением и сопротивление деформации формы при тепловом воздействии увеличиваются параллельно с увеличением веса изделия (см. Рис. 5). Однако мощность всасывания воды меняется в зависимости от веса единицы и качества продукции (см. Рис. 6). Общие свойства EPS приведены в таблице 1.Прочность на сжатие (Н / мм 2) Деформация при% 10 <% 2 Плотность деформации (кг / м 3) Рис. 5. Прочность на сжатие EPS в зависимости от плотности и деформации [10]. (Всасывание воды,% по объему) День 15 кг / м 3 20 кг / м 3 30 кг / м 3 Рис. 6. EPS водопоглощения [10].

5 Таблица 1. Технические характеристики пенополистирола [8]. Свойства и соответствующие стандартные значения пенополистирола Минимальная плотность (кг / м 3) (DIN 53420) Классификация строительных материалов (DIN 4102) B1 Трудновоспламеняющиеся лаборатории по теплопроводности.Значение (Вт / мК) (DIN 52612) Значение измерения (Вт / мК) (DIN 52612) Прочность на сжатие при 10% деформации (DIN 53421) Прочность на сжатие при деформации менее 2% (DIN 53421) Прочность на сдвиг (Н / мм 2 ) (DIN 53427) Сопротивление изгибу (Н / мм 2) (DIN 53423) Предел прочности (Н / мм 2) (DIN 53430) Модуль упругости E (Н / мм 2) Прочность формы в зависимости от температуры в течение короткого периода (C) ( DIN 53424) В течение длительного периода 5000 Н / мм 2 (C) (DIN 53424) В течение длительного периода Н / мм 2 (C) (DIN 18164) Коэффициент теплового расширения (1/4) Удельная теплоемкость (Дж / кг · К) (DIN 4108) Водопоглощающая способность за 7 дней при полном погружении в воду DIN (% объема) 1 год Диффузия водяного пара (г / м 2.г) (DIN 53429) Коэффициент сопротивления диффузии пара (µ) (DIN 4108) 20/250 30/250 40/250 EPS, который используется для строительства, изготавливается в форме плит. Также продается для использования в декоративных целях. Удельный вес при производстве варьируется от кг / м 3, а производственная плотность составляет 10-12, 12-14, 14-16, 16-18, 18-20, 20-22, 22-24, 24-26, 26-28. , кг / м 3 в единицах веса. Производственные размеры EPS составляют 400x100x50 см, а с использованием технологии горячей проволоки (мин. 1 см) его можно производить любой толщины.В настоящее время в мире производится 2,2 миллиона тонн пенополистирола в год, а количество и количество теплоизоляционных материалов, потребляемых в Турции и Европе, показано на рис. 7.

6% Потребление Минеральная вата EPS XPS Полиуретан Другие страны Европы Турция Рис. 7. Положение EPS в области применения теплоизоляционных материалов [8]. 3. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ Виды строительных и теплоизоляционных материалов совершенствуются с постоянным развитием технологий.При тепловых измерениях использование коэффициента теплопроводности, приведенного в литературе для аналогичных материалов, может дать неверные результаты. По этой причине необходимо определять все физические свойства новых материалов, такие как удельный вес, вязкость, удельная теплоемкость, коэффициенты теплопроводности [11]. Наиболее важными и наиболее часто используемыми методами испытаний твердых веществ являются: Доска с методом защитного нагревателя, сферической оболочкой, цилиндрическим и временным режимом и методом пластины. В данном исследовании для определения тепловых свойств пенополистирольных плит используется пластинчатый метод, который представляет собой определение коэффициента теплопроводности в зависимости от проводимости.Наиболее важные преимущества этого метода: Простые в исполнении, используемые образцы имеют форму куба и обеспечивают полное распараллеливание с горизонтальными измерениями, где наиболее важным недостатком является то, что теплопроводность образцов не может быть определена во влажном состоянии, и требуется кондиционирование. Теплопроводность и тепловые переходы могут быть определены в состоянии прямой пластины, однородном или почти однородном пористом, волокнистом, зернистом, одном или нескольких слоистых образцах. В пластинчатом методе коэффициент теплопроводности увеличивается с увеличением угла наклона к горизонтали.Использование пластинчатого метода для определения коэффициента теплопроводности будет уместным, потому что EPS формируется из очень маленьких ячеек, соединяющихся из зерен, и его используют при строительстве в горизонтальном и / или вертикальном положении. Этот метод бесполезен для материалов; теплопроводность более 2 ккал / м · ч С (2,3 Вт / м · К). Из изделий из пенополистирола, для которых определены коэффициенты теплопроводности, выбраны пять типов удельного веса (10, 15, 20, 25 и 30 кг / м 3).

7 3.1. Экспериментальное оборудование и приложения. Для определения коэффициента теплопроводности используется устройство, которое определяет теплопроводность методом пластин Feutron (см. Рис. 8), и это устройство может измерять один образец в течение каждого периода испытаний. Размеры нагревательной пластины составляют 250×250 мм, а ее толщина может достигать 70 мм. Холодильная плита воды и электричество плиты обеспечиваются от подключений, которые связаны с сетями воды и электричества. Оборудование состоит из четырех основных частей.Это; фиксированная нижняя пластина, подвижная верхняя пластина, защитный лист и измерительные приборы. Измерительные приборы состоят из трех основных частей: термометры, электрический счетчик и микрометры для измерения толщины (0,001 мм). Электрическая линия и холодная вода Рис. 8. Схема оборудования, измеряющего теплопроводность пластинчатым методом [12]. 1- Образец 2- Нагревательная пластина 3- Охлаждающая пластина 4- Защитная горячая пластина 5- Термопара 6- Термометры охлаждающей пластины 7- Термометры защитной горячей пластины 8- Микрометры для измерения толщины 9- Термостат охлаждающей пластины 9- Терморегулятор для термостата защитной пластины 10- Терморегулятор для переменного преобразователя 12- Двухточечный регулятор 13- Цифровой вольтметр электрического счетчика 15- Термометр холодной воды 16- Клапан холодной воды 17- Расходомер 18- Короткий циркуляционный клапан.

8 Нагревательная пластина нагревается электричеством, степень нагрева регулируется. Пластина охладителя охлаждается сетевой водой, а степень охлаждения регулируется с помощью лопасти по количеству протекающей воды. Теплота сетевой воды измеряется градусником. Также с помощью термометров на более теплой и более холодной пластинах, температура этих пластин контролируется. Перед началом эксперимента образцы сушат (24 часа при 105 o C) до неизменного веса при нормальном атмосферном давлении (1×10 5 Па).Практически образцы пенополистирола (в основном пластмассы) теряют свои физические свойства при 105 ° C, поэтому проводят 24-часовую процедуру сушки при 24 ° C. Рассчитываются количества влажности по объему (n v) и по весу (n г) образцов. После подготовки образцов для измерения в первую очередь необходимо определить количество рабочей мощности. Уровень мощности привязан к толщине образца и приближенному коэффициенту теплопроводности. Используя диаграмму, приведенную на рис. 9, на график наносят приблизительное значение коэффициента теплопроводности, взятое из DIN 4108, и величину измеренной толщины.По этим значениям уровень мощности считывается с данной диаграммы. Тогда коэффициент Ki получается из таблицы 2 в соответствии с найденным уровнем мощности λ = λ = 1,3 λ = λ = 0,80 λ = λ = λ = λ = λ = λ = Толщина образца (мм) Рис. 9. Диаграмма для определения мощности уровень при фиксированной разнице температур 10 o C [12]. Уровень мощности Таблица 2. Уровень мощности и коэффициенты Ki [12]. Источник питания Ki * Источник питания Ki * * Ki Коэффициент уровня мощности содержит измеренную величину площади, коэффициент счетчика C и коэффициенты, которые переводят wh в ккал.

9 После выполнения необходимых регулировок образец помещают на нижнюю фиксированную пластину, полностью параллельную горизонтали, и измеряют толщину в четырех углах образца с помощью микрометров для измерения толщины. В процессе эксперимента электрический ток, проходящий от электрического счетчика, и величины на термометрах защитных нагревательных пластин измеряются каждые полчаса всего 9 раз.После завершения эксперимента толщины в четырех углах образца снова измеряются с помощью микрометров для измерения толщины и вычисляются средние из этих значений. Путем определения количества электричества (wh / h), проходящего в единицу времени, ток (q) рассчитывается с помощью уравнения 1 и с использованием коэффициента уровня мощности (Ki). Разница тепла (t) между двумя поверхностями рассчитывается путем усреднения значений термометров горячих и холодных пластин. По уравнению 2 коэффициент предварительной теплопроводности (λ 10.ö) сухого образца рассчитывается с использованием найденных значений и поправочного коэффициента (ω), относящегося к оборудованию. Поскольку материал будет использоваться в нормальных погодных условиях, при нормальном атмосферном давлении, значение теплопроводности (λ 10k) в сухом состоянии рассчитывается по уравнению 3 для средней теплоты 10 ° C путем добавления количества, равного влажности по весу. количество, которое оно в нем содержится. Добавляя 10% расчетного значения коэффициента теплопроводности к самому себе, значение, которое будет использоваться для расчета тепла (Z), чтобы использовать этот материал в зданиях по уравнению 4 [14].q = wh / h.ki (1) q.d o λ 10.ö = ккал / мч C t q. ω (2) λ 10.k = λ 10.ö / [1+ (нг / 100)] (3) λ h = λ 10.k + Z (4) 4. РЕЗУЛЬТАТЫ ИСПЫТАНИЙ И ОБСУЖДЕНИЕ По окончании исследований и расчеты, выполненные для каждой единицы веса, достигаются до значений, приведенных в таблице 3. Значения λ 10.ö, приведенные в таблице 3, являются средними арифметическими для образцов. Изменение расчетного значения теплопроводности (λ h), найденное экспериментально, представлено на рис. 10. Установлено, что удельный вес и коэффициент теплопроводности изменяются обратимо.Форма кривой изменения полиномиальна, а коэффициент регрессии равен 1. (y = 2×10-05 x x, R 2 = 1). Как видно на рис. 6, только одно значение (для 15 кг / м 3, Вт / м · K) дано для пенополистирольных плит из жесткого пенополистирола в TS 825 и DIN 4108; для других плотностей не определено, как рассчитывать, или значение не приводится. В PrEN 12524 для продуктов, которые не проводились, дается W / mK, а удельный вес и коэффициент теплопроводности изменяются полиномиально параллельно количеству испытаний, для надежности% 50 (R 2 =) и% 90 (R 2 = ) приведены два различных расчетных значения теплопроводности.Согласно PrEN 12524, эти два значения при 23 C одинаковы для относительной влажности% 50 и% 80.

10 Группа плотности (кг / м 3) Номер образца Сухая масса образцов, кг Таблица 3. Расчетные значения коэффициента проводимости для образцов из пенополистирола (a) кг / м 3 Плотность поверхности a. d (кг / м 2) E общее потребление электроэнергии (кВт / ч) Z общее время (час) t разница тепла Ток E.Ki Z Среднее значение первой и последней толщин — d (м) λ 10.ö λ 10.k Ккал / мч C λ 10.k + Z Расчетное значение коэффициента проводимости (λh) Ккал / мч C Вт / мK

11 Расчетное значение коэффициента проводимости (Вт / мК) Вес агрегата (кг / м 3) AP = 50 P = 90 λ h B λ h ABP = 90 P = 50 Рис. 10. Расчетные значения коэффициента теплопроводности пенополистирола, найденные тесты и по стандартам. A: это расчетное значение коэффициента теплопроводности для продуктов (EPS) любых проведенных испытаний, приведенных в PrEN [15].B: Расчетное значение коэффициента теплопроводности, используемое для плит из пенополистирола с плотностью более 15 кг / м 3 согласно TS 825 и DIN 4108 [13, 16]. P = 50 — P = 90: Расчетные значения коэффициента теплопроводности, которые будут использоваться для продуктов (EPS) с уровнями значимости 50% и 90%, указанными в PrEN [15]. λ h: Расчетное значение коэффициента теплопроводности, найденное при испытаниях. По результатам эксперимента, хотя расчетные значения коэффициента теплопроводности пенополистирола с удельной массой кг / м 3 оказались ниже предельных значений, указанных в TS 825, DIN 4108 и PrEN 12524, за исключением значения, указанного в PrEN для образцов любого Проведенные испытания показали, что ППС с удельным весом 15 кг / м 3 больше других значений.

12 4. РЕЗУЛЬТАТЫ При определении значений теплопроводности строительных материалов, которые будут использоваться для теплоизоляции здания, знание физических свойств материалов (структура, прочность на кручение и т. Д.) И использование соответствующих методик позволит получить более точные результаты. Определение коэффициентов теплопроводности после этапа производства строительных материалов заставит производителя производить высококачественные материалы, а также будет удовлетворять соответствующие экономические условия за счет уменьшения толщины изоляционных материалов, используемых в зданиях. При испытаниях изделий из пенополистирола установлено, что коэффициент теплопроводности меняется обратно с плотностью.Таким образом, можно сделать вывод, что уменьшение коэффициента теплопроводности обеспечивается увеличением количества зерен EPS в единице объема, что приводит к уменьшению объема пустот между зернами, а также приводит к увеличению количества пор в зернах EPS. Однако это снижение коэффициента теплопроводности действительно до оптимального значения, поскольку уменьшение общего количества пустот в EPS приведет к увеличению плотности, таким образом, значение коэффициента теплопроводности может увеличиться.В литературе и стандартах приводится только одно значение коэффициента теплопроводности пенополистирола, и предлагается любой метод изменения этого значения в зависимости от веса единицы. Будет более уместно изменить значение коэффициента теплопроводности, как указано в PrEn, в зависимости от количества образцов, чтобы разработать новые и лучшие материалы, используя результаты, полученные в экспериментах, с использованием значения, рассчитанного путем умножения значения коэффициента теплопроводности на безопасность. коэффициент.СПИСОК ЛИТЕРАТУРЫ 1. Брайант, С., Люм, Э., Система Брайанта Уоллинга. Бетон 97 для будущего, 18-я конференция, проводимая раз в два года, Аделаидский конференц-центр, Олдер, Г., St Century Challenge. Компьютерная графика (ACM), 33 (3), Эдремит, А., Проведение экономического анализа изоляционных материалов путем определения физических свойств; Магистерская работа, Стамбульский технический университет Йылдыз, стр. 114, Турция. (На турецком языке) 4. Манселл, У. К., Стенные конструкции с фиксированным креплением революционизируют жилищное строительство. Бетонное строительство, The Aberdeen Group, 12 стр., Соединенные Штаты. 5. Фиш, Х., Июль. Пластмассы — инновационный материал в строительстве, EUROCHEM — Конференция 2002 / TOULOSUE (30 апреля Линч, Г., Бой с холода. Компьютерная графика (ACM), 33 (3), Шрив, Н., Бринк, AJ, (Перевод на турецкий язык Чаталташ, И. А.), Chemical Process Industries, стр. 350, Стамбул, Турция. 8. Общество производителей полистирола, (30 апреля 2003 г., Стамбул, Турция. (На турецком языке) 9 Йылмаз К., Колип А., Касап Х., Панели из несущего полистирола с улучшенной изоляцией, помещенные в стальную сетку, Симпозиум по изоляции 97, стр., Элазыг, Турция.(На турецком языке)

13 10. Анонимный, Жесткая пена (EPS) в теплоизоляции. Общество производителей пенополистирола, стр. 14, Анкара, Турция. (На турецком языке) 11. Какач, С., Введение в объем I теплопроводности (теплопроводность). Техническое издательство, стр. 310, Анкара, Турция. (На турецком) 12. Аноним. Справочник по испытательной аппаратуре типа Feutron (определение коэффициента теплопроводности пластинчатым методом).13. DIN 4108, 1981, Теплоизоляция в зданиях, (DIN-Norm), стр. 48, Берлин, Германия. 14. TS 415, Расчетное значение теплопроводности и термического сопротивления для архитектурных и строительных целей (с использованием метода пластин). Турецкий институт стандартов (TS), стр. 12, Анкара, Турция. (На турецком языке) 15. PrEn 12524, 1996, Строительные материалы и продукты, Энергетические свойства, Табличные проектные значения, Европейский комитет по стандартизации, 12 стр., Центральный секретариат: Rue De Stassart 36, Брюссель. 16.TS 825, Теплоизоляция в строительстве. Турецкий институт стандартов (TS), стр. 62, Анкара, Турция. (На турецком языке)

ACH Foam Technologies — лидер в производстве пенополистирола (EPS)

Товары
Архитектурные формыИзоляция нижнего слоя и нижнего перекрытия Вкладыши коробкиИзготовленная на заказ упаковка EPEФормованная на заказ упаковка из пенополистирола EIFSСборная упаковка из пенополистиролаГибкая пена / упаковка Arcel®Изоляция гаражных воротГеопенаГрафитовый полистиролИзолированные транспортировочные контейнерыСыпучая изоляция арахисПотерянная изоляция из пенопластаУтеплитель для литья под давлением

состояние
AlabamaAlaskaArizonaArkansasCaliforniaCalifornia — Большой SF Bay AreaColoradoConnecticutDelawareEastern MontanaEastern WyomingFloridaGeorgiaHawaiiIdahoIllinoisIndianaIowaKansasKentuckyLouisianaMaineMarylandMassachusettsMinnesotaMississippiMissouriNebraskaNevadaNew HampshireNew JerseyNew MexicoNew YorkNorth CarolinaNorth DakotaNorthern MichiganOhioOklahomaOregonPennsylvaniaRhode IslandSouth CarolinaSouth DakotaSouthern MichiganTennesseeTexasUtahVermontVirginiaWashingtonWest VirginiaWestern MontanaWestern WyomingWisconsin

Завод

111 Вт.Шампанского проспекта,

Мюррей, UT 84107

801.265.3465 Телефон
801.265.3542 Факс
877.775.8847 (бесплатно)

Представленные государства:
Айдахо, Западная Монтана, Юта, Западный Вайоминг

Товары:
Архитектурные формы, низкосортная изоляция и изоляция под плиту, вкладыши, упаковка из EPE на заказ, упаковка из пенополистирола на заказ, EIFS, сборная упаковка из пенополистирола, упаковка из гибкой пены / Arcel®, изоляция гаражных ворот, геопена, графитовый полистирол, изолированные транспортные контейнеры, насыпной наполнитель Арахис, Образцы для литья пенопласта, Радоновая защита, Изоляция жилых автофургонов, Обшивка и сайдинг, Изоляция стен, Подтвержденные отправители, Упаковка для вина

Репутация

Терри Мейер

801.599,2220

Завод

13695 Mt. Андерсон,

Рино, NV 89506

775.343.3400 Телефон
775.343.3407 Факс
800.444.9290 (бесплатно)

Представленные государства:
Калифорния, Невада

Товары:
Архитектурные формы, Изоляция ниже уровня и под плиткой, EIFS, Изоляция гаражных ворот, Геопена, Графитовый полистирол, Радоновая защита, Изоляция крыши, Обшивка и сайдинг-подкладка, Изоляция стен

Репутация

Джон Коуэн

916.765,6621

Завод

5250 ул. Н. Шермана,

Денвер, Колорадо 80216

303.297.3844 Телефон
303.292.2613 Факс
800.525.8697 (бесплатно)

Представленные государства:
Колорадо, Восточная Монтана, Нью-Мексико, Восточный Вайоминг

Товары:
Архитектурные формы, Изоляция ниже уровня и под плиткой, EIFS, Изоляция гаражных ворот, Геопена, Графитовый полистирол, Радоновая защита, Изоляция крыши, Обшивка и сайдинг-подкладка, Изоляция стен

Репутация

Дуг Вервайн

720.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*

*

*