Термошвы в бетоне: в бетоне, на отмостке, при облицовке кирпичом

Содержание

предназначение, технологии изготовления и разновидности

Так как в последнее время цены на различные строительные материалы стремительно растут, нужно задуматься о том, каким образом создавать эффективные и качественные строения, чтобы после строительства не приходилось исправлять ошибки. Для того чтобы исключить возможные ошибки и риски, при строительстве любых зданий необходимо организовать температурные швы в бетоне. Эти конструкции минимизируют различные деформации.

Обработка температурного щваОбработка температурного щва

Обработка температурного щва

Не исключение здесь и различные бетонные конструкции. Это могут быть полы, отмостки и многие другие конструкции. Если неверно будет сделан выбор технологии по созданию пола, то в результате он покроется трещинами, а финишное покрытие деформируется.

От отмосток зависит состояние ленты фундамента. Если она будет растрескиваться, то это может стать причиной проникновения влаги в основание и в итоге вылиться в очень серьезные последствия.

Как они выглядят?

По внешнему виду они представляют собой надрезы в бетоне. Благодаря этим надрезам при резких и плавных перепадах температур растрескивания основания не произойдет. Это можно объяснить тем, что основание может расширяться, для этого достаточно места.

Так, существует большое количество подобных защитных строительных конструкций. Классификация СНИП содержит не только температурные, но и много других видов швов.

Многообразие бетонных швов

Итак, среди швов различают:

  • Усадочные;
  • Осадочные и температурные;
  • Антисейсмические.

Температурно-усадочные швы – это временные линии. Они создаются преимущественно в монолитных конструкциях непосредственно при заливке бетонных смесей. Когда смесь начнет сохнуть, она будет сжиматься. Это может образовать трещины. Так, раствор будет сжиматься, а давление будет воздействовать на линию пустоты, которая будет расширяться. Затем, когда все засохнет, линия будет уничтожена.

Создание в бетоне температурного шваСоздание в бетоне температурного шва

Создание в бетоне температурного шва

Что касается второй группы, то эти канавки предназначены для сохранения постройки от осадки и перепадов температур. Осадочный шов можно обнаружить на любых элементах постройки, а также в основании. Температурный надрез можно найти везде, на любых элементах, но только не на фундаменте. К примеру, в большинстве зданий можно найти температурные швы в стенах.

Антисейсмическая защита – это специальные линии, которые делят здание на блоки. Там, где проходят эти линии, создают двойные стены либо специальные стойки. Это позволяет сделать постройку более устойчивой.

Защитит от резких перепадов температур и деформации

По своим конструктивным особенностям, температурно-деформационный шов – это специальная канавка, линия. Он делит всю постройку на блоки. Размер таких блоков и направлений, в котором линия надреза разделяет здание, определяют проектом, а также специальными расчетами.

Для того чтобы загерметизировать эти канавки, а также максимально уменьшить потери тепла, эти канавки заполняют теплоизоляторами. Зачастую применяются различные материалы на основе резины. Так, значительно растет упругость здания, а температурные расширения не будут деструктивно воздействовать на другие материалы.

Зачастую, такой разрез делают от крыши до основания. Саму основу постройки не делят, так как фундамент ниже, чем глубина, на которой мерзнет почва. Основание не будет испытывать на себе влияние низких температур. Шаг деформационного шва зависит от применяемых материалов, а также от точки на карте, где расположен объект.

В большинстве зданий и построек можно использовать цифры из таблиц. Расстояние между температурными швами будет составлять 150 м для тех зданий, которые построены из сборных конструкций и отапливаются или 90 м для монолитных отапливаемых конструкций.

А где нет отопления?

Ширина температурного шваШирина температурного шва

Ширина температурного шва

В этом случае эти цифры уменьшают на 20%. Чтобы предотвратить усилия, в случае неравномерного осаживания можно организовать осадочные швы. Также эта защита может выполнять роль температурной. Осадочный разрез должен создаваться до основания. Температурный – до верхней части фундамента. Ширина температурного шва должна составлять 3 см.

Защита в домах, где живут люди

Температурный шов в жилом доме имеет древнюю историю. Использовать эти технологии начали еще в процессе строительства первой Египетской Пирамиды. Затем она стала использоваться при любых каменных сооружениях. С помощью этой хитрости люди научились сохранять свое жилье от скачков температуры и других природных катаклизмов.

Эксплуатация жилых домов часто приводит к различного типа разрушениям основания и фундамента. Среди множества возможных причин можно выделить движение грунта под домом. Это сигнал нарушения гидроизоляции. Впоследствии – дом рано или поздно разрушится.

Как это делается

У каждого дома найдется перфоратор. Так, при помощи бура нужно сделать горизонтальный разрез в стене. Затем необходимо провести герметизацию шва при помощи толи, пакли и в конце следует сделать специальный замок и из воды, песка, глины и соломы. Этим составом необходимо хорошо заделать температурный шов.

А если дом из кирпича

Температурные швы в бетоне на улице

Как правило, возводимые бетонные и железобетонные конструкции бетонируются отдельными сопрягаемыми между собой участками. Разбивка конструкций на блоки (или карты) бетонирования проводится как по конструктивным, так и по технологическим соображениям. Конструктивная разбивка призвана обеспечить направленную деформацию отдельных участков конструкций и сооружений, а технологическая учитывает неизбежные перерывы в работе, общую организацию работ, возможности используемых механизмов и пр.

Деформационные швы можно подразделить на осадочные, температурные и усадочные.

Осадочными швами разделяют элементы сооружений, воспринимающих различные по величине и характеру приложения нагрузки там, где неразрезность конструкции не предусмотрена проектом. Так, осадочные швы отделяют колонны и фундаменты под оборудование от примыкающих к ним полов. Осадочные швы могут быть образованы обмазкой зоны примыкания конструкций битумом, установкой в зоне стыка деревянной разделительной прокладки и т.п. Ширина осадочного шва должна быть возможно меньшей — 7—10 мм.

Статья ресурса monolitniy.ru — строительные услуги в Москве и Подмосковье, а также статьи по строительству: монолитное строительство, строительство кирпичных домов, наружная и внутренняя отделка

Температурные швы обеспечивают возможность сжатия и расширения отдельных зон сооружения при охлаждении и нагреве без коробления и трещинообразования. Такие швы устраивают для распластанных (дороги, аэродромы, откосы каналов) и протяженных (подпорные стены) конструкций, эксплуатируемых на открытом воздухе. Температурные швы устраивают также в массивных конструкциях (плотины, крупные фундаменты), подверженных экзотермическому разогреву при твердении бетона. Расстояние между температурными швами расчетное, а местоположение швов указывается в проекте сооружения. Шов расширения предусматривает устройство зазора между картами бетонирования, заполняемого легко деформируемым материалом, предотвращающим проникание в шов влаги и мусора.

В массивных сооружениях температурные швы не подразделяют на швы сжатия и расширения. Основным требованием к конструкциям швов массивных гидросооружений является обеспечение их водонепроницаемости. С этой целью в шов закладывают специальные противофильтрационные шпонки из нержавею¬щего металлического листа или шпонки из пластического водонепроницаемого материала (битума, асфальта и т.п.).

Усадочные швы необходимо предусматривать в протяженных и в массивных конструкциях для предотвращения неупорядоченного трещинообразования при усадке твердеющего бетона. Таким образом, цель их устройства аналогична цели устройства температурных швов сжатия. В отличие от последних усадочные швы необходимы и при постоянной температуре эксплуатации конструкций.

Ядро массивных элементов находится в стабильном влажностном режиме и не подвержено усадке, которая развивается только в поверхностных зонах. В связи с этим считают, что температурные швы гидросооружений выполняют роль температурно-усадочных. Усадочные швы в тонких монолитных стенах следует устраивать не реже чем через 5—6 м по длине, а также в местах изменения сечения или высоты стены. Обязательно устройство усадочных швов в стенах вблизи углов.

Усадочные швы в бетонных полах устраивают через 6—12 м. Боковые грани продольных швов покрывают битумом. Поперечные швы делают с “замком”, либо надрезая покрытие на 1/3—1/5 толщины аналогично тому, как это делают для температурных швов сжатия. Надрезы бетонных покрытий можно производить, погружая в свежеуложенный бетон на необходимую глубину стальную полосу и извлекая ее после начала схватывания.

В последние годы с появлением эффективного камнерезного оборудования расширяется практика нарезки швов по затвердевшему бетону. В образо¬ванные надрезом пазы заливают горячий битум или заполняют эффективными полимерными материалами, сохраняющими высокую эластичность во времени и обладающими высокой адгезией к бетону стенок шва. Такой способ устройства швов обеспечивает их высокое качество.

При разбивке конструкций на блоки (карты) бетонирования по возможности следует устраивать швы, выполняющие сразу несколько функций. Так, температурный шов расширения выполняет одновременно функцию шва сжатия. Конструкции швов сжатия и усадочных швов сходны, поэтому часто устраивают совмещенные температурно-усадочные швы. Температурные швы расширения удобно совмещать с осадочными швами.

Рабочие швы являются сугубо технологическими. Рабочие швы часто называют строительными, либо швами бетонирования. Их устройство вызвано неизбежными остановками бетонирования из-за всевозможных организационных (окончание рабочей смены, поломка оборудования, нехватка материалов и т.п.) и технологических причин (необходимость монтажа вы¬шележащей арматуры, перемонтаж лесов и опалубки, ограничение нагрузок на поддерживающие конструкции и т.п.).

В отличие от деформационных швов, в рабочем шве должны быть исключены перемещения стыкуемых поверхностей относительно друг друга. Число рабочих швов должно быть минимальным. Поэтому перерывы в бетонировании следует делать в местах деформационных швов, что не всегда удается.

Рекомендации по величине допустимого интервала перекрытия слоев бетона до образования рабочего шва весьма расплывчаты и противоречивы. Так, в различных источниках предлагается, чтобы этот интервал не превышал времени “начала схватывания цемента”, “начала схватывания бетона”, “начала схватывания цемента в бетоне”, просто “времени схватывания бетона” и пр. К сожалению, ни одно их этих определений не является формализованным, что затрудняет анализ их обоснованности. В отдельных источниках рекомендуются ориентировочные величины допустимых интервалов в диапазоне 2—4,5 ч. Практически во всех нормативах выбор величины допустимого интервала поручается лаборатории строительства.

При перерывах в бетонировании качество верхнего (контактного) слоя бетона ухудшается во времени из-за процесса водоотделения. Наиболее интенсивно он протекает в первые 1—1,5 ч. Таким образом, снижение прочности стыка с возрастом “старого” бетона в первые часы после его укладки объясняется уменьшением когезии. Однако прочность стыкового соединения даже при перерыве в бетонировании, составляющем 5 ч и более, существенно выше, чем прочность стыка с полностью затвердевшим бетоном даже при тщательной подготовке его поверхности. Эти полученные в лаборатории результаты не учитывают в то же время важнейшего производственного фактора — возможности повреждения нарождающейся кристаллизационной структуры “старого” бетона при передаче на него нагрузок от разгружаемого материала, движения рабочих и механизмов.

Несмотря на сравнительно низкую водонепроницаемость бетона, фильтрация воды через сооружения в основном происходит по горизонтальным строительным швам. Повышение водонепроницаемости швов также как и улучшение прочности сцепления достигают сокращением времени между перекрытием слоев. Выделяют два периода в процессе структурообразования материалов на цементном вяжущем. Первый период формирования структуры характеризуется преобладанием коагуляционной структуры с тиксотропнообратимыми свойствами; второй — период упрочения — характеризуется преобладанием кристаллизационно-коагуляционной структуры со свойствами упругохрупкого тела.

На практике критическая продолжительность перерыва в укладке смеси, соответствующая началу формирования кристаллизационной структуры, определяется возможностью “старого” бетона разжижаться при вибрации. Когда при погружении в него вибратора образуются незаплывающие трещины, следует устраивать рабочий шов. При перерывах больше установленного времени дальнейшая укладка смеси может проводиться только после набора ранее уложенным бетоном прочности не менее 1,5 МПа. В противном случае его структура может быть нарушена.

Снижение прочности сопряжения “старого” и “нового” бетона по сравнению с монолитным сечением объясняется меньшей величиной сил адгезии растворной части нового бетона к затвердевшему бетону по сравнению с силами внутреннего сцепления материала (когезии), определяющими прочность старого и нового бетона. Кроме того, шов является границей изменения направления усадочных деформаций стыкуемых участков конструкций. Поэтому зона шва становится “предварительно напряженной” растягивающими усилиями. При укладке бетонной смеси на слой ранее уложенного бетона необходимо получить высокую плотность, а часто и прочность стыка. Требования к плотности стыка носят общий характер и направлены на обеспечение долговечности бетона и предотвращение коррозии арматуры. Во всех случаях обязательной является очистка поверхности ранее уложенного бетона от пыли, грязи, масла и строительного мусора. Для предотвращения обезвоживания укладываемой смеси бетонное основание следует увлажнить. Перед укладкой бетонной смеси, в особенности при средней и низкой ее подвижности, бетонное основание рекомендуется накрыть слоем цементно-песчаного раствора. Этот слой толщиной 1,5—3 см устраивают для заполнения всех неровностей на поверхности основания и, кроме того, для предотвращения образования не заполненных растворной частью гнезд крупного заполнителя в случае возможного расслоения бетонной смеси при разгрузке.

Прочность стыка старого и нового бетона зависит от характера приложения разрушающей нагрузки, температурно-влажностных условий выдерживания обоих бетонов и большой группы факторов, определяющих адгезию растворной части нового бетона к поверхности ранее уложенного. В 1933—1934 гг. в ЦНИИПСе были проведены широкие исследования сцепления нового бетона со старым и обобщены результаты работ, выполненных во Франции, Германии и США. В выводах этого исследования, а также в ряде отечественных и зарубежных руководящих материалов по производству бетонных работ содержатся рекомендации удалять с поверхности затвердевшего бетона пористый слой растворной части вместе в карбонатной пленкой. Эта пленка толщиной 20—30 мк возникает при взаимодействии минералов цемента с содержащейся в воздухе углекислотой.

Проще всего удалять карбонатную пленку с поверхности бетона перед концом его схватывания. Для это¬го поверхность уложенного бетона обрабатывают водяной или водовоздушной струей под давлением 0,5—0,7 МПа. Водовоздушную обработку применяют при наличии на стройплощадке водопровода с низким давлением. К моменту обработки в бетоне уже должна образо¬ваться достаточно прочная структура с тем, чтобы не нарушить сцепление крупного заполнителя с растворной частью. Прочность бетона к моменту обработки водовоздушной струей должна составлять 0,2—0,4 МПа. При такой прочности по поверхности бетона можно ходить, но еще видны следы от обуви, и поверхность поддается продавливанию при нажиме пальцем с некоторым усилием. Время достижения этой прочности в зависимости от свойств используемого цемента, состава бетона и температуры воздуха колеблется от 4 до 18 ч. На практике далеко не всегда имеются условия для описанной технологии удаления поверхностной пленки. Кроме того, она неприемлема при отрицательных температурах воздуха и для вертикальных стыкуемых поверхностей, которые длительное время закрыты опалубкой.

Для сухой очистки поверхности окончательно несхватившегося бетона от карбонатной пленки применяют металлические щетки и метлы с проволочной щетиной. Снятие пленки с поверхности затвердевшего бетона производят пескоструйной или гидропескоструйной обработкой, а также очисткой шарошками и механическими щетками с жесткой проволочной щетиной, бучардами вращающегося действия. Применение для снятия пленки механизмов ударного действия (на базе перфораторов, отбойных молотков и т.п.) должно быть исключено, так как при этом можно повредить наружный слой бетона стыкуемой поверхности. Применение механических способов снятия пленки с поверхности затвердевшего бетона возможно только после набора им определенной прочности, чтобы не по¬вредить нижележащие слои. В то же время с набором бетоном прочности зачистка поверхности шва осложняется. Приводные щетки целесообразно применять при прочности бетона 2—3 МПа. При большей прочности бетона эффективность обработки поверхности щетками снижается как из-за необходимости увеличивать продолжительность очистки, так и по причине повышенного износа щеток.

Наверное, не стоит напоминать, что хорошо заделанные швы в конструкции дома исключают возможность сквозняков и утечки тепла, что особенно важно, когда в квартирах маленькие дети. Об этом нужно позаботиться загодя — а также заказать для малыша что-нибудь из богатого ассортимента, которым славится магазин Evenflo, широко распространивший свою продукцию по просторам Интернета.

Мой блог находят по следующим фразам
• чертеж арматуры
• технология монолитных колонн
• арматурная сетка чертеж
• чертеж арматурной сетки
• схема установки ригелей для заливки плиты перекрытия
• monolitniy.ru

Температурный шов, Температурно-усадочные швы

Температурный шов – это деформационный шов в бетонной конструкции или основании. Наружный температурный шов-разрез разделяет дом на расчетные секции, в целях защиты материала стен, фундаментов и т.д. от деформаций в результате изменений температур бетона. Температурные швы обычно выполняют комбинированно с усадочными и компенсирующими сдвиги отдельных участков постройки в результате подвижек грунтового основания (сезонные осадки-пучения грунтов, как известно, ни предсказуемыми, ни равномерными быть не могут). Другие комбинации деформационных швов, к которым относятся и температурные, делают в целях разгрузки монтажных стыков между отдельными сборными элементами дома. Стыки должны сопротивляться не только поперечным и продольным напряжениям, но самым опасным – скручивающим, поэтому узлы стыков разрабатывают с деформационными швами. Расположены деформационные швы монтажных стыков на участках примыканий: бетонный пол с колоннами, маршами лестниц, пандусами и бордюрными камнями. А также и на любых участках конструкции, где есть излом плоскости или «ступенька» — например, перепад высот стяжки или плиты.

Температурные швы являются компенсационными, относятся к условно-эластичным и не имеют никакого отношения к усадочным швам и рабочим (технологическим или холодным) швам бетонирования. Совмещение температурного и усадочного шва всегда индивидуально и выполняется различно для массивного монолита, плит и стяжек.

Чтобы не запутаться в обширной терминологии: для упрощения классификации швов нужно подразделять их по нагрузкам и воздействиям на конструкцию, которые эти швы должны компенсировать.

Температурно-усадочные швы

Температурно-усадочные швы – это совмещение деформационных швов различного назначения в один, когда это возможно. Все температурно-усадочные швы обязательно герметизируют.

Усадочный шов

Усадочный шов фрагментирует конструкцию (плиту), при этом разрез никогда не доводят до нижней грани плиты. Усадочные напряжения в бетоне велики, и если не разгрузить плиту, то бетон не просто растрескается, а может стать непригодным к дальнейшей эксплуатации (или потребуется сложный дорогостоящий ремонт, установка пакеров и инъекции) из-за ряда глубоких сквозных трещин в напряженных зонах. Усадочный разрез делают по расчету – на часть высоты плиты, тем самым ослабляя рабочее сечение. «Где тонко, там и рвется»: усадочная трещина пойдет предсказуемо в глубину реза и не выйдет на загерметизированную поверхность конструкции. Усадочные швы часто совмещают с другими швами, в этих случаях может не быть ни трещин, ни разломов. Усадочные швы – это компенсаторы деформаций в массивах ж/б конструкций. Благодаря усадочным швам происходит компенсация деформаций усадок. Например, когда бетонная стяжка схватывается, она в силу физических факторов не может твердеть и терять влагу совершенно равномерно. Стяжку режут на карты – квадраты расчетной площади (в самых простых случаях для армированных стяжек это карты 6*6 м, если размер стяжки меньше – шов не нужен), и предусмотренные разрезы исключают появление непредусмотренных трещин.

Усадка бетона

Усадка бетона, или изменение объема забетонированных конструкций, начинается сразу же после завершения укладки бетонной смеси, продолжается в течение схватывания и твердения бетона и не всегда заканчивается после набора прочности — до нескольких месяцев и даже дольше. Потеря в объеме в результате усадки обычно находится в пределах 1-1,5%, это незаметно на глаз, но тем не менее может привести к растрескиванию бетона, отслаиванию поверхностного слоя и резкому снижению долговечности постройки — если не приняты меры по компенсации усадочных деформаций. Особенно опасны усадки бетона для несущих конструкций фундаментов, стен, перекрытий и т.д. Нормы допускают процент усадки, равный 3% для тяжелого бетона, или 0,4 мм/метр линейной конструкции. Уменьшение объема массивных конструкций вследствие усадки обязательно следует учитывать при бетонировании.

Величина усадки бетона зависит от многих факторов:

  • От количества цемента – прямая зависимость;
  • От вида цемента: высокоактивный и глиноземистый цемент даст большую усадку по сравнению с портланцементом;
  • От водоцементного отношения – чем больше воды в бетонной смеси, тем сильнее будет усадка;
  • От вида заполнителя: чем пластичнее заполнитель, тем меньше усадка;
  • От удельного веса и крупности заполнителя: чем плотнее и крупнее заполнитель – тем меньше усадка. Бетон с пористым крупным заполнителем и песком мелкой фракции даст большую усадку.
  • От качества уплотнения бетонной смеси при заливке. Вибро-уплотнение дает плотную упаковку зерен мелкого и крупного заполнителя и минимизирует пустоты, вследствие этого и усадка бетона намного меньше. Укладка с некачественным уплотнением приводит к усадочным трещинам в конструкции.

Процесс усадки бетона делится на стадии:

Первая усадка – пластическая, начинается уже при заливке смеси в опалубку и продолжается, пока вода испаряется из растворной смеси. Если не принять мер ухода за бетоном, не увлажнять и не защищать поверхности конструкций от солнца, ветра и излишнего тепла, то можно получить критическую усадку уже через 6-12 часов – до 4-5 мм/м, что приведет к образованию крупных поверхностных трещин. Что касается влаги, уходящей из жидкого бетона через неизолированную деревянную опалубку, из не укрытых грузовых и приемных емкостей, при слишком долгой перевозке смеси в жару и так далее – все эти нарушения технологии бетонирования приводят к снижению итоговой прочности конструкции, а в частности — к увеличению усадки. Компенсировать потерю воды можно пластификацией, но не превышая дозу реагента согласно инструкции. Разбавлять бетон водой для возвращения ему пластичности — значит увеличить усадку и снизить прочность. Пластическую усадку несложно уменьшить, но вторая стадия усадки необратима.

Вторая усадка – аутогенная, проходит в бетоне во время твердения и набора прочности. В защищенном бетоне величина этой усадки невелика – до 1-2 мм/м, но для массивного фундамента или стяжки — это достаточно серьезно. Чтобы предотвратить образование микротрещин, выполняют усадочные швы. Кроме того, бетонирование массивов в жару – это риск «запарить» бетон, поскольку при гидратации идет сильная экзотермия, что в итоге (если не охлаждать массив) даст внутренние напряжения в бетоне и трещины в конструкции. Снизить усадку можно и нужно, оптимизируя процесс укладки и ухода за бетоном. Оптимально — совмещать рабочие и усадочные швы.

Усадкой «при высыхании» современных бетонных конструкций обычно можно пренебречь. Но старое правило – заливать фундаменты и давать им выстояться около года – вовсе не архаизм, многие частные строители так и делают: заливают ленту или плиту весной, зимой бетону уже не грозят деформации и следующей ранней весной удобно начинать кирпичную кладку. Снижает усадку и армирование, и точный подбор состава бетона, и грамотное введение пластификаторов одновременно с уменьшением количества воды в бетоне.

Несколько «усадочных» нюансов:

  • Если в составе вяжущего много извести, то сильную поверхностную усадку может дать карбонизация.
  • Тяжелые бетоны дают меньшую усадку, чем легкие и пористые.
  • При зимнем бетонировании не обойтись без антиморозных добавок, и нельзя забывать, что они могут способствовать увеличению усадки. Бесконтрольно пластифицировать бетон тоже нельзя, любая присадка должна быть в нормативных пределах по технической характеристике.
  • Укладка смеси с тщательным вибрированием или штыкованием смеси значительно уменьшает усадку бетона. Уплотнять бетон можно любым способом: вибратором или садовой лопатой – главное эффективно выгнать воздух из смеси. Уплотнять заканчивают не раньше, чем прекратится появление воздушных пузырьков и на поверхности не появится цементное молочко.
  • Уход за бетоном: уложенный бетон должен быть влажным, оптимально 70-75% влажности, это снижает усадку.
  • Чем больше массив конструкции, тем больше значение усадки. На малых формах усадка незаметна и практически безвредна.
  • Усадка неармированных конструкций больше, чем усиленных армокаркасами.
  • Вовремя (при замесе) введенная пластификация снижает усадку, добавка пластификатора при форс-мажоре, например, чтобы реанимировать бетон на четвертом часу его жизни в миксере – увеличивает усадку и снижает прочность итогового бетона.

Экстремальные условия работ, зимнее и летнее (в жару) бетонирование, пренебрежение технологией приготовления, укладки и уплотнения бетонной смеси приводят к увеличению усадки и снижению прочности бетона.

Конструкция температурного шва

Устройство и конструкция температурных швов имеют свои особенности, отличающие эти швы от деформационных швов других видов. Например, в здании температурный шов делит весь надземный объем, но «не трогает» фундаментную часть: в грунте сооружение защищено от резких температурных перепадов. В бетонных полах и стяжках температурный шов оптимально совмещать с усадочным, а если технология и процесс частной стройки на нужном уровне – то и с конструкционным (рабочим) швом бетонирования.

Расстояние между температурными швами

Шаг температурно-усадочных швов рассчитывают исходя из вида бетона, массивности и протяженности конструкций, климата и условий работы и еще многих факторов. Этот шаг может быть меньше 0,5 м в бетонной стяжке узкого коридора, и до десятков метров в сборной ж/б конструкции. Таблица 10.2.3 СП63.13330.2012 Бетонные и железобетонные конструкции, исключительно для примера:

Температурный шов в бетоне

Для того, чтоб компенсировать нагрузки от подвижек грунтового основания и постройки относительно отмостки, делают температурный шов. Например, разделение отмостки и ее гибкая привязка с фундаментом будут демпфировать нагрузки, и отмостка не будет подвергаться критическим деформациям и прослужит долго. Пример: классический температурно-усадочный шов в бетоне:

Температурный (деформационный) шов в бетоне

Для тех, кто решил самостоятельно залить фундамент своего дома, первой задачей будет решение вопроса о том, что обозначает температурный шов в бетоне? Ответ достаточно прост: подобные швы снижают появление деформации фундамента, когда изменяются внешние условия. Это касается скачков температуры и изменения влажности.

Схема расположения различных видов швов бетонной стяжки.

Деформационный шов в фундаменте — одна из главнейших составляющих, которая реагирует на изменения геометрии бетонной плиты. Отсутствие температурных швов может повлечь за собой некоторые изменения свойств фундамента:

  • появятся внутренние напряжения;
  • будет иметь место деформация;
  • образуются трещины.

Это все влияет на деформационные швы. Происходит уменьшение прочностных параметров, снижается срок эксплуатации конструкции. Устройство температурных швов помогает выполнить равномерное распределение дополнительных нагрузок.

Расположение температурных швов.

Самым долговечным в строительстве считается бетонный пол. За счет очень ровной поверхности происходит уменьшение водопоглощения. Однако заливка бетонного пола — процесс весьма трудоемкий и сложный. Его устройство связано со многими особенностями. Если такой пол сделан грамотно и по всем требованиям технологии, повышается его износостойкость, в разы увеличивается прочность.

Температурные швы подразделяются на несколько групп:

  • изоляционные;
  • усадочные;
  • конструкционные.

Все стены помещения обязательно имеют изоляционные швы. Они необходимы, чтобы не возникала передача деформации общей конструкции здания непосредственно к половой стяжке.

Деформационные швы: особенности

Когда повышается температура и происходит увеличение влажности, или когда эти параметры сокращаются, возникает деформация фундамента. Как результат — бетон начинает трескаться.

Схема деформационного шва.

Чтобы предотвратить появление трещин и защитить бетон от высыхания, его необходимо поливать водой первые 10 дней. Швы между плитами помогают предупредить появление трещин в стяжке пола, когда она начинает твердеть.

Таким образом, создаются специальные полосы слабины, которые регулируют растрескивание. Оно происходит только в определенном направлении. Нарезка швов обязательно должна быть выполнена по осевым линиям колонн.

Картина бетонного пола, полученная после усадки, должна выглядеть как квадрат. Длина пола должна быть больше ширины в 1,5 раза.

Температурные швы должны быть без ответвлений и абсолютно ровными.

Типы и назначение швов в бетоне.

Ширина шва прохода обязана соответствовать ширине стяжки. В том случае, когда дорожка усадочного элемента более 300 см, в середине обязательно делается продольное углубление. При бетонировании на открытых площадках такие углубления делаются с шагом в 3 м. Если температурный шов выполнен грамотно, вероятность появления растрескивания бетона уменьшается во много раз.

Углубления в конструкционных элементах делаются после всех дневных работ заливки бетона.

Вернуться к оглавлению

Несколько важных нюансов

Заделка швов между плитами перекрытия должна делаться эластичным составом, предохраняющим от попадания посторонних веществ, причем совершенно не оказывая никакого влияния на свойства бетона. Нарезка проводится в определенное время.

Согласно технологии нарезка делается после того, как основание будет отшлифовано, смесь в этом случае не должна быть полностью затвердевшей. Если опоздать с такими работами, на твердом бетоне возможно растрескивание краев. Прочность бетона будет снижена.

Углубления делаются после окончания заливки. Выдерживаются 12 часов. Операции, осуществляемые в условиях низких температур, требуют проведения нарезки только через сутки.

Прежде чем начинать закладку, выполняется расчет толщины шва. Обычно она равняется третей части толщины положенной бетонной стяжки. Все работы проводятся при строгом выдерживании интервала между нарезками. В изготавливаемой сетке не должно существовать никаких внутренних дефектов. Именно в них происходит образование трещин во внутренних углах.

Схема деформационного шва с пластмассовой втулкой.

Шов не должен иметь Т-образную форму в местах соединений. В сетке не должно быть видно треугольных углов. Деформация начинается обычно с острых углов. В случае когда невозможно исключить вид треугольника, желательно сделать его равносторонним.

Получение швов дает возможность строителям образовывать участки слабины. Растрескивание бетона, таким образом, будет происходить не беспорядочно, а только в определенных местах. Шероховатость краев трещины не даст возможности появиться вертикальным смещениям.

Вернуться к оглавлению

Некоторые характерные проблемы

Когда нарезка делается в свежеуложенной смеси, образование швов проводится специальным резчиком. Когда стяжка полностью затвердела, данные элементы делаются способом пропиливания.

Чтобы исключить появление температурных швов в других местах, нарезка должна выполняться очень быстро, что даст возможность предотвратить осыпание краев.

Устройство швов специальным бетонным резчиком позволяет делать меньшую глубину. Чтобы получить шаг нарезки, необходимо предельный размер в 24 см перемножить с толщиной стяжки. Например, 10 см стяжка должна иметь детали, которые будут разделять 240 см.

Иногда трещины возникают в температурных швах спонтанно, сами по себе. Причиной может быть жаркая погода, стоявшая в то время, когда укладывался бетон. Чтобы не возникали такие деформации, бетон должен иметь синтетические волокна, при монтаже основание необходимо поливать водой.

Если бетонный пол укладывается в помещении, где наблюдается высокая влажность, герметизация бетонных швов ставится на первое место. Если ее не делать, то укладываемое напольное покрытие обязательно начнет отслаиваться.

Иначе говоря, необходимо провести герметизацию температурных швов, чтобы предотвратить попадание воды, а также появление грибковых образований.

Вернуться к оглавлению

Гидроизоляция бетонных швов

Существует несколько видов гидроизоляции бетонных швов:

Пропитка.

Поверхность обрабатывается средствами, в состав которых входят вещества нефтепереработки:

  • эпоксидная смола;
  • деготь;
  • полимеры;
  • универсальная пропитка.

Такая пропитка наносится только на хорошо высушенную поверхность.

Полимерная гидроизоляция.

Обработка поверхности выполняется полимерным составом. В основном применяются:

  • акриловая дисперсия;
  • антисептики;
  • пластификаторы.

Жидкая гидроизоляция.

Данный способ несколько отличается от пропитки. Величина проникающего состава имеет минимальные размеры. При таком способе происходит проникновение состава в малейшие поры бетона. Этот способ можно назвать капиллярной обработкой. В результате улучшается качество поверхности, она становится более эластичной.

Обмазочная гидроизоляция.

На территории строительной площадки разводятся сухие смеси. Так как такие составы имеют свойство быстро затвердевать, их разводят в минимальном количестве. Эта технология применяется только в самостоятельной жилой застройке.

Вернуться к оглавлению

Основные правила, которые нужно соблюдать при нарезке швов в бетонных полах

Для получения хорошей бетонной стяжки требуется пользоваться только высококачественными материалами. Деформационные швы должны нарезаться своевременно и грамотно.

Нарезка швов должна проводиться сразу после укладки фундамента. Можно также проводить нарезку после набора бетоном нужной прочности. Таким образом будет предотвращено возникновение произвольных трещин.

Когда происходит влажная нарезка, необходимо подождать 12 часов после завершающей обработки бетона. Если соблюдать определенные условия, то нарезку швов вполне допустимо выполнять через одни сутки.

Если бетон очень сухой, нарезка должна проводиться быстро, чтобы исключить осыпание краев.

Температурно-усадочные швы | ИНФОПГС

   В монолитных железобетонных плитах следует предусматривать их разрезку постоянными и временными температурно-усадочными швами, расстояния между которыми назначают в зависимости от климатических условий, конструктивных особенностей сооружения, последовательности производства работ и т.п. (см. п. 10.2.3 СП63.13330.2012 Бетонные и железобетонные конструкции.

Расстояние между температурно-усадочными швами следует принимать по таблице (см.таб.3 Пособие по проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов без предварительного напряжения арматуры (к СНиП 2.03.01-84)

 

Конструкции

Наибольшие расстояния, м,

между температурно-усадочными швами, допускаемые

без расчета, для конструкций, находящихся

внутри

отапливаемых

зданий или

в грунте

внутри

неотапливаемых

зданий

на открытом

воздухе

1. Бетонные:

 

 

 

а) сборные

40

35

30

б) монолитные:

 

 

 

при конструктивном

армировании

30

25

20

без конструктивного

армирования

20

15

10

2. Железобетонные:

 

 

 

а) сборно-каркасные:

 

 

 

одноэтажные

72

60

48

многоэтажные

60

50

40

б) сборно-монолитные

и монолитные:

 

 

 

каркасные

50

40

30

сплошные

40

30

25

 

 

 

Если фундаменты не могут быть разделены на участки длиной менее 40 м, то необходимо предусматривать временные усадочные швы шириной от 0,7 до 1,2 м — рабочий шов бетонирования. В этих случаях из массива фундаментов с обеих сторон временного шва (в уровне подошвы и верхней поверхности фундамента) должна быть выпущена рабочая арматура, которую, спустя 3-4 недели после бетонирования фундаментов, необходимо соединить сваркой с накладными стержнями, а шов заполнить бетоном той же марки (см. п.6.17 Руководство по проектированию плитных фундаментов каркасныхзданий и сооружений башенного типа).

Поверхность рабочих швов, устраиваемых при укладке бетонной смеси с перерывами, должна быть перпендикулярна оси бетонируемых колонн и балок, поверхности плит и стен. Возобновление бетонирования допускается производить по достижении бетоном прочности не менее 1,5 МПа (см. п.5.3.12 СП70.13330.2012 Несущие и ограждающие конструкции).

Рабочим швом называют плоскость стыка между затвердевшим и новым (свежеуложенным) бетоном, образованнуюиз-заперерыва в бетонировании. Рабочий шов образуется в том случае, когда последующие слои бетонной смеси укладывают на полностью затвердевшие предыдущие слои. Обычно это происходит тогда, когда перерыв в бетонировании составляет5—7ч и более.

Величина сцепления нового бетона со старым значительно ниже, чем монолита. Поэтому рабочий шов отличается от монолитного бетона не только по прочности, но и по другим характеристикам: он менее морозостоек, водопроницаем и т. д. Для уменьшения отрицательного влияния рабочих швов на конструкцию необходимо: во-первых,размещать их в местах, наименее опасных для прочности конструкций, и так, чтобы они не ухудшали внешний вид сооружения;во-вторых,допускаются только конструктивно оформленные рабочие швы;в-третьих,такие швы перед укладкой свежего бетона нужно соответствующим образом обработать. Конструктивное оформление рабочих швов зависит от вида конструкций, их размеров и армирования. Для образования швов в плитах устанавливают доски, плоские щиты или щиты с уступом. Уступ делают для удлинения поперечной линии шва, что увеличивает его прочность и водонепроницаемость. 

Перед укладкой свежего бетона с поверхности шва удаляют рыхлые слои бетона и цементную корку, очищают его от грязи и мусора. Если поверхность затвердевшего бетона шва гладкая, ее насекают зубилами, скарпелью или с помощью отбойного молотка с последующей промывкой и продувкой сжатым воздухом. Непосредственно перед укладкой нового бетона поверхность шва следует увлажнить, а также уложить слой жирного раствора на том же цементе, что и основной бетон. Все это способствует обеспечению высокой прочности и водонепроницаемости шва.

  

Холодный шов при бетонировании
Монолитный бетон и железобетон, как правило, экономичнее сборного в подземных частях зданий и сооружений, в фундаментах под технологическое оборудование, в конструкциях массивных стен, в дорожном и гидротехническом строительстве. Широкую сферу эффективного применения он находит также в сборно-монолитных конструкциях.
Монолитный бетон и железобетон, по сравнению со сборным способом строительства, обладает неоспоримыми преимуществами, обеспечивая в конструкциях эффективную диссипацию колебательной энергии при ветровых и сейсмических нагрузках, высокий момент сопротивления статическим и динамическим нагрузкам и низкую деформативность.
В СНиП 3.03.01-87 ”Несущие и ограждающие конструкции” при монолитном бетонировании предусматривается укладка бетонных смесей двумя принципиально различными способами:
-укладка без перерывов в бетонировании до начала схватывания предыдущего слоя бетона, то есть без образования рабочего шва;
-укладка с перерывами после схватывания уложенного ранее слоя бетона с образованием рабочего шва.
Непрерывное бетонирование предпочтительнее, так как этот способ обеспечивает наивысшее качество монолитных конструкций, однако по технологическим и организационным причинам это не всегда возможно, поэтому, как правило, проектом предусматриваются рабочие швы.
Рабочие швы также называют строительными швами, швами бетонирования или ”холодными швами”. Образование рабочих швов вызвано остановками бетонирования и определяется рядом причин:
-организационных: окончание рабочей смены, ремонт оборудования, нехватка материалов, несовершенную общую организацию работ, технические возможности используемых машин и механизмов;
-технологических: монтаж вышележащих арматуры, лесов и опалубки и ограничение нагрузок на конструкции;
-конструктивных: обеспечение направленных деформаций отдельных участков конструкций и сооружений в целом.
Как правило, возводимые монолитные бетонные и железобетонные конструкции бетонируются отдельными сопрягаемыми между собой участками — блоками (картами) бетонирования.
Рабочий шов бетона образуется, когда каждый последующий слой бетонной смеси укладывают на затвердевший (схватившийся) предыдущий слой бетона. Отличительной особенностью рабочего шва является то, что сцепление нового бетона с уже затвердевшим бетоном значительно ниже, чем прочность монолитного бетона без рабочего шва, вследствие чего снижаются морозостойкость, водонепроницаемость и ухудшается внешний вид конструкций. Это объясняется тем, что ”холодные швы” являются границей, на которой происходит превращение усадочных напряжений сжатия в напряжения растяжения, и поэтому зона шва становится предварительно напряженной. Как известно, бетон хорошо работает на сжатие, менее стоек к изгибающим нагрузкам и значительно хуже противостоит напряжениям растяжения. В результате релаксации напряжений растяжения, реализующихся в виде микротрещин, зона стыка имеет меньшую плотность и прочность, по сравнению с монолитным бетоном и при равных растягивающих напряжениях, трещины прежде всего открываются именно по швам.
В соответствии с СНиП 3.03.01-87 перед бетонированием поверхности рабочих швов должны быть очищены от грязи, масел, снега, льда и цементной пленки. Очистка поверхности рабочих швов от цементной пленки проводится для устранения возможности образования ”холодных швов”.
Годовой объем производства монолитного бетона и железобетона в России составляет 25-30 млн. м³. При допущении, что половина конструкций изготавливается способом послойной укладки с толщиной слоя ориентировочно 50 см за проход, общая площадь рабочих швов требующих подготовки поверхности составляет 12-15 млн. м²/год.
Цементная пленка
Основным источником образования цементной пленки является водный раствор гидроксида кальция Са(ОН)2, который выходит на поверхность бетона, реагирует с углекислотой воздуха СО2 и образует нерастворимую в воде пленку карбоната кальция СаСО3 (по химсоставу – известняком). Другим источником являются соли щелочных металлов, присутствующие в цементе в свободном виде; добавляемые в цемент цеолитовые туфы и зола-унос (зольные микросферы) тепловых электростанций, выделяющие щелочи; песок, щебень и гравий, содержащие галоидные соединения; ускорители твердения, противоморозные добавки, пластификаторы и другие добавки. При затворении цемента водой водорастворимые щелочи образуют растворы и химически связываются с силикатами и алюминатами цемента. Затем, при контакте с углекислотой воздуха щелочи карбонизируются с образованием нерастворимой в воде плотной цементной пленки.
Еще одним источником солей является вода затворения, если она по составу примесей не отвечает требованиям ГОСТ 23732.
Химически цементную пленку можно представить как смесь растворимых и нерастворимых в воде карбонатов, сульфатов, нитратов и хлоридов.
В поверхностном слое вытесненной из бетонной смеси воды, несмотря на полное превращение всего вяжущего в кристаллизующийся гидрат, не происходит образования плотной и прочной кристаллической структуры.
Физически цементная пленка, в отличие от тела цементного камня, представляет собой не прочную кристаллическую структуру, а рыхлую непрочную конденсационную структуру, заполняющую поровое пространство бетона на некоторую глубину.
При послойной укладке бетонной смеси на рабочий шов имеющий на поверхности цементную пленку, вместо ожидаемой по проекту монолитной, образуется трехслойная конструкция: ”бетон – цементная пленка – бетон”.
В этой конструкции с точки зрения прочности слабым местом является именно цементная пленка. Очевидно, что при пороговом напряжении, значение которого значительно ниже расчетного, разрушение бетонной конструкции произойдет именно по этой границе раздела. Из теории прочности известно, что для наиболее эффективного перераспределения напряжений и наиболее полной диссипации энергии при ветровых или сейсмических нагрузках конструкция должна обладать возможно полной монолитностью. В случае ”трехслойной” конструкции здание возможно рассматривать не как монолитную конструкцию, а как сборную, состоящую из ”этажей”, каждый из которых самостоятельно воспринимает механическую нагрузку и работает независимо от других.
Традиционные способы очистки рабочих швов
СНиП 3.03.01-87 определены способы очистки и установлены требования по прочности поверхности бетона при очистке от цементной пленки: механическая обработка металлической щеткой — не менее 1,5 МПа; механическое фрезерование — не менее 5 МПа; гидропескоструйная обработка — не менее 5 МПа; промывка водой и сушка сжатым воздухом — не менее 0,3 МПа. Рекомендации по величине допустимого временного интервала перекрытия слоев бетона до образования рабочего шва противоречивы и находятся в диапазоне 2-4,5 ч. Во всех случаях обязательной являтся очистка поверхности ранее уложенного бетона от пыли, грязи, масла и строительного мусора. Для предотвращения обезвоживания укладываемой смеси бетонное основание увлажняют. При перерыве в бетонировании качество верхнего (контактного) слоя бетона ухудшается во времени из-за водоотделения, наиболее интенсивно протекающего в первые 1-1,5 ч. И все же, прочность стыка при перерывах в бетонировании, составляющем до 5 и даже более часов, существенно выше, чем прочность стыка с полностью затвердевшим бетоном даже при тщательной подготовке его поверхности. При перерывах в работе дальнейшая укладка смеси может проводиться только после набора ранее уложенным бетоном прочности не менее 1,5 МПа, что гарантирует отсутствие нарушения его структуры. Рассмотрим достоинства и недостатки существующих способов очистки и подготовки поверхности рабочих швов:
1. Механическое фрезерование и механическая очистка поверхности бетона от цементной пленки производится металлическими щетками или метлами с проволочной щетиной. Сухая механическая очистка поверхности затвердевшего бетона возможна только после набора им определенной прочности, во избежании повреждения низлежащих слоев. Однако с набором бетоном прочности очистка поверхности рабочих швов затрудняется.
Применение приводных металлических щеток и машинного фрезерования оправдано только при наборе бетоном прочности не более 2-3 МПа. При большей прочности бетона эффективность обработки снижается из-за значительного увеличения продолжительности очистки и повышенного износа щеток. Достоинством механических способов очистки является применение их там, где невозможно использование пыльных и мокрых и дорогостоящих процессов пескоструйной и гидропескоструйной обработки. Очень эффектина насечка поверхности, увеличивающая площадь передачи напряжений. Однако, применение для снятия пленки и последующей насечки инструментов ударного действия (перфораторов, отбойных молотков) должно быть исключено, ввиду возможного повреждения верхнего слоя бетона стыкуемой поверхности. К недостаткам механических способов подготовки поверхности бетона можно отнести следующие:
-возможность очистки только после набора бетоном прочности 1,5 МПа приводит к длительным технологическим перерывам;
-удаляется только верхний слой цементной пленки и не открываются поры бетона;
-возможно возникновение и релаксация внутренних напряжений в виде микротрещин;
-пылеобразование требует очистки промышленным пылесосом;
-высокая стоимость оборудования и трудоемкость;
-сложность организации контроля качества работ.
2. При гидропескоструйной обработке удаляется цементная пленка и только в поверхностном слое открываются поры бетона. Процесс обладает следующими недостатками:
-отсутствие возможности проведения очистки до набора бетоном прочности 5 МПа и необходимость в длительных технологических перерывах для набора бетоном необходимой прочности;
-возникновение внутренних напряжений в результате ударного воздействия рабочей струи и их релаксация приводящая к микротрещинам;
-высокая стоимость компрессоров высокого и сверхвысокого давления, абразивоструйных комплексов и установок фильтрации и кондиционирования воздуха;
-ограничения в применении при внутренних работах и при действующем производстве.
3. Наиболее просто производить удаление цементной пленки с поверхности рабочего шва водяной или водовоздушной струей под давлением 0,5-0,7 МПа.
Достоинством этого способа является то, что очистку можно производить почти сразу же после укладки слоя при прочности бетона 0,3 МПа, то есть когда уже образовалась достаточно прочная структура бетона и нет опасности нарушения сцепления крупного заполнителя с растворной частью. При такой прочности по поверхности бетона можно ходить, хотя остаются следы от обуви и поверхность поддается продавливанию при нажиме пальцем с некоторым усилием. Время достижения этой прочности в зависимости от свойств бетонной смеси, влажности и температуры окружающего воздуха и находится в пределах от 4 до 18 ч.
К недостаткам очистки водяной или водовоздушной струей относятся:
-на практике невозможно применение этого способа очистки рабочих швов при отрицательных температурах окружающего воздуха и на вертикальных стыкуемых поверхностей, длительное время закрытых опалубкой;
-на поверхности остается нерастворимая в воде цементная пленка;
-содержащееся в сжатом воздухе компрессорное масло образует на поверхности антиадгезионную пленку.
4. Процесс химической очистки соляной кислотой является не эффективным и технически неоправданным.
В минералогии качественной реакцией на отличие кальцита (карбоната кальция) от других породообразующих минералов является бурное разложение в холодной соляной кислоте. Предложение по снятию цементной пленки, содержащей карбонаты, с помощью соляной кислоты не следует рекомендовать из-за опасности снижения долговечности бетона.
Именно этим объясняется мощный отрицательный эффект от ее применения:
-наблюдается поверхностное растворение и разрушение не только цементной пленки, но и цементного камня, что служит причиной разрушения шва между старым и новым бетоном в процессе эксплуатации;
-незначительно увеличивается прочность сцепления, по сравнению с необработанной поверхностью;
-требуется дополнительная операция нейтрализации кислоты щелочью (едким натром) с промывкой водой;
-потеря поверхностной прочности приводит к пылению бетона и требует дополнительного обязательного обеспыливания перед нанесением растворной смеси.
5. Для увеличения временного интервала между укладкой бетонной смеси и удалением цементной пленки и поверхностного слоя бетона, а также облегчения процесса очистки рабочего шва используют замедлители твердения, например, пластификатор бетонной смеси – сульфитно-дрожжевую бражку (СДБ). Раствор СДБ 15-20%-ной концентрации наносится на поверхность уложенного бетона краскораспылителем. Удаление ослабленного поверхностного слоя может проводиться как приводными щетками, так и под напором струи воды до полного отделения незатвердевшего слоя и удаления желтых пятен от СДБ.
К недостаткам этого способа можно отнести:
-обработку поверхности можно начинать не раньше, чем через сутки после укладки бетона; верхний предел времени обработки зависит от температуры воздуха и колеблется от двух до четырех суток;
-необходимо очень внимательно следить за тем, чтобы не снизить прочность основного бетона;                                                                        
-применение замедлителей твердения недопустимо при проведении бетонирования не только в зимний, но даже в весенне-осенний период.

 

Термошвы — зачем они нужны — Экопол

Статья будет полезна тем, кто хочет как на картинке — без порожков.

Что такое термошвы и для чего они нужны

На размеры всех материалов влияют температура и влажность – исключений в природе не существует. Это свойство называется линейным расширением. У одних оно низкое, у других высокое. Например, кирпичная стена длиной 20 м при колебаниях температуры от -20°C до +20°C изменяется на 10 мм. При повышении температуры от 10°C до 30 °C на полу длиной 10 м разница теплового расширения между керамической плиткой и ж/б основанием составляет более 5 мм.

Такие изменения могут приводить к трещинам, деформациям материалов и даже обрушениям конструкций, если не снизить напряжение между элементами и сделать конструкцию более пластичной. Так чтобы отдельные части свободно расширялись, сужались, удлинялись и перемещались по отношению друг к другу, сохраняя устойчивость. Эту задачу решают термошвы.

Их называют по-разному: температурный, технологический, компенсационный, термо-вибрационные или расширительный зазор (шов, разрыв). Названия разные, а суть одна – это специальный зазор между отдельными частями строительных сооружений крупного и среднего размера. Некоторые зазоры должны заполняться пластичными материалами, другие должны оставаться открытыми. Они должны быть везде: в фундаментах, на отмостке, кирпичной кладке, бетонном перекрытии, между железобетонными панелями, стяжке пола, между брусами и бревнами деревянного дома, стыке стен и оснований, монтаже дверей, оконных конструкций, напольных покрытий, между мебельными фасадами и т.д.

Термошвы внутри помещений предусматривают в стенах, примыканиях стен к основанию, стяжках пола. Каждая строительная конструкция должна быть независимой от тех, с которыми она граничит. Это нужно для того, чтобы напряжение, возникающее в одном элементе, не передавалось на другие структурные составляющие здания. То есть, стяжка при расширении не должна давить на стену. В свою очередь стена, при возможной подвижке, не должна «тянуть» за собой пол. На основаниях различают два вида термошвов: по периметру помещений и между ними. Поэтому настил облицовочных, отделочных материалов должен учитывать оба их вида.

Если в кирпичной кладке не предусмотреть термошвы, то она попросту лопнет и может привести к обрушению стены.

Если бетонную или цементно-песчанную стяжку не расшить термошвом, то вместо запланированного разрыва, она лопнет в совершенно произвольном месте. И если по такому основанию была постелена плитка, то и она не выдержит напряжений и растрескается.

 
Поэтому легкомысленно относится к строительным нормам не безобидно.

За счет чего плитка стабильнее деревянных полов

Принято считать керамическую плитку самым стабильным напольным покрытием. Она используется в любых помещениях с самым широким диапазоном эксплуатации. Но даже ее нужно укладывать так, чтобы плиточный шов совпадал с термошвом стяжки или стены и не вплотную к стенкам. Когда происходят подвижки основы при правильном монтаже достаточно обновить выпавшую затирку. Если это требование проигнорировать, то плитка может лопнуть как на этом фото. И мало кто догадывается, что стабильность плитки обусловлена приличными по 3-3,5 мм зазорами между элементами, которые заполняются эластичной шпаклевкой. По такому же принципу приклеивается фанера.

Термошвы между помещениями – требование всех производителей

Деревянные полы укладывать так не принято, иначе они могли бы соревноваться за лидерство. Напольные покрытия из древесины настилают вплотную друг к другу, поэтому термошвы предусматривают по периметру помещений и между ними. Зазоры по периметру закрываются плинтусами, а между помещениями стыковочными профилями. Стандартный зазор по периметру помещений рассчитывается как 1,5 мм на каждый метр ширины помещения (для ламинатов и длины), но не менее 8-10 мм.
Это требование общее для всех напольных покрытий и регулируется требованием п.п.6.6.12, 6.6.20, 7.1.2 ВСН 9-94 РФ и Европейского стандарта ATV DIN 18365 
п.0.2.10 «Имеющиеся деформационные швы должны быть включены в покрытие пола с совмещением при наложении.»
Нюансы есть только в размерах термошвов (8-15 мм).

 

И если с зазорами по периметру помещений все более или менее понятно, то между помещениями (беспороговая укладка) и максимальной площадью укладки без разрыва слишком много заблуждений.

 

Давайте разбираться.

Есть такое понятие как максимальная площадь укладки без порожков, когда дополнительные термошвы не требуются.

Каждый производитель определяет для своих изделий ограничения исходя из расчетных данных, собственного опыта, учитывая климатическую зону, в которой они будут эксплуатироваться.

Например, максимальная площадь для:

ламината – от 8 до 13 м.п. по каждой стороне с простой геометрией
паркетной доски – от 7 до 18 м.п. по ширине и до 10 м по длине
массивной доски Экопол – до 7,5 м.п. по ширине и по длине без ограничений

Некоторые воспринимают эти данные, как возможность уложить без разрывов (порожков) все помещения раз они вписываются в ограничения. Однако это неверная трактовка.

Данное ограничение относится к отдельному помещению, а не к комнатам в составе помещения, соединенных узкими коридорами и проемами.

Например, если у вас большая комната ( 8х12 м) и по инструкции производителя в ней можно уложить материал без дополнительного термошва посреди пола – делайте это.
Но если у вас несколько комнат укладываются в контур 8х12 м, то переходы между помещениями рекомендуется разделять термошвами и закрывать стыковочными профилями.

Обратите внимание, что требование отделять помещения друг от друга термошвами — это требование европейского строительного стандарта вне зависимости от их площади. 

 

Это написано в инструкциях всех производителей !!!

И удивительно, что мало кто их читает, полагаясь на «видел у друзей», «у меня так было», «мне сказали, что так лучше», «дизайнер против», «категорически не нравятся порожки», «не хочу спотыкаться» и далее по списку.

Строительные нормы, действующие в Европе и России идентичны. Ответственные производители обязаны информировать потребителей о правильном монтаже и эксплуатации своей продукции. Это как минимум свидетельствует об их высоком профессионализме и добросовестности.

Изготовитель паркетной доски  Боен (Boen)

 

Изготовитель паркетной доски Карелия (Karelia)

 

Изготовитель паркетной доски Kahrs (Черс)

стр.3

стр.5

стр.8

 

 Изготовитель паркетной доски КвикСтеп (QuickStep)

 

Изготовитель паркетной и инженерной доски Coswick (Косвик)

 

Требование разделять соседние комнаты термошвом объясняется просто: одной или нескольким доскам в проеме затруднительно удерживать полы в двух смежных помещениях с разными площадями, а следовательно, и весом покрытия, разным климатом, конфигурацией, режимом эксплуатации. В этих узких дверных проемах и переходах в напольных покрытиях создаются избыточные напряжения.

Множество факторов влияют на климат в помещении и предугадать их невозможно. Поэтому укладка без стыковочных профилей всегда сопровождается риском. У кого-то полы без порожков могут лежать отлично, а у кого-то порождают проблемы. Если вы сомневаетесь — нужны стыковочные профили или нет — обратитесь к производителю. По плану помещения можно оценить степень рискованности, правда не наверняка. Если производитель, изучив план вашего помещения, советует сделать термошвы, то лучше к нему прислушаться.

По нашей практике около 30% таких беспороговых настилов приводят к проблемам, которых можно было избежать, соблюдая рекомендации.

Счастливчиков с удачной беспороговой укладкой больше даже при настиле солидных площадей. В большинстве случаев стабильный климат в этих помещениях контролируется оборудованием. Однако в случае, если оно выйдет из строя или произойдет затопление, подойдет время косметического ремонта отсутствие термошвов может стать проблемой.

Полы, настеленные единым полотном без стыковочных профилей, на картинке смотрятся лучше – это правда. Из проекта в проект копируется ровненькое напольное покрытие без переходов, и вроде как все другое уже и не комильфо, не модное. Но настолько ли они портят интерьер, чтобы переживать «а вдруг не прокатит»?

Решение рискнуть или сделать все по инструкции принимает владелец помещения. Поэтому на этапе выбора напольного покрытия мы советуем внимательно изучить рекомендации непосредственно производителя и прислушиваться к опытным строителям.

 

Вот так выглядят не прикрытые стыковочными профилями термошвы между массивной доской Экопол и стеной, плиткой и в переходах между комнатами.

 

Термошвы по окончании настила закрываются у стен плинтусами, а между помещениями стыковочными профилями.
Металлический накладной порожек выступает над поверхностью пола на 2 мм.
Накладной профиль Экопол из массива дуба выступает над поверхностью на 3 мм.
В интерьере выглядит это так:

 

А что если рекомендации не соблюдать?

Задумайтесь — почему производители таких разных материалов, находящиеся в странах с разным климатом и стандартами рекомендуют правила укладки напольных покрытий как под копирку? Да потому что законы физики отменить невозможно. Их просто желательно знать и правильно использовать.

Если игнорировать и делать «я так хочу», то самое простое – в отопительный период при несоблюдении влажностного режима пересушенный пол станет меньше и может отъехать от стены. И если установлены узкие плинтусы между ними и полом появится зазор. Тут поможет установка подходящего по ширине плинтуса или дополнительного молдинга.

Гораздо хуже, если пол набрал влагу. Тогда он может упереться в преграду в виде стены, дверного проема, трубы и вздуться. Замки паркетных досок и ламинатов разойдутся как в сломанной молнии.

И если массив Экопол после проведения спасательных работ примет свою форму и продолжит вам служить, то другие полы возможно придется менять.
В этот момент вы быстро вспомните кто все это насоветовал или навязал.

Поэтому помните – окончательное решение всегда за вами, ведь вы делаете для себя, а не для картинки.

 

 

Вам могут быть полезными и другие наши статьи: