Формула предел прочности при сжатии: Определение предела прочности при сжатии — Студопедия

Содержание

Прочность при сжатии — Материалы и свойства

Автор Admin На чтение 3 мин. Просмотров 152 Опубликовано

Прочность при сжатии – важное механическое свойство. Характеризуется пределом прочности породы при сжатии в сухом состоянии. Действующий стандарт на блоки подразделяет породы по Этому показателю на три класса: прочные (свыше 80 МПа), средней прочности (40—80 МПа), и низкопрочные (5—40 МПа).

Рис. 16. Схема гидравлического пресса для испытаний образцов на сжатие

Стандарт на камни бортовые (ГОСТ 6666—81) допускает изготовление этой продукции из горных пород с пределом прочности при сжатии не ниже, МПа: для изверженных пород – 90, метаморфических и осадочных – 60. Стандарт на камни брусчатые (ГОСТ 23668—79) допускает изготовление их из изверженных пород с пределом прочности не ниже 100 МПа. Стеновые камни из горных пород (ГОСТ 4001 – 84) в зависимости от предела прочности при сжатии подразделяются на 14 марок (от 4 до 400).

1 – станина; 2 – гидроцилиндр; 3 – поршень, 4 – нижняя плита; 5 – испытываемый образец камня; в – верхняя плита; 7 – установочный винт; 8 – манометры; 9 – насос

Определение предела прочности горных пород при сжатии производят на пяти образцах кубической формы с ребром 40—50 мм или цилиндрах диаметром и высотой 40 – 50 мм. Каждый образец перед испытанием очищают щеткой от рыхлых частиц, пыли и высушивают до постоянной массы. Затем тщательно обрабатывают на шлифовальном станке грани образцов, к которым будет приложена нагрузка, для обеспечения их параллельности. После этого образцы измеряют штангенциркулем, устанавливают в центре опорной плиты пресса (рис. 16), имеющей разметку для центровки образцов, и прижимают верхней плитой пресса, которая должна плотно прилегать по всей поверхности верхней грани образцов.

Нагрузку на образец при испытании увеличивают непрерывно и постоянно со скоростью, обеспечивающей его разрушение через 20—60 с после начала испытаний. Величина разрушающей нагрузки должна составлять не менее 10 % от предельно развиваемого прессом усилия. Момент разрушения образца устанавливают по началу обратного движения указательной стрелки силоизмерителя при работающем нагружающем устройстве.

Предельную (разрушающую) нагрузку определяют по положению -фиксирующей стрелки пресса. Если она отсутствует, надо внимательно следить за указательной стрелкой. За предельную нагрузку принимают наибольшее число делений, достигнутое движущейся стрелкой. При испытаниях образцов низкопрочных пород разрушение более продолжительно и нередко наблюдается плавный сброс нагрузки; в этом случае за предельную нагрузку принимают наибольшее число делений по шкале, которое было достигнуто указательной стрелкой.

Для вычисления предела прочности при сжатии определяют разрушающее усилие непосредственно по силоизмерителю или по тарировочным таблицам, прилагаемым прессу. При использовании манометров разрушающее усилие может быть определено как произведение площади поршня пресса на максимальное давление масла в прессе в момент разрушения образца (по показанию манометра).

Предел прочности образца при сжатии Rсж, МПа, вычисляют с точностью до I МПа по формуле

Rсж = P(10*F),

где P – разрушающее усилие пресса, Н; F – площадь поперечного сечения образца, м2.

Предел прочности породы при сжатии вычисляют как среднее арифметическое результатов испытаний пяти образцов. Значения этого показателя для большинства видов облицовочного камня, используемого в строительстве, даны в приложении.

Кроме предела прочности горных пород при сжатии в сухом состоянии, в процессе проведения испытания обычно определяют также и значение этого показателя у пород в водонасыщенном состоянии, что необходимо для оценки размягчения породы. Эти испытания проводятся аналогично вышеописанным (испытания сухих образцов) с той лишь разницей, что перед раздавливанием на прессе образцы выдерживаются в сосуде с водой комнатной температуры в течение 48 ч.

Определение предела прочности на сжатие — Студопедия.Нет

Определение предела прочности на изгиб

Определение предела прочности на сжатие

Ход работы

Образец измеряют. При испытании на сжатие образцы устанавливают одной из выбранных граней на нижнюю опорную плиту пресса центрально относительно его продольной оси, используя риски, нанесенные на плиту пресса.После установки образца на опорные плиты пресса совмещают верхнюю плиту пресса с верхней опорной гранью образца так, чтобы их плоскости полностью прилегали одна к другой. Далее начинают нагружение образцов непрерывно со скоростью, обеспечивающей повышение расчетного напряжения в образце до его полного разрушения в пределах (0,6±0,4) МПа/с при испытаниях на сжатие. При этом время нагружения одного образца должно быть не менее 30 с.

Прочность на сжатие следует вычислять с точностью до 0,1 МПа при испытаниях на сжатие и до 0,01 МПа при испытаниях на растяжение для каждого образца по формуле:

, (10)

где:Р — разрушающая нагрузка, кН;

А — площадь рабочего сечения образца, см2.

 

Полученную величину переводят в МПа при условии, что 10 МПа=1 кН/см2

Результаты испытаний записывают в таблицу 7.

Таблица 7. Результаты испытаний при определении предела

Прочности при сжатии цементных кубиков

Данные опыта Ед. измерения 1-й
образец
2-й
образец
3-й
образец
1.Размеры образцов:
длина – а
ширина – b
высота — h
 
мм
мм
мм
     
2. Площадь поперечного сечения образца, A мм2      
3. Разрушающая нагрузка, P Н      
4. Предел прочности при сжатии образца Rсж МПа      
5. Средний предел прочности при сжатии Rсж ср МПа      

Вычисления:


 

 

Определение предела прочности на изгиб

Образец измеряют и отмечают линиями на боковой грани места опор и приложения нагрузки. Образец устанавливают на двух опорах пресса. Нагрузку прикладывают в середине пролета. Нагрузка на образец должна возрастать непрерывно со скоростью, обеспечивающей его разрушение через 20-60 с после начала испытаний.Предел прочности при изгибе Rизг, МПа, образца вычисляют по формуле 8.

Результаты испытаний записывают в таблицу 8.

Таблица 8.                            Испытание цементныхбалочек

Данные опыта Единицы измерения 1-й
образец
2-й
образец
3-й
образец
1.Размеры образцов:
ширина – b
высота — h
 
мм
мм
     
2. Пролет между опорами – 1 мм      
3. Разрушающая нагрузка, P Н      
4. Предел прочности при изгибе Rизг. МПа      
5. Средний предел прочности при изгибе Rизг.ср МПа      

Вычисления:

 

 

Вывод:

Лабораторная работа №4

Определение марки кирпича

Цель работы:определение кирпича по внешнему виду, определять качество и марку керамического кирпича.

Приборы и материалы:пресс гидравлический, линейка измерительная металлическая, уголок поверочный, штангенциркуль, молоток, проставка для испытания на изгиб, войлок технический толщиной 5-10 мм (пластина резинотканевая толщиной 5-10 мм)



Перечень испытаний:

Определение дефектов внешнего вида методом визуального осмотра и обмера

Определение прочности при сжатии и изгибе

Определение дефектов внешнего вида

Ход работы

Кирпич и камни керамические и силикатные (далее — изделия) изготовляют в форме параллелепипеда и в зависимости от размеров подразделяют на виды.

Подготовленные образцы осматривают, измеряют, взвешивают. Результаты испытаний заносят в таблица 9.

Таблица 9. Внешний осмотр и обмеры изделий

Параметры

Значение для образцов

1 2
Отклонения от номинальных размеров, мм   
Известковые включения: есть — нет   
Количество отколов.   
Недожег и пережег: есть — нет   
Количество отбитостей углов    
Количество отбитостей и притупленностей ребер    
Количество трещин    
Толщина наружных стенок пустотелого изделия    
Диаметр цилиндрических сквозных пустот и размер стороны квадратных пустот    
Водопоглощение    
Масса изделия в высушенном состоянии    

 

Определение марки кирпича

Ход работы

Для испытания отобрать 5 образцов в состоянии естественной влажности. Две ровные половинки разделенного поперек кирпича, наложить друг на друга, и склеить при помощи раствора поверхностями разреза в противоположные стороны, установить в центре плиты пресса. Нагрузку подавать плавно со скоростью 2-3 кгс/см2.

При испытании образцов толщиной 88 мм результаты испытания умножают на коэффициент 1,2.

 

Таблица 10.                   Результаты испытаний

Данные опыта

Обозначение

Единицы измерения

Образцы

1-й 2-й 3-й 4-й
1. Сжимающая нагрузка P Н        
2. Площадь поперечного сечения образца А см2        
3. Предел прочности при сжатии Rсж  
МПа
       

Вычисления:

Вывод:

Лабораторная работа №5

Испытание воздушной извести

Цель работы:научиться определять свойства извести

Перечень испытаний:

1. Определение температуры и времени гаше­ния извести

Предел прочности при сжатии формула

Прочность металлических конструкций – один из важнейших параметров, определяющих их надежность и безопасность. Издревле вопросы прочности решались опытным путем — если какое-либо изделие ломалось — то следующее делали толще и массивнее. С 17 века ученые начали планомерное исследование проблемы, прочностные параметры материалов и конструкций из них можно рассчитать заранее, на этапе проектирования. Металлурги разработали добавки, влияющие на прочность стальных сплавов.

Предел прочности

Предел прочности — это максимальное значение напряжений, испытываемых материалом до того, как он начнет разрушаться. Его физический смысл определяет усилие растяжения, которое нужно приложить к стрежневидному образцу определенного сечения, чтобы разорвать его.

Каким образом производится испытание на прочность

Прочностные испытания на сопротивление разрыву проводятся на специальных испытательных стендах. В них неподвижно закрепляется один конец испытываемого образца, а к другому присоединяют крепление привода, электромеханического или гидравлического. Этот привод создает плавно увеличивающее усилие, действующее на разрыв образца, или же на его изгиб или скручивание.

Испытание на разрыв

Электронная система контроля фиксирует усилие растяжения и относительное удлинение, и другие виды деформации образца.

Виды пределов прочности

Предел прочности — один из главных механических параметров стали, равно как и любого другого конструкционного материала.

Эта величина используется при прочностных расчетах деталей и конструкций, судя по ней, решают, применим ли данный материал в конкретной сфере или нужно подбирать более прочный.

Различают следующие виды предела прочности при:

  • сжатии — определяет способность материала сопротивляться давлению внешней силы;
  • изгибе — влияет на гибкость деталей;
  • кручении – показывает, насколько материал пригоден для нагруженных приводных валов, передающих крутящий момент;
  • растяжении.

Виды испытаний прочности материалов

Научное название параметра, используемое в стандартах и других официальных документах — временное сопротивление разрыву.

Предел прочности стали

На сегодняшний день сталь все еще является наиболее применяемым конструкционным материалом, понемногу уступая свои позиции различным пластмассам и композитным материалам. От корректного расчета пределов прочности металла зависит его долговечность, надежность и безопасность в эксплуатации.

Предел прочности стали зависит от ее марки и изменяется в пределах от 300 Мпа у обычной низкоуглеродистой конструкционной стали до 900 Мпа у специальных высоколегированных марок.

На значение параметра влияют:

  • химический состав сплава;
  • термические процедуры, способствующие упрочнению материалов: закалка, отпуск, отжиг и т.д.

Некоторые примеси снижают прочность, и от них стараются избавляться на этапе отливки и проката, другие, наоборот, повышают. Их специально добавляют в состав сплава.

Условный предел текучести

Кроме предела прочности, в инженерных расчетах широко применяется связанное с ним понятие-предел текучести, обозначаемый σт. Он равен величине напряжения сопротивления разрыву, которое необходимо создать в материале, для того, чтобы деформация продолжала расти без наращивания нагрузки. Это состояние материала непосредственно предшествует его разрушению.

На микроуровне при таких напряжениях начинают рваться межатомные связи в кристаллической решетке, а на оставшиеся связи увеличивается удельная нагрузка.

Общие сведения и характеристики сталей

С точки зрения конструктора, наибольшую важность для сплавов, работающих в обычных условиях, имеют физико-механические параметры стали. В отдельных случаях, когда изделию предстоит работать в условиях экстремально высоких или низких температур, высокого давления, повышенной влажности, под воздействием агрессивных сред — не меньшую важность приобретают и химические свойства стали. Как физико-механические, так и химические свойства сплавов во многом определяются их химическим составом.

Влияние содержание углерода на свойства сталей

По мере увеличения процентной доли углерода происходит снижение пластичности вещества с одновременным ростом прочности и твердости. Этот эффект наблюдается до приблизительно 1% доли, далее начинается снижение прочностных характеристик.

Повышение доли углерода также повышает порог хладоемкости, это используется при создании морозоустойчивых и криогенных марок.

Влияние углерода на механические свойства стали

Рост содержания С приводит к ухудшению литейных свойств, отрицательно влияет на способность материала к механической обработке.

Добавки марганца и кремния

Mn содержится в большинстве марок стали. Его применяют для вытеснения из расплава кислорода и серы. Рост содержания Mn до определенного предела (2%) улучшает такие параметры обрабатываемости, как ковкость и свариваемость. После этого предела дальнейшее увеличение содержания ведет к образованию трещин при термообработке.

Влияние кремния на свойства сталей

Si применяется в роли раскислителя, используемого при выплавке стальных сплавов и определяет тип стали. В спокойных высокоуглеродистых марках должно содержаться не более 0,6% кремния. Для полуспокойных марок этот предел еще ниже — 0,1 %.

При производстве ферритов кремний увеличивает их прочностные параметры, не понижая пластичности. Этот эффект сохраняется до порогового содержания в 0,4%.

Влияние легирующих добавок на свойства стали

В сочетании с Mn или Mo кремний способствует росту закаливаемости, а вместе с Сг и Ni повышает коррозионную устойчивость сплавов.

Азот и кислород в сплаве

Эти самые распространенные в земной атмосфере газы вредно влияют на прочностные свойства. Образуемые ими соединения в виде включений в кристаллическую структуру существенно снижают прочностные параметры и пластичность.

Легирующие добавки в составе сплавов

Это вещества, намеренно добавляемые в расплав для улучшения свойств сплава и доведения его параметров до требуемых. Одни из них добавляются в больших количествах (более процента), другие — в очень малых. Наиболее часто применяю следующие легирующие добавки:

  • Хром. Применяется для повышения прокаливаемости и твердости. Доля – 0,8-0,2%.
  • Бор. Улучшает хладноломкость и радиационную стойкость. Доля – 0,003%.
  • Титан. Добавляется для улучшения структуры Cr-Mn сплавов. Доля – 0,1%.
  • Молибден. Повышает прочностные характеристики и коррозионную стойкость, снижает хрупкость. Доля – 0,15-0,45%.
  • Ванадий. Улучшает прочностные параметры и упругость. Доля – 0,1-0,3%.
  • Никель. Способствует росту прочностных характеристик и прокаливаемости, однако при этом ведет к увеличению хрупкости. Этот эффект компенсируют одновременным добавлением молибдена.

Металлурги используют и более сложные комбинации легирующих добавок, добиваясь получения уникальных сочетаний физико-механических свойств стали. Стоимость таких марок в несколько раз (а то и десятков раз) превышает стоимость обычных низкоуглеродистых сталей. Применяются они для особо ответственных конструкций и узлов.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Построение диаграммы деформирования при сжатии связано с рядом трудностей.

Первая из них состоит в том, что при сжатии стержня может наступить потеря устойчивости (искривление оси стержня). Проблема устойчивости стержней будет изучаться в дальнейшем, а сейчас отметим, что для устранения потери устойчивости надо применять образцы с малым отношением . Однако по мере уменьшения этого отношения возрастает влияние на результаты опытов сил трения, возникающих между опорными поверхностями.

На рис. 4.4, а показаны образцы для испытаний на сжатие. Наиболее простой способ — передача усилия через плоские торцы. Образец должен быть обработан достаточно точно, с тем чтобы получить равномерное распределение напряжений сжатия по торцам. Для уменьшения влияния сил трения торцы смазываются консистентными смазками (вазелином, парафином и т. п.). Другой способ компенсации сил трения состоит в применении полбгих конических поверхностей на торцах (рис. 4.4, б).

Для проведения последовательных испытаний на растяжение и сжатие используются трубчатые образцы (рис. 4.4, в), причем усилие на тело образца передается с помощью резьбы.

Рис. 4.4. Образцы материалов для испытания на сжатие

Основная область применения испытаний на сжатие — исследование прочности и деформации хрупких материалов, так как они используются в первую очередь для элементов конструкций, работающих на сжатие. Испытание на сжатие широко применяется для исследования строительных материалов (бетона, кирпича, камня и т. п.). В качестве образцов обычно применяют кубики размером ребра 30—40 мм.

Для хрупких материалов разрушение происходит при деформации всего несколько процентов, и основное значение имеет предел прочности на сжатие. На рис. 4.5 приведены два типа разрушения строительных материалов при сжатии. В нервом случае (рис. 4.5, а) (на торцах образца действуют силы трения) разрушение связано с действием касательных напряжений. Во втором случае (рис. 4.5, б) (силы трения по торцам малы) образуются продольные трещины, вызываемые деформацией растяжения в поперечном направлении. Следует отметить, что для хрупких материалов прочность на сжатие во много раз больше прочности на растяжение.

Рис. 4.5. Разрушение хрупких строительных материалов при сжатии: а — торцы образца не смазаны; б — торцы смазаны парафином

При испытании на сжатие пластичных материалов происходит увеличение поперечных сечений («расплющивание») образца (рис. 4.6). Четко определяется предел текучести, который для большинства пластичных конструкционных материалов оказывается таким же, как и при растяжении. Последнее объясняется тем, что ответственными за появление пластических деформаций являются касательные напряжения, которые при действии растягивающих и сжимающих усилий различаются только знаком.

Рис. 4.6. Расплющивание пластичных материалов при сжатии

Предел прочности при сжатии пластичных материалов при одноосном сжатии не выявляется. При всестороннем сжатии материалы выдерживают очень высокие давления, причем обычно хрупкие материалы (мрамор и др.) становятся пластичными.

Можно считать, что пластичные материалы выдерживают очень большие сжимающие напряжения, а разрушение может наступить в результате наличия в наклонных площадках – касательных напряжений.

Определение предела прочности кирпича при сжатии

Подготовка образцов к испытанию

Перед испытанием монолитный кирпич распиливают по ширине или разделяют любым способом без раздробления кирпича на две равные части, которые накладывают постелями одна на другую распилами в противоположные стороны. Пустотелый кирпич не распиливают и при испытании два кирпича накладывают постелями один на другой, кирпичи с несквозными пустотами укладываются отверстиями вниз.

Кирпичи или их половинки выдерживаются в воде не менее 6 мин, чтобы предупредить отсасывание воды кирпичом из цементного раствора. Для соединения кирпичей и выравнивания их постелей применяют цеметный раствор, составленный из портландцемента и песка крупностью не более 1 мм; отношение песка и цемента по массе 1:1, В/Ц раствора 0,34–0,36. На мраморной, стеклянной, металлической или другой плите с отшлифованной поверхностью расстилают смоченный в воде лист бумаги, (чтобы предупредить сцепление цементного раствора с поверхностью плиты), на лист бумаги наносят слой цементного раствора толщиной 5–7 мм. На раствор постелью кладут кирпич, и на его верхнюю постель наносят слой цементного раствора той же толщины. На этот верхний слой раствора кладут постелью второй кирпич, надавливая на него так, чтобы цементный раствор под кирпичами и между ними распределился равномерными по толщине слоями. Лишний цементный раствор срезают ножом вровень с боковыми гранями кирпичей.

Через 10 мин или более рядом на плите расстилают второй, смоченный в воде лист бумаги, на который также наносят слой цементного раствора толщиной 5–7 мм. Склеенные ранее кирпичи переворачивают вниз постелью, свободной от раствора, и устанавливают этой постелью на цементный раствор, уложенный на втором листе бумаги. Путем прижимания кирпичей к плите выравнивают слой цементного раствора под ними и срезают его избыток. При этом необходимо строго следить за тем, чтобы не нарушить ранее уплотненные и выровненные слои цементного раствора.

Толщина растворного шва между кирпичами и толщина выравнивающих слоев раствора на верхней и нижней постели образца должна быть 3–5 мм, постели образца после выравнивания их цементным раствором должны быть параллельны друг другу. Образцы до испытания не менее трех суток выдерживают в помещении при температуре воздуха 20±3 °С и относительной влажности его 90–95 %.

Допускается выравнивание постелей и соединение кирпичей гипсовым раствором. В этом случае испытание образцов производится через два часа после их изготовления.

Кирпич силикатный и шлаковый для испытания разделяют на две равные половины, которые накладывают постелями одна на другую без соединения и без выравнивания цементным раствором постелей образца.

Испытание образцов на сжатие

Перед испытанием измеряются площади верхней и нижней постели образца, ширина и длина каждой постели принимается как среднее арифметическое трех измерений: длины ребер и длины прямой между ребрами.

При испытании образец устанавливается в центре опорной плиты пресса и прижимается верхней плитой пресса, которая должна плотно прилегать ко всей поверхности верхней постели образца. Нагрузка на образец должна возрастать равномерно и непрерывно со скоростью, обеспечивающей разрушение через 20–30 с после начала испытания. Величина разрушающей нагрузки должна составлять не менее 10% усилия, предельно развиваемого прессом. Предел прочности в МПа при сжатии вычисляется по формуле:

где Р – наибольшая сжимающая нагрузка, достигнутая при испытании образца, Н;

F – площадь поперечного сечения образца, вычисляемая как среднее арифметическое площадей верхней и нижней постелей, м 2 .

При вычислении Rсж образцов из двух половинок или из двух целых кирпичей толщиной 88 или 90 мм результат испытания увеличивают на коэффициент 1,2, так как в этих случаях увеличивается отношение высоты образца к площади его постели, а это снижает прочность образца при сжатии.

Средний предел прочности при сжатии для п

ПРЕДЕЛ ПРОЧНОСТИ НА СЖАТИЕ — это… Что такое ПРЕДЕЛ ПРОЧНОСТИ НА СЖАТИЕ?



ПРЕДЕЛ ПРОЧНОСТИ НА СЖАТИЕ
(временное сопротивление сжатию) величина напряжения, вызывающая разрушение образца при одноосном сжатии. П. п. н. с. определяется по формуле

где Р — нагрузка, при которой происходит разрушение образца испытуемой породы, в к?; Г — площадь первоначального поперечного сечения образца в см2.

Словарь по гидрогеологии и инженерной геологии. — М.: Гостоптехиздат.
Составитель: А. А. Маккавеев, редактор О. К. Ланге.
1961.

  • ВРЕМЕННОЕ СОПРОТИВЛЕНИЕ СЖАТИЮ
  • ПРЕДЕЛ ТЕКУЧЕСТИ

Смотреть что такое «ПРЕДЕЛ ПРОЧНОСТИ НА СЖАТИЕ» в других словарях:

  • ПРЕДЕЛ ПРОЧНОСТИ НА СЖАТИЕ — см. Временное сопротивление горной породы на сжатие …   Словарь по гидрогеологии и инженерной геологии

  • Предел прочности на одноосное сжатие — отношение вертикальной нагрузки на образец грунта, при которой происходит его разрушение, к площади поперечного сечения образца. Источник: ГОСТ 30416 96: Грунты. Лабораторные испытания. Общие положения оригинал документа …   Словарь-справочник терминов нормативно-технической документации

  • Предел прочности картона при сжатии — характеристика механической прочности картона при нагрузке силой на сжатие до необратимой деформации или до разрушения …   Реклама и полиграфия

  • Предел прочности — Предел прочности  механическое напряжение , выше которого происходит разрушение материала. Согласно ГОСТу 1497 84 более корректным термином является «Временное сопротивление разрушению», то есть напряжение, соответствующее наибольшему усилию …   Википедия

  • предел прочности при сжатии — 3.1.10 предел прочности при сжатии : Напряжение, соответствующее наибольшей нагрузке, предшествующей разрушению; Источник …   Словарь-справочник терминов нормативно-технической документации

  • предел прочности —  Tensile Strength  (TS)  Предел прочности   Механическое напряжение, выше которого происходит разрушение материала. Поскольку при оценке прочности время нагружения образцов часто не превышает нескольких секунд от начала нагружения до момента… …   Толковый англо-русский словарь по нанотехнологии. — М.

  • предел прочности грунта на одноосное сжатие — 3.2.15 предел прочности грунта на одноосное сжатие: Отношение нагрузки, при которой происходит разрушение образца, к площади первоначального поперечного сечения (ГОСТ 26447 85). Источник: ОДМ 218.1.004 2011: Классификация стабилизаторов грунтов в …   Словарь-справочник терминов нормативно-технической документации

  • ПРЕДЕЛ ПРОЧНОСТИ — [СОПРОТИВЛЕНИЕ ВРЕМЕННОЕ] условное нормальное напряжение, равное отношению максимальной нагрузки, предшествующей разрушению к начальной площади сечения (Болгарский язык; Български) граница на якост (Чешский язык; Čeština) mez pevnosti (Немецкий… …   Строительный словарь

  • предел прочности грунта на одноосное сжатие — отношение нагрузки, при которой происходит разрушение образца, к площади первоначального поперечного сечения. (Смотри: ГОСТ 25100 95. Грунты. Классификация.) Источник: Дом: Строительная терминология , М.: Бук пресс, 2006 …   Строительный словарь

  • Предел выносливости — Предел выносливости (также предел усталости)  в науках о прочности: одна из прочностных характеристик материала, характеризующих его выносливость, то есть способность воспринимать нагрузки, вызывающие циклические напряжения в материале …   Википедия

при растяжении, кручении и изгибе.

Сопромат

Эта статья будет посвящена расчетам на прочность, которые выполняются в сопромате и не только. Расчеты на прочность бывают двух видов: проверочные и проектировочные (проектные).

Проверочные расчеты на прочность – это такие расчеты, в ходе которых проверятся прочность элемента заданной формы и размеров, под некоторой нагрузкой.

В ходе проектировочных расчетов на прочность определяются какие-то размеры элемента из условия прочности. Причем, очевидно, что для разных видов деформаций эти условия прочности различны. Также к проектным расчетам можно отнести расчеты на грузоподъемность, когда вычисляется максимальная нагрузка, которую может выдерживать конструкция, не разрушаясь.  Рассмотрим более подробно, как проводится прочностные расчеты для разных случаев.

Расчеты на прочность при растяжении (сжатии)

Начнем, пожалуй, с самого простого вида деформации растяжения (сжатия). Напряжение при центральном растяжении (сжатии) можно получить, разделив продольную силу на площадь поперечного сечения, а условие прочности выглядит вот так:

где сигма в квадратных скобках – это допустимое напряжение. Которое можно получить, разделив предельное напряжения на коэффициент запаса прочности:

Причем, за предельное напряжение для разных материалов принимают разное значение. Для пластичных материалов, например, для малоуглеродистой стали (Ст2, Ст3) принимают предел текучести, а для хрупких (бетон, чугун) берут в качестве предельного напряжения – предел прочности (временное сопротивление). Эти характеристики получают при испытании образцов на растяжение или сжатие на специальных машинах, которые фиксируют характеристики в виде диаграммы.

Коэффициент запаса прочности выбирается конструктором исходя из своего личного опыта, назначения проектируемой детали и сферы применения. Обычно, он варьируется от 2 до 6.

В случае если необходимо подобрать размеры сечения, площадь выражают таким образом:

Таким образом, минимальная площадь поперечного сечения при центральном растяжении (сжатии) будет равна отношению продольно силы к допустимому напряжению.

Расчеты на прочность при кручении

При кручении расчеты на прочность в принципе схожи с теми, что проводятся при растяжении. Только здесь вместо нормальных напряжений появляются касательные напряжения.

На кручение работают, чаще всего, детали, которые называются валами. Их назначение заключается в передаче крутящего момента от одного элемента к другому. При этом вал по всей длине имеет круглое поперечное сечение. Условие прочности для круглого поперечного сечения можно записать  так:

где Ip — полярный момент сопротивления, ρ — радиус круга. Причем по этой формуле можно определить касательное напряжение в любой точке сечения, варьируя значение ρ. Касательные напряжения распределены неравномерно по сечению, их максимальное значение находится в наиболее удаленных точках сечения:

Условие прочности, можно записать несколько проще, используя такую геометрическую характеристику как момент сопротивления:

То бишь максимальные касательные напряжения равны отношению крутящего момента к полярному моменту сопротивления и должны быть меньше либо равны допустимому напряжению. Геометрические характеристики для круга, упомянутые выше можно найти вот так:

Иногда в задачах встречаются и прямоугольные сечения, для которых момент сопротивления определяется несколько сложнее, но об этом я расскажу в другой статье.

Расчеты на прочность при изгибе

Сопромат

Предел прочности материалов (разрыв металлов) при растяжении и сжатии: что это такое, виды, фото

14Ноя

Содержание статьи

  1. Предел прочности
  2. Как производится испытание на прочность
  3. Виды ПП
  4. Предел прочности на растяжение стали
  5. Предел текучести и временное сопротивление
  6. Усталость стали
  7. Предел пропорциональности
  8. Как определяют свойства металлов
  9. Механические свойства
  10. Классы прочности и их обозначения
  11. Формула удельной прочности
  12. Использование свойств металлов
  13. Пути увеличения прочностных характеристик

При строительстве объектов обязательно необходимо использовать расчеты, включающие подробные характеристики стройматериалов. В обратном случае на опору может быть возложена слишком большая, непосильная нагрузка, из-за чего произойдет разрушения. Сегодня поговорим о пределе прочности материала при разрыве и натяжении, расскажем, что это такое и как работать с этим показанием.

предел прочности

предел прочности

Предел прочности

ПП – будем использовать это сокращение, а также можно говорить об официальном сочетании «временное сопротивление» – это максимальная механическая сила, которая может быть применена к объекту до начала его разрушения. В данном случае мы не говорим о химическом воздействии, но подразумеваем, что нагревание, неблагоприятные климатические условия, определенная среда могут либо улучшать свойства металла (а также дерева, пластмассы), либо ухудшать.

Ни один инженер не использует при проектировании крайние значения, потому что необходимо оставить допустимую погрешность – на окружающие факторы, на длительность эксплуатации. Рассказали, что называется пределом прочности, теперь перейдем к особенностям определения.

Как производится испытание на прочность

Изначально особенных мероприятий не было. Люди брали предмет, использовали его, а как только он ломался, анализировали поломку и снижали нагрузку на аналогичное изделие. Теперь процедура гораздо сложнее, однако, до настоящего времени самый объективный способ узнать ПП – эмпирический путь, то есть опыты и эксперименты.

Все испытания проходят в специальных условиях с большим количеством точной техники, которая фиксирует состояние, характеристики подопытного материала. Обычно он закреплен и испытывает различные воздействия – растяжение, сжатие. Их оказывают инструменты с высокой точностью – отмечается каждая тысячная ньютона из прикладываемой силы. Одновременно с этим фиксируется каждая деформация, когда она происходит. Еще один метод не лабораторный, а вычислительный. Но обычно математический анализ используется вместе с испытаниями.

Определение термина

Образец растягивается на испытательной машине. При этом сначала он удлиняется в размере, а поперечное сечение становится уже, а затем образуется шейка – место, где самый тонкий диаметр, именно здесь заготовка разорвется. Это актуально для вязких сплавов, в то время как хрупкие, к ним относится чугун и твердая сталь, растягиваются совсем незначительно без образования шейки. Подробнее посмотрим на видео:

Виды ПП

Временное сопротивление разрыву определяют по различным воздействиям, согласно этому его классифицируют по:

  • сжатию – на образец действуют механические силы давления;
  • изгибу – деталь сгибают в различные стороны;
  • кручению – проверяется пригодность для использования в качестве крутящегося вала;
  • растяжению – подробный пример проверки мы привели выше.

Предел прочности на растяжение стали

Стальные конструкции давно заменили прочие материалы, так как они обладают отличными эксплуатационными характеристиками – долговечностью, надежностью и безопасностью. В зависимости от применяемой технологии, он подразделяется на марки. От самой обычной с ПП в 300 Мпа, до наиболее твердой с высоким содержанием углерода – 900 Мпа. Это зависит от двух показателей:

  • Какие способы термообработки применялись – отжиг, закалка, криообработка.
  • Какие примеси содержатся в составе. Одни считаются вредными, от них избавляются для чистоты сплава, а вторые добавляют для укрепления.

что называется пределом прочности

что называется пределом прочности

Предел текучести и временное сопротивление

Новый термин обозначается в технической литературе буквой Т. Показатель актуален исключительно для пластичных материалов и обозначает, как долго может деформироваться образец без увеличения на него внешней нагрузки.

Обычно после преодоления этого порога кристаллическая решетка сильно меняется, перестраивается. Результатом выступают пластические деформации. Они не являются нежелательными, напротив, происходит самоупрочнение металла.

Усталость стали

Второе название – предел выносливости. Его обозначают буквой R. Это аналогичный показатель, то есть он определяет, какая сила может воздействовать на элемент, но не в единичном случае, а в цикле. То есть на подопытный эталон циклично, раз за разом действуют определенные давления. Среднее количество повторений – 10 в седьмой степени. Именно столько раз металл должен без деформаций и потери своих характеристик выдержать воздействие.

Если проводить эмпирические испытания, то потребуется множество времени – нужно проверить все значения силы, прикладывая ее по множеству циклов. Поэтому обычно коэффициент рассчитывается математически.

Предел пропорциональности

Это показатель, определяющий длительность оказываемых нагрузок к деформации тела. При этом оба значения должны изменяться в разный степени по закону Гука. Простыми словами: чем больше оказывается сжатие (растяжение), тем сильнее деформируется образец.

Значение каждого материала находится между абсолютной и классической упругостью. То есть если изменения обратимы, после того как сила перестала действовать (форма стала прежняя – пример, сжатие пружины), то такие параметры нельзя называть пропорциональными.

временное сопротивление предел прочности

временное сопротивление предел прочности

Как определяют свойства металлов

Проверяют не только то, что называют пределом прочности, но и остальные характеристики стали, например, твердость. Испытания проводят следующим образом: в образец вдавливают шарик или конус из алмаза – наиболее прочной породы. Чем крепче материал, тем меньше след остается. Более глубокие, с широким диаметром отпечатки остаются на мягких сплавах. Еще один опыт – на удар. Воздействие оказывается только после заранее сделанного надреза на заготовке. То есть разрушение проверяется для наиболее уязвимого участка.

Механические свойства

Различают 5 характеристик:

  • Предел прочности стали при растяжении и на разрыв это – временное сопротивление внешним силам, напряжение, возникающее внутри.
  • Пластичность – это возможность деформироваться, менять форму, но сохранять внутреннюю структуру.
  • Твердость – готовность встретиться с более твердым материалом и не получить значительных ущербов.
  • Ударная вязкость – способность сопротивляться ударам.
  • Усталость – длительность сохранения качеств под воздействием цикличных нагрузок.

Классы прочности и их обозначения

Все категории записаны в нормативных документах – ГОСТах, по ним все российские предприниматели изготавливают любой металлопрокат и прочие металлические изделия. Вот соответствие обозначения и параметра в таблице:

КлассВременное сопротивление, Н/мм2
265430
295430
315450
325450
345490
355490
375510
390510
440590

Видим, что для некоторых классов остается одинаковыми показатели ПП, это объясняется тем, что при равных значениях у них может различаться текучесть или относительное удлинение. В зависимости от этого возможна различная максимальная толщина металлопроката.

Формула удельной прочности

R с индексом «у» – обозначение данного параметра в физике. Рассчитывается как ПП (в записи – R) поделенное на плотность – d. То есть этот расчет имеет практическую ценность и учитывает теоретические знания о свойствах стали для применения в жизни. Инженеры могут сказать, как меняется временное сопротивление в зависимости от массы, объема изделия. Логично, что чем тоньше лист, тем легче его деформировать.

Формула выглядит так:

Ry = R/d

Здесь будет логичным объяснить, в чем измеряется удельный предел прочности. В Н/мм2 – это вытекает из предложенного алгоритма вычисления.

предел прочности материала это

предел прочности материала это

Использование свойств металлов

Два важных показателя – пластичность и ПП – взаимосвязаны. Материалы с большим первым параметром намного медленнее разрушаются. Они хорошо меняют свою форму, подвергаются различным видам металлообработке, в том числе объемной штамповке – поэтому из листов делают элементы кузова автомобиля. При малой пластичности сплавы называют хрупкими. Они могут быть очень твердыми, но при этом плохо тянуться, изгибаться и деформироваться, например, титан.

Сопротивление

Есть два типа:

  • Нормативное – прописано для каждого типа стали в ГОСТах.
  • Расчетное – получается после вычислений в конкретном проекте.

Первый вариант скорее теоретический, для практических задач используется второй.

Пути увеличения прочностных характеристик

Есть несколько способов это сделать, два основных:

  • добавка примесей;
  • термообработка, например, закал.

Иногда они используются вместе.

Общие сведения о сталях

Все они обладают химическими свойствами и механическими. Ниже подробнее поговорим о способах увеличения прочности, но для начала представим схему, на которой представлены все разновидности:

предел прочности материала это

предел прочности материала это

Также посмотрим более подробное видео:

Все они обладают химическими свойствами и механическими. Ниже подробнее поговорим о способах увеличения прочности, но для начала представим схему, на которой представлены все разновидности:

Углерод

Чем больше углеродность вещества, тем выше твердость и меньше пластичность. Но в составе не должно быть более 1% химического компонента, так как большее количество приводит к обратному эффекту.

Марганец

Очень полезная добавка, но при массовой доле не более двух процентов. Обычно Mn добавляют для улучшения качеств обрабатываемости. Материал становится более подвержен ковке и свариванию. Это объясняется вытеснением кислорода и серы.

Кремний

Эффективно повышает прочностные характеристики, при этом не затрагивая пластичность. Максимальное содержание – 0,6%, иногда достаточно и 0,1%. Хорошо сочетается с другими примесями, в совокупности можно увеличить устойчивость к коррозии.

Азот и кислород

Если они попадают в сплав, но ухудшают его характеристики, при изготовлении от них пытаются избавиться.

Легирующие добавки

Также можно встретить следующие примеси:

  • Хром – увеличивает твёрдость.
  • Молибден – защищает от ржавчины.
  • Ванадий – для упругости.
  • Никель – хорошо влияет на прокаливаемость, но может привести к хрупкости.

Эти и другие химические вещества должны применяться в строгих пропорциях в соответствии с формулами. В статье мы рассказали про предел прочности (кратковременное сопротивление) – что это, и как с ним работать. Также дали несколько таблиц, которым можно пользоваться при работе. В качестве завершения, давайте посмотрим видеоролик:

Чтобы уточнить интересующую вас информацию, свяжитесь с нашими менеджерами по телефонам 8 (908) 135-59-82; (473) 239-65-79; 8 (800) 707-53-38. Они ответят на все ваши вопросы.

 

Определение предела прочности при изгибе и сжатии — Мегаобучалка

Определение физических свойств

Определение истинной плотности

Инертная жидкостьТемпература жидкости 0С

Материал _____

Масса порошка _г

Масса пикнометра с навеской, m г

Масса пустого пикнометра, m1______________________________г

Масса пикнометра с водой, m2______________________________г

Масса пикнометра с навеской и водой, m3 ____________________г

Плотность жидкости, рж_г/см3

Истинная плотность материала, р г/см3

кг/м3

 

Расчетная формула:

 

(1.1)

 

 

 

Схема опыта

 

 

Таблица 1.1- Истинная и средняя плотности некоторых строительных

материалов

Материал Истинная плотность, кг/м3 Средняя плотность,
кг/м3
Гранит 2800-2900 2600-2700
Известняк плотный 2400-2600 2100-2400
Туф вулканический 2600-2800 900-2100
Бетон тяжелый   1800-2500
Бетон легкий   500-1800
Кирпич керамический 2600-2800 1600-1800
Древесина сосны 1550-1600 500-600
Песок 2600-2700 1400-1600
Пенопласты 1300-1400 20-50
Стекло 2400-2600 2400-2600
Сталь строительная 7800-7850 7800-7850

 

Определение средней плотности материалов

Расчетная формула

 

(1.2)

Определение средней плотности на образцах

Правильной геометрической формы

 

Таблица 1.2 — Результаты испытаний

 

Показатели, размерность Результаты опыта
Масса образца в сухом состоянии, m, г
Размеры, см:
— длина
— ширина
— высота
Объем образца, V, см3
Средняя плотность, ρ, г/см3 , кг/м3
 
 
 

Определение средней плотности материала на образцах

Неправильной геометрической формы

Масса сухого образца, m_______________________________г

Масса образца, покрытого парафином, m1г

Объем образца с парафином, V1см3

Объем парафина, Vп, см3

 

(1.3)

 

 

где =0,93 г/см3

Средняя плотность образца, неправильной геометрической формы:

(1.4)

 

 

Определение пористости

 

% (1.5)

 

П=

 

Определение насыпной плотности

 

Таблица 1.3 — Результаты испытаний

 

Показатели
 
Единицы измерения
 
Результаты опыта
 
Масса сосуда, m кг  
Масса сосуда с материалом, m1 кг  
Масса материала, m2 кг  
Объем сосуда, V л  
Насыпная плотность: кг/л
кг/м3
 

 

Определение пустотности

 

Расчетная формула:

% (1.6)

 

 

Определение влажности материалов

Материал

Таблица 1.4 — Результаты испытаний

 

Показатели Единицы
измерения
 
Результаты опыта
 
Масса исходной навески, т1 г  
Масса сухой навески, т2 г  
Относительная влажность материала, Wотн %  
Абсолютная влажность материала, Wабс %  

 

 

Расчетные формулы:

 

(1.7)

 

 

(1.8)

 

Определение водопоглощения и оценка морозостойкости

материала

Материал

 

Таблица 1.5 — Результаты испытаний

Показатели Единицы
измерения
 
Результаты опыта
Масса сухого образца, m2
 
г
 
 
 
Масса образца, выдержанного в воде, m1
 
г
 
 
 
Время выдержки
 
ч
 
 
 
Средняя плотность,
 
г/см3
 
 
 
Водопоглощение по массе, Wm
 
%
 
 
 
Водопоглощение по объему, WV %  
Коэффициент насыщения пор, Кн    

 

Расчетные формулы:

 

 

(1.9)

 

Wm=

 

 

(1.10)

 

 

Кн=WV/П (1.11)

 

 

Кн=

 

Вывод: По значению Кн материал ______морозостоек.

Определение механических свойств

Определение предела прочности при изгибе и сжатии

Материал

 

Таблица 1.6- Результаты испытаний

Показатели
 
Единицы измерения
 
Результаты опыта
 
Предел прочности при изгибе, Rизг кгс/см2  
Площадь образца, F
 
см2
 
 
Разрушающая нагрузка при сжатии, Р кН*
кгс
 
Предел прочности при сжатии,Rсж кгс/см2
 
 

 

Формула для расчета:

 

(1.12)

 

 

 

 

Сопротивление удару

Материал_____

 

Таблица 1.7- Результаты испытаний

 

Показатели
 
Единицы измерения
 
Результаты опыта
 
Размеры: длина
ширина
высота
см
см
см
 
Объем образца, V см3  
Масса груза, m кг  
Высота падения груза, вызывающего
появление первой трещины на
образце, h
 
 
см
 
Сопротивление удару, Rу
Rу·10-2
Н·см/см3
Дж/см3
 
 

 

 

Расчетная формула:

 

 

(1.13)

 

 

 

ОценкаПодпись преподавателя

* 1 кН/см2=10МПа~100 кгс/см2

 

Что такое сжимающее напряжение? — Определение, формула, единица измерения, размер

    • БЕСПЛАТНАЯ ЗАПИСЬ КЛАСС
    • КОНКУРСНЫЕ ЭКЗАМЕНА
      • BNAT
      • Классы
        • Класс 1-3
        • Класс 4-5
        • Класс 6-10
        • Класс 110003 CBSE
          • Книги NCERT
            • Книги NCERT для класса 5
            • Книги NCERT, класс 6
            • Книги NCERT для класса 7
            • Книги NCERT для класса 8
            • Книги NCERT для класса 9
            • Книги NCERT для класса 10
            • NCERT Книги для класса 11
            • NCERT Книги для класса 12
          • NCERT Exemplar
            • NCERT Exemplar Class 8
            • NCERT Exemplar Class 9
            • NCERT Exemplar Class 10
            • NCERT Exemplar Class 11
            • 9plar

            • RS Aggarwal
              • Решения RS Aggarwal Class 12
              • RS Aggarwal Class 11 Solutions
              • RS Aggarwal Решения класса 10
              • Решения RS Aggarwal класса 9
              • Решения RS Aggarwal класса 8
              • Решения RS Aggarwal класса 7
              • Решения RS Aggarwal класса 6
            • RD Sharma
              • RD Sharma Class 6 Решения
              • RD Sharma Class 7 Решения
              • Решения RD Sharma класса 8
              • Решения RD Sharma класса 9
              • Решения RD Sharma класса 10
              • Решения RD Sharma класса 11
              • Решения RD Sharma Class 12
            • PHYSICS
              • Механика
              • Оптика
              • Термодинамика
              • Электромагнетизм
            • ХИМИЯ
              • Органическая химия
              • Неорганическая химия
              • Периодическая таблица
            • MATHS
              • Статистика
              • 9000 Pro Числа
              • Числа
              • 9000 Pro Числа Тр Игонометрические функции
              • Взаимосвязи и функции
              • Последовательности и серии
              • Таблицы умножения
              • Детерминанты и матрицы
              • Прибыль и убытки
              • Полиномиальные уравнения
              • Деление фракций
            • Microology
                0003000
            • FORMULAS
              • Математические формулы
              • Алгебраические формулы
              • Тригонометрические формулы
              • Геометрические формулы
            • КАЛЬКУЛЯТОРЫ
              • Математические калькуляторы
              • 0003000
              • 000 Калькуляторы
              • 000 Физические модели 900 Образцы документов для класса 6
              • Образцы документов CBSE для класса 7
              • Образцы документов CBSE для класса 8
              • Образцы документов CBSE для класса 9
              • Образцы документов CBSE для класса 10
              • Образцы документов CBSE для класса 1 1
              • Образцы документов CBSE для класса 12
            • Вопросники предыдущего года CBSE
              • Вопросники предыдущего года CBSE, класс 10
              • Вопросники предыдущего года CBSE, класс 12
            • HC Verma Solutions
              • HC Verma Solutions Класс 11 Физика
              • HC Verma Solutions Класс 12 Физика
            • Решения Лакмира Сингха
              • Решения Лахмира Сингха класса 9
              • Решения Лахмира Сингха класса 10
              • Решения Лакмира Сингха класса 8
            • 9000 Класс

            9000BSE 9000 Примечания3 2 6 Примечания CBSE

          • Примечания CBSE класса 7
          • Примечания

          • Примечания CBSE класса 8
          • Примечания CBSE класса 9
          • Примечания CBSE класса 10
          • Примечания CBSE класса 11
          • Примечания 12 CBSE
        • Примечания к редакции 9000 CBSE 9000 Примечания к редакции класса 9
        • CBSE Примечания к редакции класса 10
        • CBSE Примечания к редакции класса 11
        • Примечания к редакции класса 12 CBSE
      • Дополнительные вопросы CBSE
        • Дополнительные вопросы по математике класса 8 CBSE
        • Дополнительные вопросы по науке 8 класса CBSE
        • Дополнительные вопросы по математике класса 9 CBSE
        • Дополнительные вопросы по математике класса 9 CBSE Вопросы
        • CBSE Class 10 Дополнительные вопросы по математике
        • CBSE Class 10 Science Extra questions
      • CBSE Class
        • Class 3
        • Class 4
        • Class 5
        • Class 6
        • Class 7
        • Class 8 Класс 9
        • Класс 10
        • Класс 11
        • Класс 12
      • Учебные решения
    • Решения NCERT
      • Решения NCERT для класса 11
        • Решения NCERT для класса 11 по физике
        • Решения NCERT для класса 11 Химия
        • Решения NCERT для биологии класса 11
        • Решение NCERT s Для класса 11 по математике
        • NCERT Solutions Class 11 Accountancy
        • NCERT Solutions Class 11 Business Studies
        • NCERT Solutions Class 11 Economics
        • NCERT Solutions Class 11 Statistics
        • NCERT Solutions Class 11 Commerce
      • NCERT Solutions for Class 12
        • Решения NCERT для физики класса 12
        • Решения NCERT для химии класса 12
        • Решения NCERT для биологии класса 12
        • Решения NCERT для математики класса 12
        • Решения NCERT, класс 12, бухгалтерия
        • Решения NCERT, класс 12, бизнес-исследования
        • NCERT Solutions Class 12 Economics
        • NCERT Solutions Class 12 Accountancy Part 1
        • NCERT Solutions Class 12 Accountancy Part 2
        • NCERT Solutions Class 12 Micro-Economics
        • NCERT Solutions Class 12 Commerce
        • NCERT Solutions Class 12 Macro-Economics
      • NCERT Solut Ионы Для класса 4
        • Решения NCERT для математики класса 4
        • Решения NCERT для класса 4 EVS
      • Решения NCERT для класса 5
        • Решения NCERT для математики класса 5
        • Решения NCERT для класса 5 EVS
      • Решения NCERT для класса 6
        • Решения NCERT для математики класса 6
        • Решения NCERT для науки класса 6
        • Решения NCERT для класса 6 по социальным наукам
        • Решения NCERT для класса 6 Английский язык
      • Решения NCERT для класса 7
        • Решения NCERT для математики класса 7
        • Решения NCERT для науки класса 7
        • Решения NCERT для социальных наук класса 7
        • Решения NCERT для класса 7 Английский язык
      • Решения NCERT для класса 8
        • Решения NCERT для математики класса 8
        • Решения NCERT для науки 8 класса
        • Решения NCERT для социальных наук 8 класса ce
        • Решения NCERT для класса 8 Английский
      • Решения NCERT для класса 9
        • Решения NCERT для класса 9 по социальным наукам
      • Решения NCERT для математики класса 9
        • Решения NCERT для математики класса 9 Глава 1
        • Решения NCERT для математики класса 9, глава 2
        • Решения NCERT

        • для математики класса 9, глава 3
        • Решения NCERT для математики класса 9, глава 4
        • Решения NCERT для математики класса 9, глава 5
        • Решения NCERT

        • для математики класса 9, глава 6
        • Решения NCERT для математики класса 9, глава 7
        • Решения NCERT

        • для математики класса 9, глава 8
        • Решения NCERT для математики класса 9, глава 9
        • Решения NCERT для математики класса 9, глава 10
        • Решения NCERT

        • для математики класса 9, глава 11
        • Решения

        • NCERT для математики класса 9 Глава 12
        • Решения NCERT

        • для математики класса 9 Глава 13
        • NCER Решения T для математики класса 9 Глава 14
        • Решения NCERT для математики класса 9 Глава 15
      • Решения NCERT для науки класса 9
        • Решения NCERT для науки класса 9 Глава 1
        • Решения NCERT для науки класса 9 Глава 2
        • Решения NCERT для науки класса 9 Глава 3
        • Решения NCERT для науки класса 9 Глава 4
        • Решения NCERT для науки класса 9 Глава 5
        • Решения NCERT для науки класса 9 Глава 6
        • Решения NCERT для науки класса 9 Глава 7
        • Решения NCERT для науки класса 9 Глава 8
        • Решения NCERT для науки класса 9 Глава 9
        • Решения NCERT для науки класса 9 Глава 10
        • Решения NCERT для науки класса 9 Глава 12
        • Решения NCERT для науки класса 9 Глава 11
        • Решения NCERT для науки класса 9 Глава 13
        • Решения NCERT

        • для науки класса 9 Глава 14
        • Решения NCERT для класса 9 по науке Глава 15
      • Решения NCERT для класса 10
        • Решения NCERT для класса 10 по социальным наукам
      • Решения NCERT для математики класса 10
        • Решения NCERT для класса 10 по математике Глава 1
        • Решения NCERT для математики класса 10, глава 2
        • Решения NCERT для математики класса 10, глава 3
        • Решения NCERT для математики класса 10, глава 4
        • Решения NCERT для математики класса 10, глава 5
        • Решения NCERT для математики класса 10, глава 6
        • Решения NCERT для математики класса 10, глава 7
        • Решения NCERT для математики класса 10, глава 8
        • Решения NCERT для математики класса 10, глава 9
        • Решения NCERT для математики класса 10, глава 10
        • Решения NCERT для математики класса 10 Глава 11
        • Решения NCERT для математики класса 10 Глава 12
        • Решения NCERT для математики класса 10 Глава ter 13
        • Решения NCERT для математики класса 10 Глава 14
        • Решения NCERT для математики класса 10 Глава 15
      • Решения NCERT для науки класса 10
        • Решения NCERT для класса 10 науки Глава 1
        • Решения NCERT для класса 10 Наука, глава 2
        • Решения NCERT для класса 10, глава 3
        • Решения NCERT для класса 10, глава 4
        • Решения NCERT для класса 10, глава 5
        • Решения NCERT для класса 10, глава 6
        • Решения NCERT для класса 10 Наука, глава 7
        • Решения NCERT для класса 10, глава 8
        • Решения NCERT для класса 10, глава 9
        • Решения NCERT для класса 10, глава 10
        • Решения NCERT для класса 10, глава 11
        • Решения NCERT для класса 10 Наука Глава 12
        • Решения NCERT для класса 10 Наука Глава 13
        • NCERT S Решения для класса 10 по науке Глава 14
        • Решения NCERT для класса 10 по науке Глава 15
        • Решения NCERT для класса 10 по науке Глава 16
      • Программа NCERT
      • NCERT
    • Commerce
      • Class 11 Commerce Syllabus
        • Учебный план класса 11
        • Учебный план класса 11
        • Учебный план экономического факультета 11
      • Учебный план по коммерции класса 12
        • Учебный план класса 12
        • Учебный план класса 12
        • Учебный план
        • Класс 12 Образцы документов для торговли
          • Образцы документов для предприятий класса 11
          • Образцы документов для коммерческих предприятий класса 12
        • TS Grewal Solutions
          • TS Grewal Solutions Class 12 Accountancy
          • TS Grewal Solutions Class 11 Accountancy
        • Отчет о движении денежных средств 9 0004
        • Что такое предпринимательство
        • Защита прав потребителей
        • Что такое основные средства
        • Что такое баланс
        • Что такое фискальный дефицит
        • Что такое акции
        • Разница между продажами и маркетингом
      • 03

      • ICC
      • Образцы документов ICSE
      • Вопросы ICSE
      • ML Aggarwal Solutions
        • ML Aggarwal Solutions Class 10 Maths
        • ML Aggarwal Solutions Class 9 Maths
        • ML Aggarwal Solutions Class 8 Maths
        • ML Aggarwal Solutions Class 7 Maths Решения Математика класса 6
      • Решения Селины
        • Решения Селины для класса 8
        • Решения Селины для класса 10
        • Решение Селины для класса 9
      • Решения Фрэнка
        • Решения Фрэнка для математики класса 10
        • Франк Решения для математики 9 класса

        9000 4

      • ICSE Class
        • ICSE Class 6
        • ICSE Class 7
        • ICSE Class 8
        • ICSE Class 9
        • ICSE Class 10
        • ISC Class 11
        • ISC Class 12
    • IC
      • 900 Экзамен IAS
      • Экзамен по государственной службе
      • Программа UPSC
      • Бесплатная подготовка к IAS
      • Текущие события
      • Список статей IAS
      • Пробный тест IAS 2019
        • Пробный тест IAS 2019 1
        • Пробный тест IAS4

        2

      • Комиссия по государственным услугам
        • Экзамен KPSC KAS
        • Экзамен UPPSC PCS
        • Экзамен MPSC
        • Экзамен RPSC RAS ​​
        • TNPSC Group 1
        • APPSC Group 1
        • Экзамен BPSC
        • Экзамен WPSC
        • Экзамен JPSC
        • Экзамен GPSC
      • Вопросник UPSC 2019
        • Ответный ключ UPSC 2019
      • 900 10 Коучинг IAS
        • Коучинг IAS Бангалор
        • Коучинг IAS Дели
        • Коучинг IAS Ченнаи
        • Коучинг IAS Хайдарабад
        • Коучинг IAS Мумбаи
    • JEE4
    • 9000 JEE 9000 JEE 9000 Advanced

    • Образец статьи JEE
    • Вопросник JEE
    • Биномиальная теорема
    • Статьи JEE
    • Квадратное уравнение
  • NEET
    • Программа BYJU NEET
    • NEET 2020
    • NEET Eligibility
    • NEET Eligibility
    • NEET Eligibility 2020 Подготовка
    • NEET Syllabus
    • Support
      • Разрешение жалоб
      • Служба поддержки
      • Центр поддержки
  • Государственные советы
    • GSEB
      • GSEB Syllabus
      • GSEB Образец

        003 GSEB Books

    • MSBSHSE
      • MSBSHSE Syllabus
      • MSBSHSE Учебники
      • MSBSHSE Образцы статей
      • MSBSHSE Вопросы
    • AP Board
    • AP Board
    • AP Board
        9000

      • AP 2 Year Syllabus
    • MP Board
      • MP Board Syllabus
      • MP Board Образцы документов
      • MP Board Учебники
    • Assam Board
      • Assam Board Syllabus
      • Assam Board
      • Assam Board
      • Assam Board Документы
    • BSEB
      • Bihar Board Syllabus
      • Bihar Board Учебники
      • Bihar Board Question Papers
      • Bihar Board Model Papers
    • BSE Odisha
      • Odisha Board
      • Odisha Board
        • Odisha Board 9000
        • ПСЕБ 9 0002
        • PSEB Syllabus
        • PSEB Учебники
        • PSEB Вопросы и ответы
      • RBSE
        • Rajasthan Board Syllabus
        • RBSE Учебники
        • RBSE
        • RBSE
        • 000 HPOSE

        • 000 HPOSE
        • 000
        • 000 HPOSE

        • 000
        • 000 HPOSE

        • 000
        • 000

          0003 Контрольные документы

      • JKBOSE
        • JKBOSE Syllabus
        • JKBOSE Образцы документов
        • Экзаменационные образцы JKBOSE
      • TN Board
        • TN Board Syllabus
        • 9000 Papers 9000 TN Board Syllabus

          9000 Книги

      • JAC
        • Программа обучения JAC
        • Учебники JAC
        • Вопросы JAC
      • Telangana Board
        • Telangana Board Syllabus
        • Telangana Board Textbook
        • Telangana Board
        • Учебник
        • Telangana Board
        • KSEEB
          • KSEEB Syllabus
          • KSEEB Model Question Papers
        • KBPE
          • KBPE Syllabus
          • Учебники KBPE
          • KBPE

            0

          • 9000 UPMS Board UPMS

          • Вопросы к Правлению UP
        • Совет по Западной Бенгалии
          • Учебник Совета по Западной Бенгалии
          • Учебники по Совету по Западной Бенгалии
          • Вопросы по Правлению Западной Бенгалии
        • UBSE
        • TBSE
        • CBSE
        • Гоа Совет
        • MBSE
        • Meghalaya Board
        • Manipur Board
        • Haryana Board
      • Государственные экзамены
        • Банковские экзамены
          • Экзамены SBI
  • .

    Прочность бетонных цилиндров на сжатие

    Прочность бетонных цилиндров на сжатие является одним из наиболее распространенных показателей эффективности, выполняемых инженерами при проектировании конструкций. Здесь прочность на сжатие бетонных цилиндров определяется путем приложения постоянной нагрузки к цилиндру до тех пор, пока не произойдет разрушение. Испытание проводится на машине для испытаний на сжатие.

    Аппарат для испытания бетонных баллонов

    Подготовленный цилиндр для образца может иметь любой из двух размеров, как указано ниже.Диаметр отлитого цилиндра должен быть как минимум в 3 раза больше номинального максимального размера крупного заполнителя, используемого при производстве бетона. Требуемый аппарат указан ниже:

    1. Машина для испытания на сжатие
    2. Форма для цилиндра диаметром 150 мм и высотой 300 мм или 100 x 200 мм
    3. Весы.

    Процедура испытания бетонного цилиндра

    Подготовка проб

    Образцы цилиндров отливают из стали, чугуна или любой формы из невпитывающего материала.Даже в тяжелых условиях используемые формы должны сохранять первоначальную форму и размеры. Форма должна удерживать бетон без протечек. Перед помещением бетонной смеси в форму внутреннюю часть формы необходимо тщательно смазать, чтобы облегчить удаление затвердевшего цилиндра.

    Бетонная смесь заливается в формы слоями не менее 5 см. Количество ходов на слой во время уплотнения должно быть не менее 30. Уплотнение должно достигать нижележащих слоев, позволяя выйти большинству воздушных пустот.Образцы хранят в спокойном месте в месте с относительной влажностью не менее 90% при температуре 27 ° ± 2 ° C в течение 24 часов. По истечении этого периода образцы берут и погружают в чистую пресную воду до достижения возраста испытаний.

    Процедура испытания

    1. Бетонный цилиндр отлит стандартного размера и выдержан в течение 28 дней. Для испытаний отливают три образца одинакового размера.
    2. Выньте образец из емкости для отверждения.
    3. Вытрите лишнюю воду с поверхности образца.
    4. Поместите образец вертикально на платформу машины для испытаний на сжатие. Равномерное приложение и распределение нагрузки облегчается наличием накладок на концах цилиндров.
    5. Прежде чем приступить к приложению нагрузки, убедитесь, что грузовые платформы касаются верхней части цилиндра.
    6. Приложите нагрузку непрерывно и равномерно без ударов со скоростью 315 кН / мин. И продолжайте загрузку, пока образец не выйдет из строя.
    7. Запишите максимальную принимаемую нагрузку.
    8. Испытание повторяют для оставшихся двух образцов.

    Рис.1: Бетонный цилиндр для испытания на сжатие

    Рис. 2: Разрушенный образец бетонного цилиндра

    Примечание:

    1. Испытать не менее 3 образцов.
    2. Диаметр отлитого цилиндра должен быть измерен в 2 точках, перпендикулярных друг другу на середине его высоты. Среднее значение этих значений берется для расчета площади поперечного сечения.Если измеренный диаметр отличается более чем на 2%, цилиндр не подлежит испытанию.

    Отчет об испытании бетонного цилиндра

    Техник, ответственный за проведенное испытание, должен записать следующие наблюдения до и после испытания цилиндра на сжатие.

    Перед испытанием

    1. Дата отливки
    2. Дата испытания
    3. Возраст экземпляра
    4. Условия отверждения
    5. Диаметр цилиндра Образцы
    6. Возраст тестирования

    После испытания

    1. Максимальная прилагаемая нагрузка
    2. Прочность на сжатие
    3. Тип перелома
    4. Дефекты цилиндров или крышек, если таковые имеются

    Расчеты прочности на сжатие Бетонный цилиндр

    Прочность на сжатие = (максимальная нагрузка / площадь поперечного сечения)

    Результат теста цилиндра

    28-е сутки Прочность цилиндра на сжатие = …………………….Н / мм 2

    Прочность бетона на сжатие при разном возрасте

    Прочность бетона увеличивается с возрастом. Таблица-1 показывает прочность бетона в разном возрасте по сравнению с прочностью через 28 дней после заливки.

    Таблица 1: Прочность бетона в разном возрасте по сравнению с прочностью через 28 дней

    Возраст Прочность в процентах
    1 день 16%
    3 дня 40%
    7 дней 65%
    14 дней 90%
    28 дней 99%

    Прочность на сжатие различных марок бетона через 7 и 28 дней

    Таблица.2: Прочность на сжатие различных марок бетона через 7 и 28 дней

    Марка бетона Минимальная прочность на сжатие Н / мм 2 через 7 дней Нормативная прочность на сжатие (Н / мм 2 ) через 28 дней
    M15 10 15
    M20 13,5 20
    M25 17 25
    M30 20 30
    M35 23.5 35
    M40 27 40
    M45 30 45

    Меры предосторожности при испытании на сжатие бетонного цилиндра

    1. Перед испытанием на сжатие цилиндр не должен полностью высохнуть.
    2. Необходимо надевать перчатки и защитные очки, чтобы защитить образец от повреждений.

    Подробнее: Испытание бетонных кубов на сжатие

    .

    Испытание на прочность на сжатие бетонных стержней

    Испытания на прочность на сжатие на просверленных бетонных стержнях требуется для определения прочности затвердевшего бетона в конструкции. Ниже приведены спецификации просверленных бетонных стержней, которые подходят для испытания на прочность на сжатие:

    Диаметр бетонного сердечника

    Диаметр образца сердечника для определения прочности на сжатие в несущих конструктивных элементах должен быть не менее 3.70 дюймов [94 мм].

    Для бетона с номинальным максимальным размером заполнителя, превышающим или равным 1,5 дюйма [37,5 мм], предпочтительный минимальный диаметр сердечника должен быть в три раза больше номинального максимального размера крупного заполнителя, но он должен быть как минимум в два раза больше номинального максимального размера грубых заполнителей.

    Длина бетонного сердечника

    Предпочтительная длина закрытого образца составляет от 1,9 до 2,1 диаметра. Можно обрезать образцы большой длины, а для образцов малой длины следует применять поправочный коэффициент при испытании на сжатие.

    Кондиционирование бетонного сердечника

    После высверливания керна сотрите поверхность просверленной водой и дайте поверхностной влаге испариться. Когда поверхность кажется сухой, но не более чем через 1 час после сверления, поместите керны в отдельные пакеты или неабсорбирующие емкости и закройте, чтобы предотвратить потерю влаги.

    Храните жилы при температуре окружающей среды и защищайте от воздействия прямых солнечных лучей. Как можно скорее доставьте ядра в лабораторию.Керны можно вынуть из пакетов максимум на 2 часа, чтобы их можно было укупорить перед тестированием.

    Если вода используется для шлифования или распиливания концов керна, завершите эти операции как можно скорее, но не позднее, чем через 2 дня после сверления. Сведите к минимуму продолжительность воздействия воды во время конечной подготовки.

    Позвольте ядрам оставаться в запечатанных пластиковых пакетах или неабсорбирующих контейнерах не менее 5 дней после последнего смачивания и перед тестированием.

    Распиловка торцов бетонного стержня

    Концы образца керна должны быть плоскими и перпендикулярными продольной оси.Распиловка должна быть такой, чтобы перед укупоркой выполнялись следующие требования:

    a) Выступы, если таковые имеются, не должны выступать более чем на 0,2 дюйма [5 мм] над торцевыми поверхностями

    b) Торцевые поверхности не должны отклоняться от перпендикулярности продольной оси на уклон более 1,8 d или 1: 0,3d, где d — средний диаметр сердечника.

    Облицовка бетонного ядра

    • Если концы жил не соответствуют требованиям перпендикулярности и плоскостности, их следует распилить, отшлифовать или закрыть.
    • Если сердечники закрыты крышками, укупорочное устройство должно соответствовать действительному диаметру сердечников и производить колпачки, которые концентричны концам сердечников.
    • Материал, используемый для облицовки, должен быть таким, чтобы его прочность на сжатие была выше, чем у бетона в сердечнике.
    • Колпаки должны быть как можно более тонкими и не должны течь или трескаться до разрушения бетона при испытании образца.
    • Покрытая поверхность должна находиться под прямым углом к ​​оси образца и не должна отклоняться от плоскости более чем на 0 °.05 мм.
    • Перед укупоркой измерьте длину жилы с точностью до 0,1 дюйма [2 мм].

    Измерение бетонного ядра

    • Перед испытанием измерьте длину закрытого или отшлифованного образца с точностью до 0,1 дюйма [2 мм] и вычислите это, чтобы рассчитать отношение диаметра длины [L / D].
    • Определите средний диаметр путем усреднения результатов двух измерений, выполненных под прямым углом друг к другу на средней высоте образца.
    • Измерьте диаметр сердечника с точностью до нуля.01 дюйм [0,2 мм], когда разница в диаметрах сердечника не превышает 2% от их среднего значения, в противном случае измеряйте с точностью до 0,1 дюйма [2 мм].
    • Не проверяйте жилы, если разница между наименьшим и наибольшим диаметром жил превышает 5% от их среднего значения.

    Испытания бетонного ядра

    Испытайте образец в течение 7 дней после отбора керна.

    Расчет прочности бетона на сжатие

    Рассчитайте испытание образца на сжатие, используя вычисленную площадь поперечного сечения на основе среднего диаметра образца.Если отношение L / D составляет 1,75 или меньше, исправьте результат, полученный умножением на поправочные коэффициенты
    , как указано ниже:

    Соотношение L / D Поправочный коэффициент
    1,75 0,98
    1,5 0,96
    1,25 0,93
    1,0 0,87

    Значение, полученное после умножения на поправочный коэффициент, называется скорректированной прочностью на сжатие, это эквивалентная прочность цилиндра с отношением L / D, равным 2.Эквивалентную прочность куба можно рассчитать, умножив скорректированную прочность цилиндра на 5/4.

    Отчет об испытании на прочность при сжатии

    Сообщите о результатах с добавлением следующей информации:

    a) Длина керна, просверленная с точностью до 5 мм

    b) Длина образца до и после укупорки с точностью до 2 мм и средний диаметр сердцевины с точностью до 0,2 мм или 2 мм.

    c) Прочность на сжатие с точностью до 0,1 МПа при измерении диаметра с точностью до 0.2 мм и с точностью до 0,5 МПа при измерении диаметра с точностью до 2 мм после корректировки отношения L / D.

    d) Направление приложения нагрузки относительно горизонтальной плоскости бетона при размещении

    e) История кондиционирования влаги

    f) Если во время конечной подготовки использовалась вода, дата и время конечной подготовки были завершены, и ядро ​​было помещено в скрытые пакеты.

    г) Дата и время при испытании

    ч) Максимальный номинальный размер агрегатов.

    Также читают:

    Почему мы проверяем бетон на прочность на сжатие через 28 дней?

    Прочность бетонных кубов на сжатие, процедура, результаты

    Испытание бетонных цилиндров на сжатие

    Советы по извлечению керна и испытанию бетона

    .

    Испытание пластмасс на сжатие

    Испытание пластмасс на сжатие

    Прочность на сжатие материала — это сила на единицу площади, которую он может выдержать при сжатии. Это контрастирует с более часто измеряемым пределом прочности на разрыв . ASTM D695 — стандартный метод испытаний в США. На приведенном ниже рисунке из Quadrant Engineering Plastic Products показана геометрия теста.

    ASTM D695:
    Образец размером 1/2 «x 1/2» x 1 «помещают в устройство для сжатия и прикладывают известную нагрузку.

    Североамериканские производители пластмасс обычно сообщают предел текучести при сжатии , напряжение, измеренное в точке постоянного текучести с нулевым наклоном на кривой напряжения-деформации. Предел прочности на сжатие — это напряжение, необходимое для разрушения образца. Такие материалы, как большинство пластмасс, которые не разрываются, могут иметь результаты, указанные как прочность на сжатие.
    при определенной деформации, такой как 1%, 5% или 10% от исходной высоты испытательного образца.

    Аналогичным испытанием для измерения прочности на сжатие в системе ISO является ISO 604. Значения, указанные в испытаниях ASTM D695 и ISO 604, редко существенно различаются и часто используются взаимозаменяемо на ранних этапах процесса выбора материалов. Эти испытания также дают процедуру измерения модуля упругости материала при сжатии (отношения напряжения к деформации при сжатии).

    В таблице ниже приведены средние значения прочности на сжатие и модули сжатия для некоторых наполненных и ненаполненных полимеров.

    Типичный предел текучести при сжатии и модуль упругости полимеров

    (Существуют большие различия между отдельными сортами.)

    Полимер Тип Предел текучести при сжатии (МПа) Модуль упругости при сжатии (ГПа)
    АБС 65 2,5
    ABS + 30% стекловолокно 120 8
    Сополимер ацеталя 85 2.2
    Сополимер ацеталя + 30% стекловолокна 100 7,5
    Акрил 95 3
    Нейлон 6 55 2,3
    Полиамид-имид 130 5
    Поликарбонат 70 2.0
    Полиэтилен, HDPE 20 0,7
    Полиэтилентерефталат (ПЭТ) 80 1
    Полиимид 150 2,5
    Полиимид + стекловолокно 220 12
    Полипропилен 40 1.5
    Полистирол 70 2,5

    .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*

*

*