Коэффициент теплопроводности пеноблока: Теплопроводность пенобетона — на что влияет коэффициент

Содержание

Теплопроводность пенобетона — на что влияет коэффициент

Теплопроводность – одна из важнейших характеристик пенобетона, отражающая его способность транспортировать тепловую энергию. Этот критерий определяет область и возможность применения стройматериалов, его эксплуатационные свойства. Не стоит забывать о том, что тепловодность неразрывно связана с основными параметрами, такими как плотность и прочность материала. От данного сочетания зависит, насколько будет дом теплым и прочным.  Неоспоримая ценность пенобетона состоит в низкой теплопроводности.

Что влияет на показатель теплопроводимости?

Существуют прямолинейная зависимость между плотностью и теплопроводностью пенобетона. В структуре материала имеется значительное количество пор, которые заполнены воздухом. Показатель теплопроводности воздуха – 0,026 Вт/м°С, что почти на порядок ниже, чем у обычного бетона, содержащего легкие наполнители. Именно наличие воздуха в стройматериале существенно снижает его теплопроводность.

Огромное влияние на данный показатель оказывает плотность материала (D). Пеноблоки с плотностью D300 обладают теплопроводностью 0,08 Вт/м°С, а при плотности D1200 показатель достигает 0,38 Вт/м оС. Чем выше плотность блоков, тем хуже их теплоизоляционные свойства.

Для достижения требуемого уровня теплоизоляции необходимо увеличить толщину стен либо проложить дополнительный слой утеплителя. Данные меры способствуют удорожанию строительства и требуют заливки более прочного фундамента.

Оптимальным выбором для возведения жилого дома является пенобетон D600. Используя данный материал, можно построить 2-3-этажный дом с толщиной стен 30-40 см.

Коэффициент теплопроводности

Для обозначения коэффициента теплопроводности пенобетона используют λ и единицу измерения ВТ/м*К.

Если сравнивать данный показатель с характеристиками традиционных строительных материалов ( керамический или силикатный кирпич, известняк или шлакоблок) пенобетон заметно выигрывает. Например, стена толщиной 30 см, выложенная из пеноблоков, имеет показатель 0,18 ВТ/м*К, в то время как для шлакоблока данный параметр будет достигнут только при толщине стены 108 см, из керамического кирпича – при 138 см.  

Теплопроводность пенобетона обратно пропорциональна показателям прочности и плотности.

Блоки плотность 400-500 кг/м3 используются в качестве утеплителя. Материал плотностью 1100-1200 кг/м3 способен выдерживать серьезные нагрузки и применяется в строительстве 1-2 этажных домов, но при этом хуже сохраняет тепло.  Пенобетонные блоки с плотность 600-700 кг/м3 выдерживают нагрузку плит перекрытий и обладают достаточной теплостойкостью. Именно они чаще всего используются в малоэтажном жилом строительстве.

На степень теплопроводности материала оказывает влияние размер внутренних пустот. Теплоизолирующие свойства блоков тем выше, чем больше воздушных пузырьков внутри массы материала. Не менее важна геометрическая точность производства пеноблоков, потому как от нее зависит расход специального клеящего состава. Если толщина кладочного раствора составляет 2-3 мм, то стена практически монолитная. При использовании неровных блоков производится выравнивание кладки за счет раствора, в результате чего толщина шва может достигнуть 10-12 мм. В дальнейшем это приведет к возникновению «мостиков холода» и повлечет за собой значительные теплопотери.

Теплопроводность пеноблока: коэффициент теплопроводности пенобетона

Теплопроводность пеноблока – значимая характеристика стройматериала. Способность проводить тепло связана с обратной пропорциональной зависимостью с прочными показателями пенобетона. Эта характеристика показывает, какое количество тепла передает материал за определенное время. Также влияние оказывает величина плотности стройматериала и влажность.

Теплопроводные качества различных марок пеноблоков значительно отличаются, из-за разной структуры. Блоки производят трех видов:

  • конструкционные – самые плотные и содержат маленькое количество ячеек с воздухом. Понадобится теплоизоляция пеноблока;
  • теплоизоляционные – имеют наилучший коэффициент теплопроводности, но из-за множества пустых пор с воздухом прочность значительно снижена;
  • конструкционно-теплоизоляционные.

Зависимость теплопроводности от плотности

Воздух является эффективным природным теплоизоляционным материалом. Пеноблоки имеют ячеистую структуру, благодаря которой этот блочный строительный материал обладает низким коэффициентом теплопроводности. Показатель намного ниже, чем у бетона или кирпича и равен 0.08 Вт/мС. Для рядовых пользователей, эти показатели ни о чем не говорят, поэтому приведем такой сравнительный пример. Чтобы получить стену, которая будет иметь показатель теплопроводности 0.18 Вт/м0 С, понадобятся пенобетонные блоки марки D700 (размеры 588х300х188).Чтобы добиться таких же показателей теплопроводности для шлакоблоков понадобится сделать толщину стены 108 см, а для красного кирпича 140 см.

Важно! Когда рассчитывается коэффициент теплопереноса, необходимо учитывать плотность, которая обозначается буквой D. Например, маркировка D 900 означает, что 1 кубометр пенобетонных блоков весит 900 кг.

Коэффициент теплопроводности пенобетона изменяется в зависимости от плотности и прочности материала. Самые легкие с меньшей прочностью блоки применяют для теплоизоляции стены здания и постройки межкомнатных перегородок. Для этого подходят блоки с плотностью 400-500 кг/м3. Производится пенобетон с высокой плотностью – 1000-1200 кг/м3. Благодаря уменьшению размера ячеек внутри блоков структура становится более плотной. Такой стройматериал подходит для постройки несущих стен 1-2 этажных зданий, но хуже сохраняет тепло. Пеноблоки средней плотности 600-700 кг/м3 теплостойкие и способны выдержать нагрузку перекрытий.

Расчет теплопроводности

Чтобы здание имело требуемые качества теплопроводности пенобетона, блоки разной плотности следует укладывать на различную толщину. Первым делом рекомендуется определить такой важный момент, при помощи, какого варианта будет производиться постройка стен. Не редко применяют такие способы – кирпич-блок-штукатурка либо оштукатуренная с двух сторон блок стена.

Для правильного расчета нужно знать коэффициент теплопроводности пеноблока и показатели теплоотдачи прочих строительных материалов, которые войдут в состав стены.

Пенобетонные блоки обладают разной теплопроводность для определенных условий эксплуатации. В таблице указаны величины ватт на метр на градус Цельсия.

Вид материала Марка (средняя плотность) Коэффициент теплопроводности Вт/м°С
На песке На золе
Теплоизоляционный пеноблок D 300 0.08 0.08
D 400 0.10 0.09
D 500 0.12 0.12
Конструкционно-теплоизоляционный пеноблок D 500 0.12 0.12
D 600 0.14 0.13
D 700 0.18 0.15
D 800 0.21 0.18
D 900 0.24 0.20
Конструкционный пеноблок D 1000 0.29 0.23
D 1100 0.34 0.26
D 1200 0.38 0.29
Штукатурка 058
Кирпич 0.56

Средний показатель коэффициента сопротивления стен теплопередаче равен 3,5. Из общего значения 3.5 вычитается показатель сопротивления теплопередаче 20 мм штукатурки – 0.02 : 0.58 = 0.03 и 120 мм кирпича – 0.12 : 0.56 = 0.21 для первого случая. Либо 4 см штукатурного слоя 0.04 : 0.58 = 0.06 для второго варианта исполнения.

В первом варианте при использовании кирпичей, бетонная поверхность обеспечивает сопротивление теплопередаче с показателем 3.26. Если используется марка блоков D 600, толщина составит 45.6 см (2.26*0.14 = 456). При использовании D 800 рекомендуется выкладывать стену толщиной не меньше 68, 4 см (3.26*0.21=684). По аналогичной формуле рассчитываются стены с применением любого вида ячеистого бетона.

Вариант с оштукатуренной с двух сторон стены из показателя 3.5 следует отнять 0.06 – 4 см штукатурки. Дальше производятся расчеты для требуемой марки бетона в согласии с показаниями в таблице.

При выборе пенобетона для теплоизоляции учитываются такие аспекты:

  1. Марку материала. Линейка производителей предлагают блоки, которые обладают прочностью и теплоизоляцией.
  2. Размеры блоков или панелей и необходимый слой для утепления.

Итог

Пенобетон имеет замечательные характеристики и теплопроводность, он удерживает тепло и является экологически чистым материалом, как дерево. Для производства материала используют цемент, песок, воду и натуральный пенообразующий компонент. В доме, построенном из него, будет комфортно и тепло.

Теплопроводность пенобетона марок D200-D600, расчеты и сравнение

Дата: 12.06.2014

Пенобетон стал очень популярен среди строителей благодаря целому ряду своих положительных качеств, но ведущей из них остается теплопроводность.

Это свойство пенобетонных блоков определяет их возможность сбалансировать процесс прохода теплоты при условии разных температур снаружи и внутри. Качество провождения напрямую связано с другими техническими параметрами блоков, но особенно зависит от плотности. Все происходит по принципу прямой однолинейной корреляции: чем больше коэффициент плотности блока, тем выше теплопроводность пенобетона. Из-за того, что у воздуха очень маленькая свойство перемещать теплоту, его присутствие в пенобетоне существенно понижает это качество.

Практическое значение показателя

Теплопроводность пенобетонных блоков демонстрирует его теплоизоляционные свойства. Но важно помнить, что чем больше коэффициент теплопроводности, тем хуже он утепляет здания. Насыщенность передачи тепла за счет этого свойства имеет прямую зависимость от соотношения разницы температур на разных концах к интервалу между ними.

В реальных условиях все выглядит таким образом: в холодное время года, как не пытайся протопить (или обогреть) помещение, а остатки тепла в любом случае выйдут наружу, а в жаркий период в доме температура будет такая же, как и на улице.

Существует шкала, которая непосредственно связывает плотность (обозначается латинской буквой D) пенобетона марок 300, 400, 500, 600 c его теплоизоляционными свойствами.

Для того чтобы правильно сделать расчет теплопроводности стен из пенобетона, необходимо учитывать следующие показатели:

  1. знать о теплотехнических параметрах других материалов, задействованных при строительстве;
  2. помнить о сопротивлении постройки передаче тепла;
  3. высчитать показатель ГСОП.

Он измеряется как сумма сопротивлений всех слоев.

Сравнительная теплопроводность выигрывает на фоне других стройматериалов

Пенобетон в сравнении с:

  • деревом — более выгоден, его плотность выше, а себестоимость меньше и производится легко, как в домашних условиях, так и на стройплощадке.
  • газобетоном — используется при большом уровне влажности. Плюс ко всему не является таким вредным для окружающей среды.
  • кирпичом — уступает лишь в показателе прочности (для возведения многоэтажного здания лучше предпочтение отдать кирпичу, или хотя из него сделать несущие стены).

Автоклавный пенобетон имеет более высокую прочность, более низкий коэффициент проводимости тепла (0,09-0,18 Вт/ (м*°С). У неавтоклавного меньшие свойства по энергоемкости и энергосбережению (коэффициент 0.07 до 0.2 Вт/м*°С).

Теплопроводность пеноблока разных марок, сравнение с деревом, кирпичом и газобетоном

Пенобетон появился в распоряжении застройщиков сравнительно недавно и сразу вызвал к себе большой интерес, что объясняется его пористой структурой. Он не впитывает влагу, имеет небольшой вес и высокую прочность. В построенном из пеноблоков здании всегда будет присутствовать оптимальный микроклимат. Теплопроводность материала гарантирует снижение затрат на обогрев помещений.

Термическое сопротивление конструкции из ячеистых плит успешно справляется с передачей тепла от нагретых предметов к более холодным. Характеристика энергии определяется количественной единицей потока, проходящего сквозь поверхность заданной толщины за установленное время, что применяется при расчете разных профильных изделий.

Теплопроводность пенобетона зависит от структуры, то есть чем больше количество пустот в заданном параметре, тем выше свойство. На показатель наличия воздуха в порах влияет плотность. Правильная геометрическая форма поверхностей блоков обеспечивает уменьшение зазоров при их сборке. Чтобы стена имела монолитный вид, промежутки не должны превышать 2-3 мм. Расстояние большего размера станет причиной сырости основания.

При расчете коэффициента теплопереноса, необходима информация о плотности. Параметр обозначают буквой D с различными цифровыми значениями: при маркировке D800, кубометр пенобетона весит 800 кг.

Теплопроводность по видам

Чтобы выяснить необходимые параметры, следует учитывать подразделение на типы, в зависимости от плотности и предназначения. Теплопроводность различных марок пеноблоков в таблице:

Вид Предназначение Марка Коэффициент теплопроводности
Конструктивный Фундаменты, подвалы, подземные гаражи, несущие стены D1000, D1100, D1200 0,30-0,40 Вт/м°С
Конструктивно-теплоизоляционный Перегородки и несущие стены D500, D600, D700, D800, D900 0,15-0,30 Вт/м°С
Изоляционный Контур стен D300, D350, D400, D500 0,10-0,14 Вт/м°С

В микроячейках пенобетона жидкость находится в закрытом состоянии и не преобразуется в лед даже при очень сильном холоде. Показатель морозостойкости составляет 15, 35, 50, 75 единиц соответственно для марок D600, D700, D800, D1000. Плотность напрямую связана с коэффициентом передачи тепла и несущими свойствами. Поэтому оптимальным вариантом, при возведении монолитных перекрытий с обустройством армопояса, считается конструкционно-изоляционный вид. В многослойных сооружениях пенобетон используют в качестве контурной оболочки.

Сравнительные характеристики

Основной вопрос, который возникает у застройщика при планировании: как определиться с выбором материала, ведь необходимо учесть свойства, затраты на обработку и монтаж. Для этого можно сопоставить некоторые особенности разных видов:

1. Самым ценным качеством дерева является экологичность. Пеноблоки в этом не уступают, так как содержат натуральные компоненты в своем составе. Благодаря воздушным порам в структуре, происходит естественная регулировка влажности. Кроме того, деревянные дома уступают в скорости постройки. Так как пенобетон имеет большую плотность, он эффективнее сохраняет микроклимат в помещении.

2. При высоком показателе передачи тепла кирпича он в три раза уступает ячеистым блокам. Если сравнить морозостойкость данных материалов, для возведения жилья из пенобетона потребуется уложить один слой, а стены из кирпича строят двойной толщины.

3. Газобетон – это пористый материал, пустоты в котором открыты и сформированы немного иначе, так как технология производства имеет свои особенности. Плотность пенобетона выше, что влияет на теплопроводность. В вопросе экологичности газобетон также проигрывает из-за имеющегося в его составе алюминия.

Теплоизолирующие свойства пеноблоков зависят от формирования внутренних ячеек. Чем больше пор, тем лучше микроклимат помещения. Важно учитывать геометрические параметры, чтобы при строительстве дома не допускать холодных мостиков, которые влияют на потерю энергии.

Теплопроводность кирпича и пеноблока

Теплопроводность блоков из пенобетона

Одной из наиболее важных характеристик любого строительного материала является его теплопроводность. Данный показатель говорит о способности отдавать тепло. Чем выше значение коэффициента теплопроводности, тем быстрее будет уходить тепло из дома или любой другой постройки зимой и тем быстрее будет нагреваться здание летом.

При изготовлении пеноблока в смесь из воды, песка и цемента добавляется специальный пенообразователь. Благодаря этому блоки из пенобетона имеют пористую структуру. На следующем фото вы можете увидеть, как выгладит блок внутри. В распределенных равномерно по всему объему порах находится воздух, который имеет достаточно низкий показатель теплопроводности. Именно этим и объясняется способность пенобетона удерживать тепло.

Если сравнивать данный показатель у нескольких строительных материалов, ячеистый бетон значительно превосходит обычный бетон, кирпич, и лишь немного уступает дереву. Низкий коэффициент теплопроводности пеноблока, его сравнительно невысокая стоимость, прочность и долговечность вывели его на одну из лидирующих позиций по использованию в строительстве.

  • ·Конструкционно-теплоизоляционные. Они имеют среднюю плотность и чаще всего применяются для кладки стен и перегородок. В группу входят следующие марки: Д600, Д700, Д800, Д1000. Данная группа является наиболее востребованной на рынке строительных материалов, так как сочетает в себе достаточно высокую прочность и способность удерживать тепло.
  • ·Теплоизоляционные. Данный вид наименее прочен и используется только для утепления здания. К группе относят блоки с маркировкой Д400, Д500.

Ниже находится таблица, в которой все марки пенобетона распределены по группам предназначения и указан класс прочности и аналогичная маркировка бетона.

Зависимость сопротивления теплопередаче от плотности бетона

Для обозначения способности материала проводить тепло применяется коэффициент теплопроводности. Данная величина является относительной и указывает на количество тепла, способное пройти в течение 1 часа через материал, который имеет толщину 1 метр, площадь 1 кв. м при разнице температуры по обеим сторонам в 1° С.

Теплопроводность пеноблока напрямую зависит от его плотности. Чем выше плотность раствора, тем меньше в нем количество наполненных воздухом пор и их диаметр.

У конструкционных видов пенобетона способность проводить тепло самая высокая и составляет от 0,38 до 0,26. Конструкционно-теплоизоляционные марки имеют следующие коэффициенты: у Д1000 данный показатель находится в пределах 0,23-0,29, у Д800 – 0,18-0,22, Д700 имеет коэффициент в пределах 0,16-0,18, а теплопроводность пеноблока Д600 составляет 0,13-0,14. Теплоизоляционные марки блоков имеют следующие характеристики: теплопроводность пеноблока Д500 находится в пределах 0,10-0,12, Д400 – 0,09-0,10, а Д300 — 0,8.

Сравнение теплопроводности пеноблока разных марок и видов приведено в таблице, размещенной ниже.

Разница величины коээфициента у одной и той же марки пенобетона может зависеть от того, какие составляющие применялись для замешивания бетона. Так, например, если в составе блоков Д500 будет песок, значение коэффициента будет равно 0,12, если же в смесь была добавлена зола, показатель уменьшится до 0,10. Чем выше марка вспененной бетонной смеси, тем разница в коэффициентах будет выше. Если для Д600 отличие будет составлять всего 0,2, то у Д1200 разница может доходить до 0,9. Поэтому при покупке данного строительного материала следует обращать внимание не только на маркировку, но и на состав смеси.

Таблица теплопроводности пеноблоков с сравнением показателей в зависимости от составляющих, которые были использованы для замешивания раствора, приведена ниже.

Расчет теплопроводности стен из пенобетона

Чтобы дом имел необходимые характеристики теплопроводности, пеноблоки разной плотности следует укладывать на различную толщину. Рассчитать оптимальную толщину стены можно следующим образом.

Следует определиться с тем, при помощи чего будет проводиться возведение стен. Чаще всего применяется два варианта: кирпич-блок-штукатурка и оштукатуренный с двух сторон блок.

Чтобы провести расчеты следует знать коэффициенты теплопередачи материалов, которые будут входить в состав стены (кирпич – 0,56, штукатурка — 0,58, блоки определяем по таблице) и коэффициент сопротивления стен теплопередаче (как правило, среднее значение равно 3,5). Из общего значения 3,5 необходимо вычесть значение сопротивления теплопередаче 20 мм штукатурки (0,02:0,58 = 0,03) и 120 мм кирпича (0,12: 0,56 = 0,21) для первого варианта или 40 мм штукатурки (0,04:0,58 = 0,06) для второго варианта исполнения.

В первом случае, при использовании кирпича, бетонная стена должна обеспечить сопротивление теплопередаче на уровне 3,26. При использовании марки Д600 толщина ее будет составлять 456 мм (3,26*0,14 = 456), в случае использования Д800 следует выложить стену толщиной не менее 684 мм (3,26*0,21 = 684). По этой же формуле можно рассчитывать стены с использованием любой марки ячеистого бетона.

Для варианта стены, оштукатуренной с двух сторон, из значения 3,5 отнимаем 0,06 (40 мм штукатурки) и далее проводим расчеты для нужной марки бетона согласно таблице, в которой проведено сравнение показателей теплопроводности.

Не будет большим преувеличением утверждение, что в современных условиях использование пенобетона считается преобладающим в индивидуальном строительстве. И востребованность этого относительно нового для отечественного рынка строительного материала обусловлена не только фактором стоимости. Его технические характеристики по многим параметрам оказались намного лучше традиционного кирпича и классического бетона/железобетона.

Правда, если говорить исключительно о цене, то доступность данного стройматериала стала возможной благодаря появлению новых технологий его изготовления. В действительности он известен более столетия, но до недавнего времени пенобетон был непопулярен именно по причине недоступной стоимости.

Сфера применения

На западе пенобетон активно используется на протяжении нескольких десятилетий, у нас же он появился сравнительно недавно, но уже успел приобрести отличную репутацию как достойная альтернатива классическим стройматериалам. Единственным значимым недостатком можно считать меньшую прочность, поэтому в многоэтажном строительстве бетон и кирпич остаются вне конкуренции.

Рекомендуется применять пенобетон при строительстве дома не выше двух этажей

Применение комбинации «бетонный каркас + пеноблоки» предоставляет возможность возводить здания высотой более двух этажей, но такой вариант встречается редко. Основная же сфера использования пенобетона – малоэтажное строительство: дома, гаражи, подсобные помещения, здания коммерческого и промышленного назначения.

Технология изготовления пенобетона

Представляя собой ячеистую разновидность классического бетона, этот стройматериал изготавливается из следующих компонентов:

  • цемента;
  • воды;
  • песка;
  • синтетического пенообразователя;
  • добавок, улучшающих эксплуатационные свойства материала.

В настоящее время используется три технологии изготовления пенобетона.

Классический метод предполагает подачу пены в цементный раствор с помощью специального устройства – пеногенератора. Полученная смесь тщательно перемешивается, затем для затвердевания помещается в специальную камеру, обеспечивающую заданную температуру. На выходе получается ячеистый бетон, который считается наиболее качественным, надежным, долговечным.

Для создания пенобетона в домашних условиях, вам придется сильно потратится на необходимое оборудование, а так же это займет не мало времени

При использовании метода сухой минерализации пена добавляется в сухую смесь, и только после тщательного размешивания вводится вода в нужных пропорциях. Обычно такой способ применяется при непрерывном производстве. Ячеистый бетон, полученный таким способом, отличается большей прочностью, но характеристики теплопроводности уступают.

Метод баротехнологии характерен тем, что пенообразователь сначала смешивается с водой, и только потом в полученную смесь добавляют остальные компоненты. Чтобы получить пеноблоки приемлемого качества, используют барокамеры, которые обеспечивают процесс смешивания при избыточном давлении. Процесс затвердения не требует нагрева, но в целом длится намного дольше, при этом не исключена усадка и даже растрескивание материала.

Независимо от используемого метода изготовления каждый отдельный блок характеризуется замкнутой структурой воздушных пор, что и обеспечивает его прекрасные теплоизоляционные свойства.

Основные характеристики ячеистого бетона

В зависимости от плотности различают следующие марки пенобетона:

  • Теплоизоляционный ячеистый бетон представлен марками D300-D500. Невысокая плотность (порядка 300-500 кг/кубический метр) обеспечивает блоки стандартных размеров небольшой массой (12-19 кг) и низкой теплопроводностью. Поскольку прочность таких пеноблоков невысока, они используются исключительно для формирования теплоизоляционного слоя;

Таблица сравнения пенобетона с остальными материалами

  • Конструкционно-теплоизоляционный пенобетон (марки D600-800), обладая соответствующей плотностью и весом блока в пределах 25-35 кг, характеризуется оптимальным соотношением прочности-теплопроводности, поэтому именно эта марка – преобладающая при ведении малоэтажного строительства;
  • Конструкционный ячеистый бетон – это блоки марок D900-1200, характеризующиеся весом 40-47 кг и плотностью 900-1200 кг/кубометр. Они в меру прочны и устойчивы к сжатию, поэтому (с определенными ограничениями) могут применяться при многоэтажном строительстве, требуя дополнительного слоя утепления;
  • Конструкционно-поризованные пеноблоки (марки D1300-1600) отличаются высокой прочностью, позволяющей возводить объекты неограниченной этажности, но в промышленных масштабах они не изготовляется.

Теплопроводность

Второй по значимости характеристикой стройматериала является его способность проводить тепло. При этом теплопроводность пенобетона связана обратно пропорциональной зависимостью с его прочностными показателями.

Воздух – эффективнейший природный теплоизоляционный материал. Присутствие в структуре пенобетонного блока большого количества заполненных воздухом пор позволило снизить его теплопроводность до уровня 0.08 Вт/м°С, что на порядок ниже, чем у бетона или кирпича.

Ключевым фактором при выборе материала есть – теплопроводность

Для рядового пользователя этот цифровой показатель мало о чем говорит, поэтому приведем сравнительные характеристики пенобетона, керамического кирпича и шлакоблоков: чтобы получить стену, имеющую теплопроводность порядка 0.18 Вт/м°С, необходим слой пенобетона марки D700 толщиной 300 мм. Для шлакоблоков толщина стены составит уже 1080 мм, для красного кирпича – 1400 мм.

Прочность на сжатие

Прочностные характеристики оказывают непосредственное влияние на сферу применения ячеистого бетона. Если теплоизоляционные марки пенобетона, обладая невысокой прочностью на сжатие и низкой теплопроводностью, используются только в качестве теплоизоляционного слоя, то конструкционно-теплоизоляционные блоки отличаются достаточной прочностью, чтобы выдерживать плиты и балки перекрытия малоэтажных строений, а конструкционные можно использовать при возведении многоэтажных зданий.

Сравнительная таблица различных марок пенобетона

Прочность на сжатие марок пеноблоков (кг/кв. см):

  • D400 – 9;
  • D500 – 13;
  • D600 – 16;
  • D700 – 24;
  • D800 – 27;
  • D900 – 35;
  • D1000 – 50;
  • D1100 – 64;
  • D1200 – 90.

Не менее важным свойством ячеистого бетона считается наличие внутренних пустот и точность соблюдения геометрических размеров блоков. От последнего параметра зависит расход кладочного раствора: при использовании неровных блоков толщину шва приходится увеличивать с 3 до 10 мм, что приводит к появлению «мостиков холода» и снижению энергоэффективности конструкции.

Достоинства и недостатки пенобетона

Как и любой другой строительный материал, ячеистый бетон нельзя назвать универсальным. Тем не менее, перечень его достоинств выглядит внушительно:

  • Долговечность. Срок службы здания, стены которого выстроены из блоков ячеистого бетона, составляет минимум 35 лет.

  • Теплоизоляционные свойства. Теплопроводность пеноблоков – порядка 0.08-0.20 Вт/м°С предоставляет возможность снизить теплопотери на 30% по сравнению с кирпичным зданием. При этом в жаркое время года такая стена не будет нагреваться, формируя внутри помещения микроклимат, сравнимый по комфортности с деревянным строением.
  • Экологичность, звукоизоляционные характеристики. Поскольку пеноблоки производятся из материалов естественного происхождения, они не гниют, не подвергаются воздействию грибков и плесени, уступая по экологичности только дереву. Звукоизоляционные свойства пенобетона также на высоте, позволяя обеспечить надежную защиту от любых внешних фоновых источников шума.
  • Простота монтажа. Габариты блоков и их малый вес существенно упрощают возведение зданий, снижая временные потери и трудозатраты. Пеноблоки легко поддаются механической обработке, что обеспечивает формирование конструкций любой формы.
  • Экономичность. Отличаясь малым весом и большими размерами, пеноблоки дешевле транспортировать, они требуют использования гораздо меньшего количества кладочного раствора.
  • Эстетичность. Пенобетон – прекрасный стройматериал для формирования разнообразных архитектурных элементов: арок, колонн, порталов. Благодаря большим размерам не требуется приложения больших усилий, чтобы добиться идеальной ровности стен, чего не скажешь о кирпичной кладке.

Единственным недостатком вспененного ячеистого бетона можно назвать его относительно невысокую прочность, что при малоэтажном строительстве не далеко не решающий фактор.

Теплопроводность блоков из пенобетона

Из-за разности температур воздуха внутри и снаружи помещения происходит перенос энергии через пеноблок. Такое явление присуще всем телам и получило название теплопроводности. Является одним из главных свойств и характеризует способность проводить тепло. Чем она меньше, тем лучше энергосберегающие показатели ограждающих конструкций строения (дом медленнее остывает и быстрее прогревается). Пенобетон имеет наименьшую термопроводность среди современных стройматериалов. Это обусловлено наличием в его внутренней структуре пор воздуха.

Теплопроводность пенобетона измеряют на пяти плоских образцах.

Коэффициент показывает, сколько энергии пропускает 1 м2 в единицу времени, его вычисляют по формуле:

  • δ толщина образца,
  • Тл температура лицевой стороны,
  • Тт температура тыльной плоскости,
  • q тепловой поток на 1 м2.

Термопроводность блоков пенобетона зависит от следующих основных факторов:

Вид Марка Теплопроводность Вт/(м∙°C) в сухом состоянии, изготовленного на:
песке золе
Теплоизоляционный пенобетон D300-D500 0,08-0,12 0,08-0,10
Конструкционно-теплоизоляционный D600-D800 0,14-0,24 0,13-0,20
Конструкционный D1000-D1200 0,29-0,38 0,23-0,29

Чем меньше удельный вес, тем ниже коэффициент теплопроводности из-за значительного числа воздушных пор. Марки D300, D500 имеют самые лучшие теплозащитные свойства, но не получили распространения при строительстве бескаркасных домов вследствие низкой прочности. Такого недостатка нет у D600 и D700, которые наилучшим образом сочетают достаточную несущую способность и термопроводность. Но с целью сохранения теплопередачи может потребоваться увеличение ширины ограждающих конструкций, а D800 уже необходимо дополнительно утеплять. Более плотный пенобетон, как способ снижения термообмена, используют только с тепловой защитой.

Анализ теплопроводности разных марок пеноблоков, изготовленных на песке или золе, показывает большое влияние компонентов на этот показатель. Потери тепла в пенобетоне из золы меньше. Указанный эффект связан с её большим термическим сопротивлением. С повышением влажности термопроводность растёт и рекомендуется защищать отделкой наружные поверхности.

На что влияет?

От теплопроводности зависят поперечные размеры наружных стен возводимого дома. Её значения применяются для теплотехнических расчетов. Каждый застройщик может самостоятельно провести оценку требуемой ширины блока. Дополнительно потребуется величина нормативного сопротивления термоотдачи здания для региона застройки (Rreg), её берут из таблиц СниП. Искомая толщина стены (δ) вычисляется просто: δ= Rreg∙λ. Здесь λ коэффициент теплопроводности, взятый из заводского сертификата. Для более точного расчета необходимо учитывать термопередачу кладочных швов, а также теплообмен между наружным и внутренним воздухом и плоскостью пеноблока.

Стройматериалы по функциональному назначению бывают:

  • Конструкционные (используются при создании каркаса сооружения).
  • Для утепления.

Первые характеризуются высокой термопроводностью это тяжёлый бетон, армированный сталью. Лучше держит тепло кирпич, из утеплителей можно отметить минеральную вату. Пенобетон в зависимости от марки применяется как для создания несущих стен, так и для изоляции.

Сравнение с минватой

Минеральная вата относится к классу материалов, используемых при термоизоляции строений. Ее сопоставление правомерно проводить с блоками теплоизоляционного вида.

Наименование Теплопроводность, Вт/(м∙°C)
D300 0,08
D500 0,10-0,12
Каменная минвата 25-180 кг/ куб.м 0,037-0,04

Преимущества минеральной ваты:

  • Теплопроводность меньше в два раза. Это позволяет сделать размеры ограждающей конструкции более оптимальными с сохранением термообмена.
  • Удельный вес ниже в 1,7-12 раз уменьшается вес утеплителя, его нагрузка на строение.
  • Не имеет несущей способности необходимо закреплять (пенобетон обладает достаточной прочностью).
  • Имеет склонность к осадке увеличивается теплопередача сооружения.
  • В случае намокания растёт вес и увеличивается нагрузка на перекрытия, кровлю, повышается теплообмен.

Сравнение с кирпичом

Кирпич по составу бывает двух типов:

  • Керамический (производится из глины).
  • Силикатный (из кварцевого песка).

Определяющими термопроводность кирпича факторами являются:

Сравнительный анализ показывает: потери тепла через пенобетон будут меньше.

Теплопроводность разных видов пеноблока

Теплопроводность пеноблока – значимая характеристика стройматериала. Способность проводить тепло связана с обратной пропорциональной зависимостью с прочными показателями пенобетона. Эта характеристика показывает, какое количество тепла передает материал за определенное время. Также влияние оказывает величина плотности стройматериала и влажность.

Теплопроводные качества различных марок пеноблоков значительно отличаются, из-за разной структуры. Блоки производят трех видов:

  • конструкционные – самые плотные и содержат маленькое количество ячеек с воздухом. Понадобится теплоизоляция пеноблока;
  • теплоизоляционные – имеют наилучший коэффициент теплопроводности, но из-за множества пустых пор с воздухом прочность значительно снижена;
  • конструкционно-теплоизоляционные.

Зависимость теплопроводности от плотности

Воздух является эффективным природным теплоизоляционным материалом. Пеноблоки имеют ячеистую структуру, благодаря которой этот блочный строительный материал обладает низким коэффициентом теплопроводности. Показатель намного ниже, чем у бетона или кирпича и равен 0.08 Вт/мС. Для рядовых пользователей, эти показатели ни о чем не говорят, поэтому приведем такой сравнительный пример. Чтобы получить стену, которая будет иметь показатель теплопроводности 0.18 Вт/м0 С, понадобятся пенобетонные блоки марки D700 (размеры 588х300х188).Чтобы добиться таких же показателей теплопроводности для шлакоблоков понадобится сделать толщину стены 108 см, а для красного кирпича 140 см.

Важно! Когда рассчитывается коэффициент теплопереноса, необходимо учитывать плотность, которая обозначается буквой D. Например, маркировка D 900 означает, что 1 кубометр пенобетонных блоков весит 900 кг.

Коэффициент теплопроводности пенобетона изменяется в зависимости от плотности и прочности материала. Самые легкие с меньшей прочностью блоки применяют для теплоизоляции стены здания и постройки межкомнатных перегородок. Для этого подходят блоки с плотностью 400-500 кг/м3. Производится пенобетон с высокой плотностью – 1000-1200 кг/м3. Благодаря уменьшению размера ячеек внутри блоков структура становится более плотной. Такой стройматериал подходит для постройки несущих стен 1-2 этажных зданий, но хуже сохраняет тепло. Пеноблоки средней плотности 600-700 кг/м3 теплостойкие и способны выдержать нагрузку перекрытий.

Расчет теплопроводности

Чтобы здание имело требуемые качества теплопроводности пенобетона, блоки разной плотности следует укладывать на различную толщину. Первым делом рекомендуется определить такой важный момент, при помощи, какого варианта будет производиться постройка стен. Не редко применяют такие способы – кирпич-блок-штукатурка либо оштукатуренная с двух сторон блок стена.

Для правильного расчета нужно знать коэффициент теплопроводности пеноблока и показатели теплоотдачи прочих строительных материалов, которые войдут в состав стены.

Пенобетонные блоки обладают разной теплопроводность для определенных условий эксплуатации. В таблице указаны величины ватт на метр на градус Цельсия.

Вид материала Марка (средняя плотность) Коэффициент теплопроводности Вт/м°С
На песке На золе
Теплоизоляционный пеноблок D 300 0.08 0.08
D 400 0.10 0.09
D 500 0.12 0.12
Конструкционно-теплоизоляционный пеноблок D 500 0.12 0.12
D 600 0.14 0.13
D 700 0.18 0.15
D 800 0.21 0.18
D 900 0.24 0.20
Конструкционный пеноблок D 1000 0.29 0.23
D 1100 0.34 0.26
D 1200 0.38 0.29
Штукатурка 058
Кирпич 0.56

Средний показатель коэффициента сопротивления стен теплопередаче равен 3,5. Из общего значения 3.5 вычитается показатель сопротивления теплопередаче 20 мм штукатурки – 0.02 : 0.58 = 0.03 и 120 мм кирпича – 0.12 : 0.56 = 0.21 для первого случая. Либо 4 см штукатурного слоя 0.04 : 0.58 = 0.06 для второго варианта исполнения.

В первом варианте при использовании кирпичей, бетонная поверхность обеспечивает сопротивление теплопередаче с показателем 3.26. Если используется марка блоков D 600, толщина составит 45.6 см (2.26*0.14 = 456). При использовании D 800 рекомендуется выкладывать стену толщиной не меньше 68, 4 см (3.26*0.21=684). По аналогичной формуле рассчитываются стены с применением любого вида ячеистого бетона.

Вариант с оштукатуренной с двух сторон стены из показателя 3.5 следует отнять 0.06 – 4 см штукатурки. Дальше производятся расчеты для требуемой марки бетона в согласии с показаниями в таблице.

При выборе пенобетона для теплоизоляции учитываются такие аспекты:

  1. Марку материала. Линейка производителей предлагают блоки, которые обладают прочностью и теплоизоляцией.
  2. Размеры блоков или панелей и необходимый слой для утепления.

Пенобетон имеет замечательные характеристики и теплопроводность, он удерживает тепло и является экологически чистым материалом, как дерево. Для производства материала используют цемент, песок, воду и натуральный пенообразующий компонент. В доме, построенном из него, будет комфортно и тепло.

расчет стены, сравнение с другими материалами, характеристики

Пенобетонные изделия

Теплопроводность — одна из основных характеристик пенобетона, ведь она отвечает за способность материала к теплосохранению. Данный критерий является зачастую определяющим в отношении сферы применения материала и оценки его эксплуатационных качеств.

В данном обзоре мы будем анализировать то, что такое теплопроводность пенобетона, от чего она зависит и каковы ее значения.

Что представляет собой пенобетон

Давайте, для начала, кратко познакомимся с самим материалом, и разберемся в его основных свойствах, ведь коэффициент теплопроводности пенобетона неразрывно связан со многими значениями иных характеристик.

Пенобетон – пористый материал, являющийся представителем ячеистых бетонов. Состоит он из смеси песка, воды, цемента и пенообразователя, который вызывает вспучивание раствора — и, как следствие, образование ячеек.

Пористая структура во многом определяет основной набор свойств, который мы сейчас и рассмотрим.

Структура пенобетонного блока, фото

Характеристики материала:

Плотность

Значение плотности пенобетона составляет от 300 до 1200 кг/м3. В зависимости от ее значения существует даже классификация, на которую мы обратим внимание чуть позже. Ведь коэффициент теплопроводности и показатель средней плотности неразрывно связаны между собой.
Такой ассортимент материала, в отношении плотности, позволяет применять его в различных сферах, начиная от теплоизоляции — и заканчивая сооружением несущих конструкций.

Прочность

Марки прочности продиктованы ГОСТ и стоят в зависимости от вышеуказанного свойства.
Минимальное значение для неавтоклавного пенобетона составляет В0,5, а максимальное (для автоклавного) – В12,5.

Чем вше средняя плотность, тем выше и марка прочности.

Морозостойкость

Морозостойкость отвечает за способность материала выдерживать определенное количество циклов заморозки и оттаивания.
В соответствии с требованием технической документации, минимальное значение должно составлять не менее 25 циклов, что касается исключительно материала, предназначенного для возведения наружных конструкций.

А вот, например, для теплоизоляционных изделий и перегородочных марка не установлена вовсе.

Максимальное значение может достигать 150 циклов.

Экологичность

О составе пенобетона мы уже говорили и смогли удостовериться в его экологичности, так как содержащиеся материалы не являются вредными.

Термоустойчивость

Пенобетон способен определенное время находиться под действием высоких температур, но этот промежуток времени не превышает 2-х часов.
Материал не горюч.

Влагопоглощение

Гигроскопичность для материала свойственна. Однако, в сравнении с другими представителями легких бетонов, она несколько снижена благодаря тому, что структура пор у него — закрытая. Показатель составляет около 10-15%.

Усадка

Усадка также для пенобетона свойственна. И это — один из основных недостатков.

Также стоит сказать о том, что пенобетон имеет достаточно широкую классификацию. Материал разделяется на виды в зависимости от: типа кремнеземистого компонента, типа вяжущего, метода твердения, показателя плотности.

Пенобетон выпускается, как становится очевидным, не только в жидком виде, но и в форме различных изделий, которые обладают различными характеристиками и имеют разную область применения. Это — панели, блоки, плиты, перемычки и многое другое.

Преимущества утепления пенобетоном

Долговечность. Пенобетон является нестареющим и практически вечным материалом, не подверженным воздействию времени. Он не гниет, обладает прочностью камня. Повышенная прочность на сжатие позволяет использовать при строительстве изделия с меньшим объёмным весом, что ещё более увеличивает термическое сопротивление стены. Срок службы пенобетона при нормальных условиях эксплуатации не ограничен. С годами пенобетон становиться только прочнее.

Теплота. Благодаря высокому термическому сопротивлению здания из пенобетона способны аккумулировать тепло, что при эксплуатации позволяют снизить расходы на отопление на 20-30%.

Влагостойкость. В отличие от автоклавных легких бетонов (газобетона), пенобетон имеет закрыто-пористую структуру, поэтому впитывает очень малое количество влаги.

Микроклимат. Пенобетон предотвращает значительные потери тепла зимой, не боится сырости, помогает избежать слишком высоких температур летом, регулирует влажность воздуха в комнате путём впитывания и отдачи влаги, тем самым, способствуя созданию благоприятного микроклимата (микроклимат деревянного дома).

Быстрота монтажа. Небольшая плотность и лёгкость пенобетона. Легкость в обработке и отделке позволяет быстро прорезать каналы и отверстия под электропроводку, розетки трубы.

Звукоизоляция. Пенобетон обладает относительно высокой способностью к поглощению звука. В зданиях из пенобетона обеспечиваются действующие требования по звукоизоляции.

Экологичность. Пенобетон не содержит вредных химических веществ. Он состоит только из цемента – минерального органического вещества. При эксплуатации пенобетон не выделяет токсичных веществ и по своей экологичности уступает только дереву. Для сравнения: коэффициент экологичности ячеистого бетона — 2; дерева — 1.

Эстетичность. Благодаря хорошей обрабатываемости, из пенобетона можно изготовить разнообразные формы углов, арок, пирамид, что придаст Вашему дому красоту и архитектурную выразительность.

Экономичность. Монолитный пенобетон позволяет значительно уменьшить толщину внутренней и наружной штукатурки. Вес пенобетона меньше до (87%), чем у тяжелого бетона. Значительное снижение веса приводит к значительной экономии на фундаментах.

Пожаробезопасность. Пенобетон надёжно защищает от распространения пожара и соответствуют первой степени огнестойкости, что подтверждено соответствующими испытаниями. Таким образом, он хорошо подходит для применения в огнестойких конструкциях. При воздействии источника тепла, например, паяльной лампы, на поверхность бетона он не расщепляется и не взрывается, как это происходит с тяжелым бетоном. В результате арматура защищена от нагревания. Тесты показывают, что пенобетон толщиной 150мм защищает от пожара в течение 4 часов.

Что такое теплопроводность, и каковы ее значения у пенобетона

Теперь давайте перейдем непосредственно в основной теме нашей статьи. Итак, теплопроводность пенобетонных блоков и пенобетона в целом: на что влияет данное свойство?

Понятие теплопроводности, зависимость ее от иных характеристик

Теплопроводность – это способность материала к сохранению температуры. То есть, здание, возведенное из определенного конструктивного материала, может быстро или медленно остывать и нагреваться. Вот именно на это и влияет показатель теплосохранения.

Пенобетон может похвастать вполне конкурентными значениями, для изделий в сухом состоянии характерны показатели от 0,08 до 0,37 Вт*мС. В эксплуатационных условиях значение несколько повысится, но это касается не только пенобетона, но и любого другого материала.

Как уже упоминалось, способность к теплосохранению стоит в зависимости от плотностных показателей материала. Давайте рассмотрим более подробно.

  • Коэффициент теплопроводности пенобетонных блоков, предназначенных для теплоизоляции, составляет около 0,08-0,10 Вт*мС. Называют такие изделия теплоизоляционными. Марка плотности у них – Д300, Д400.

Применение монолитного теплоизоляционного пенобетона низкой плотности

  • Если говорить про конструкционно-теплоизоляционный пенобетон, теплопроводность его – несколько выше, и составляет около 0,11-0,18 Вт*мС, а марка плотности варьируется в промежутке от Д500 до Д900.

Конструкционно-теплоизоляционные блоки

  • Если вы используете конструкционные пенобетонные блоки, теплопроводность которых будет составлять вплоть до 0,35 Вт*мС, знайте, что в противовес слабой способности к сохранению тепла, такие изделия характеризуются повышенными прочностными значениями. А плотность их достигает 1200 кг/м3.

Конструкционное изделие

Помимо теплопроводности, с повышением плотности возрастает и морозостойкость изделий — и, как правило, их долговечность.

Сравнительный анализ теплопроводимости пенобетона и других материалов

А теперь пришло время сравнить теплопроводность изделий из пенобетона с показателями ее у других популярных материалов для строительства.

Блоки пенобетонные: теплопроводность изделий и сравнение ее значений с другими материалами:

Материал (изделие) Показатель средней плотности (марка Д) Коэффициент теплопроводности материала, находящегося в сухом состоянии, Вт*мС

Газобетон

300-1200 0,09-0,38

Керамзитобетон

400-2000 0,14-0,48

Пенобетон

300-1200 0,08-0,35

Полистиролбетон

150-600 0,04-0,16

Арболит (опилкобетон)

300-850 0,07-0,3

Дерево

450-550 0,14

Кирпич керамический

1400-2100 0,4 (щелевой) — 0,8(полнотелый)

Кирпич силикатный

1500-1900 0,5-0,7

Как видно, прямая зависимость плотности и теплопроводности касается не только пенобетона, но и любого другого материала. Если изделие преуспевает в показателе плотности, то в способности к теплосохранению оно будет существенно уступать.

Лидером в такой способности, несомненно, является полистиролбетон, однако конструкционные его возможности сильно ограничены в виде не столь высоких показателей прочности.

Что влияет на теплопроводность

  1. Размер внутренних пустот – воздушные пузырьки внутри блока способствуют сохранению тепла. Чем они меньше, тем лучше теплоизолирующие свойства материала;
  2. На теплопроводность влияет плотность стройматериала – чем меньше пор внутри, тем хуже пеноблок будет сохранять тепло. Но плотные блоки более прочные, поэтому их применяют для возведения несущих конструкций;
  3. Показатель реальной теплопроводности может отличаться от указанной производителем, на величину коэффициента влияют геометрическая точность изготовления блоков и то, насколько толстый шов делается при кладке (швы в 10-12 мм превращаются в мосты холода и приводят к образованию конденсата и теплопотерям).

Методы повышения способности к теплосохранению, расчеты минимальной толщины стены

На два вышерассмотренных показателя можно оказывать воздействие. Если говорить конкретно про изделия, то плотность их и теплопроводность устанавливаются еще в процессе производства, о чем мы и поговорим ниже. Но для начала попробуем рассчитать, какая же толщина должна быть у стены, возведенной из пенобетона, при сохранении высоких характеристик к теплосохранению.

Рассчитываем толщину стены из пеноблока с учетом региона

Для расчета оптимальной толщины стены необходимо знать, так называемый, показатель сопротивления теплоотдаче. Он указан в СНиП и индивидуален для каждого отдельного региона. Усредненное значение равно 3,4, на него мы и будем опираться.

Инструкция – следующая:

  • Предположим, что использовать при кладке мы будем блок, плотностью Д500 с коэффициентом теплопроводности 0,17 Вт*мС.
  • 3,4*0,17=0,578 м. Именно столько метров должна составлять толщина стены.
  • Так как утепление обычно производится, следует отнять значение его теплопроводности применяемого для него материала, и снова перемножить значения.
  • Допустим, что теплопроводность утеплителя составляет 0,02 Вт*мС.
  • 0,17-0,02=0,15. 0,15*0,34=0,51 м. Это значит, что при планировании утепления, толщина стен может не превышать 50 см. Если утепление сделать более интенсивным, то значение можно уменьшить до укладки одного блока, шириной в 400 мм.

Коэффициенты сопротивления теплоотдаче по регионам

Методы изменения коэффициента теплопроводности будущего материала на стадии производственного цикла

Все показатели будущего материала определяются еще на стадии производства:

  • Первым этапом станет составление рецептуры, а, точнее говоря, подбор состава. При начале выпуска производится определение номинального состава, чему предшествует составление специального задания, которое содержит все требования к будущим показателям.
  • После разработки замешивается смесь и производится своеобразный тест, по завершении которого, в случае, положительного результата, состав передается на производство. Если же итоги не соответствуют планируемым, то делается корректировка.
  • Все данные действия осуществляются, разумеется, при изготовлении материала в заводских условиях.
  • При производстве изделий своими руками, все пропорции сырья измеряются вручную, руководствуясь при этом лишь рекомендациями, так как точной рецептуры изготовления пенобетонной смеси не существует.
  • Именно поэтому при самостоятельном производстве не всегда удается получить необходимые показатели теплопроводности и плотности.

Варианты составов пенобетона

Обратите внимание! При изготовлении в домашних условиях пенобетона вы сможете значительно сократить бюджет на строительство, цена на блоки однозначно снизится. Единственным минусом являются большие трудозатраты, затраты времени и высокая вероятность несоответствия изделий требованиям ГОСТ.

Что именно влияет на изменение показателей?

  1. Тип кремнеземистого компонента;
  2. Соотношение цемента в составе: чем его больше, тем выше плотность и коэффициент теплопроводности;
  3. Специализированные добавки;
  4. Метод твердения материала. При автоклавном способе, как правило, блоки получаются с гораздо лучшим сочетанием обсуждаемых нами показателей, но для домашнего изготовления он недоступен.

Видео в этой статье продемонстрирует основные методы производства пенобетона.

Варианты утепления конструкций, возведенных из пенобетона

А вот повысить способность к теплосохранению стены вполне возможно при помощи утепления конструкции. Вариантов может быть очень много, а мы кратко рассмотрим самые популярные утеплители, используемые застройщиками.

Наиболее распространенные материалы для утепления стен из пенобетона:

Базальтовая (минеральная) вата

Такая вата обладает рядом преимуществ, основные из которых сводятся к следующему:

  • Экологичность изделий;
  • Невысокая масса;
  • Легкость в использовании, отсутствие необходимости привлекать специалистов;
  • Способность к паропроницанию;
  • Долговечность;
  • Приемлемая стоимость продукции;
  • Устойчивость к биологическому воздействию.

Минусы:

  • Гигроскопичность;
  • Огнеопасность;
  • Склонность к деформации.

Пенопласт

Не менее распространен среди потребителей.
Также обладает рядом достоинств и недостатков.

Невысокая цена, высокая скорость монтажа, малый вес и влагоустойчивость – весомые плюсы.

К минусам же стоит отнести тот факт, что материал совершенно не дышит, а при возгорании, пенопласт способен выделять вредные вещества.

Напыление пенополиуретаном

В целом, вариант весьма неплохой. Однако при его нанесении без специализированного оборудования не обойтись. Более того, способ утепления этот — достаточно дорогостоящий.
Если говорить про теплоизоляцию, то она – на высоком уровне.

Нанесение теплых штукатурок

Самый дорогостоящий вариант. Такие специализированные смеси стоят дорого.
Плюсы заключаются в высоких эксплуатационных характеристиках, устойчивости к влаге и негорючести.

Сложности могут возникнут при нанесении. Дело в том, что состав крайне быстро схватывается, что требует высокой скорости при проведении работ. Одним словом, без определенных навыков никак не обойтись.

Кратко о колодцевой кладке

Отдельно хотелось бы сказать о методе утепления конструкций посредством метода колодцевой кладки. Она используется исключительно при облицовке здания кирпичом.

  • Кирпичная кладка при этом ведется параллельно с основной, а промежуток заполняется сыпучим утеплителем.
  • Чаще всего применяется при этом керамзит, однако могут использоваться и другие материалы, такие как: гранулы полистирола, пеноизол, вермикулит, опилки, щебень, шлак и другие.
  • Те материалы, которые не подвержены биологическому воздействию, применяются как сухая засыпка. А вот, например, опилки или иные органические материалы, используются совместно с вяжущими в виде легкого бетона с наполнителем.

Как итог, теплоизолирующая способность стены значительно возрастает. Из минусов можно выделить то, что процесс работ достаточно трудоемкий, и требует наличия определенных навыков.

Краткое описание колодцевой кладки

Теплопроводность пеноблока: коэффициент теплопроводности пенобетона

Теплопроводность пеноблока – значимая характеристика стройматериала. Способность проводить тепло связана с обратной пропорциональной зависимостью с прочными показателями пенобетона. Эта характеристика показывает, какое количество тепла передает материал за определенное время. Также влияние оказывает величина плотности стройматериала и влажность.

Теплопроводные качества различных марок пеноблоков значительно отличаются, из-за разной структуры. Блоки производят трех видов:

  • конструкционные – самые плотные и содержат маленькое количество ячеек с воздухом. Понадобится теплоизоляция пеноблока;
  • теплоизоляционные – имеют наилучший коэффициент теплопроводности, но из-за множества пустых пор с воздухом прочность значительно снижена;
  • конструкционно-теплоизоляционные.

Зависимость теплопроводности от плотности

Воздух является эффективным природным теплоизоляционным материалом. Пеноблоки имеют ячеистую структуру, благодаря которой этот блочный строительный материал обладает низким коэффициентом теплопроводности. Показатель намного ниже, чем у бетона или кирпича и равен 0.08 Вт/мС. Для рядовых пользователей, эти показатели ни о чем не говорят, поэтому приведем такой сравнительный пример. Чтобы получить стену, которая будет иметь показатель теплопроводности 0.18 Вт/м0 С, понадобятся пенобетонные блоки марки D700 (размеры 588х300х188).Чтобы добиться таких же показателей теплопроводности для шлакоблоков понадобится сделать толщину стены 108 см, а для красного кирпича 140 см.

Важно! Когда рассчитывается коэффициент теплопереноса, необходимо учитывать плотность, которая обозначается буквой D. Например, маркировка D 900 означает, что 1 кубометр пенобетонных блоков весит 900 кг.

Коэффициент теплопроводности пенобетона изменяется в зависимости от плотности и прочности материала. Самые легкие с меньшей прочностью блоки применяют для теплоизоляции стены здания и постройки межкомнатных перегородок. Для этого подходят блоки с плотностью 400-500 кг/м3. Производится пенобетон с высокой плотностью – 1000-1200 кг/м3. Благодаря уменьшению размера ячеек внутри блоков структура становится более плотной. Такой стройматериал подходит для постройки несущих стен 1-2 этажных зданий, но хуже сохраняет тепло. Пеноблоки средней плотности 600-700 кг/м3 теплостойкие и способны выдержать нагрузку перекрытий.

Расчет теплопроводности

Чтобы здание имело требуемые качества теплопроводности пенобетона, блоки разной плотности следует укладывать на различную толщину. Первым делом рекомендуется определить такой важный момент, при помощи, какого варианта будет производиться постройка стен. Не редко применяют такие способы – кирпич-блок-штукатурка либо оштукатуренная с двух сторон блок стена.

Для правильного расчета нужно знать коэффициент теплопроводности пеноблока и показатели теплоотдачи прочих строительных материалов, которые войдут в состав стены.

Пенобетонные блоки обладают разной теплопроводность для определенных условий эксплуатации. В таблице указаны величины ватт на метр на градус Цельсия.

Вид материала Марка (средняя плотность) Коэффициент теплопроводности Вт/м°С
На песке На золе
Теплоизоляционный пеноблок D 300 0.08 0.08
D 400 0.10 0.09
D 500 0.12 0.12
Конструкционно-теплоизоляционный пеноблок D 500 0.12 0.12
D 600 0.14 0.13
D 700 0.18 0.15
D 800 0.21 0.18
D 900 0.24 0.20
Конструкционный пеноблок D 1000 0.29 0.23
D 1100 0.34 0.26
D 1200 0.38 0.29
Штукатурка 058
Кирпич 0.56

Средний показатель коэффициента сопротивления стен теплопередаче равен 3,5. Из общего значения 3.5 вычитается показатель сопротивления теплопередаче 20 мм штукатурки – 0.02 : 0.58 = 0.03 и 120 мм кирпича – 0.12 : 0.56 = 0.21 для первого случая. Либо 4 см штукатурного слоя 0.04 : 0.58 = 0.06 для второго варианта исполнения.

В первом варианте при использовании кирпичей, бетонная поверхность обеспечивает сопротивление теплопередаче с показателем 3.26. Если используется марка блоков D 600, толщина составит 45.6 см (2.26*0.14 = 456). При использовании D 800 рекомендуется выкладывать стену толщиной не меньше 68, 4 см (3.26*0.21=684). По аналогичной формуле рассчитываются стены с применением любого вида ячеистого бетона.

Вариант с оштукатуренной с двух сторон стены из показателя 3.5 следует отнять 0.06 – 4 см штукатурки. Дальше производятся расчеты для требуемой марки бетона в согласии с показаниями в таблице.

При выборе пенобетона для теплоизоляции учитываются такие аспекты:
  1. Марку материала. Линейка производителей предлагают блоки, которые обладают прочностью и теплоизоляцией.
  2. Размеры блоков или панелей и необходимый слой для утепления.

Итог

Пенобетон имеет замечательные характеристики и теплопроводность, он удерживает тепло и является экологически чистым материалом, как дерево. Для производства материала используют цемент, песок, воду и натуральный пенообразующий компонент. В доме, построенном из него, будет комфортно и тепло.

betonov.com

Часть 3. Пенобетон — сравнение с другими материалами.

При сравнении пенобетона с другими материалами надо учитывать, что: 1. он экологически чистый, «дышит», негорюч. 2. легко производим как в стационарных условиях, так и на строительной площадке 3. производится из доступных в любом регионе компонентов 4. себестоимость пенобетона невысока

Итак, ниже находится таблица сравнивающая теплопроводность пенобетона и других строительных материалов. Опять таки надо учесть, что пенобетонный блоки можно класть на клей, что уменьшает мостики холода и соответственно теплопотери.

Материал Плотность, кг/м3 Теплопроводность, Ккал/м2г0С
Мрамор 2700 2,9
Бетон 2400 1,3
Пористый глиняный кирпич 2000 0,8

Пенобетон

1200 0,38

Часть 1. Пенобетон — определение и физические характеристики.

Пенобетон, разновидность ячеистого бетона. По своим свойствам и применению подобен газобетону. (определение из БСЭ)
Пенобетон создается путем равномерного распределения пузырьков воздуха по всей массе бетона. В отличии от газобетона пенобетон получается не при помощи химических реакций, а при помощи механического перемешивания предварительно приготовленной пены с бетонной смесью.

Пена может готовится или с помощью пеногенератора или в бароустановке.

Здесь мы рассмотрим основные характеристики пенобетона и сравним его с другими материалами. Другие аспекты производства пенобетона и его применения в строительстве смотрите в разделе»Статьи»

Расчет теплопроводности стен из пеноблоков

Расчет теплопроводности стен из пеноблоков

Программы для теплотехнического расчёта:Teplotech3 (.xls файл)Teplotech4 (.exe файл)Teplotech5 (.exe файл)

Теплоизоляция (сопротивление теплопередаче) стен из пеноблокови варианты их строительства.

Пенобетон, как строительный материал, стал востребован в России после вступления в силу СНИП 2-3-79. В нем были определены новые нормы по теплоизоляции стен, по которым, например, минимальная толщина кирпичной стены должна быть около 2 метров. Естественно, что строить дома с такими стенами экономически невыгодно и строители стали искать материал на замену кирпичу. Этот материал должен был обеспечивать хорошую теплоизоляцию, быть экологически чистым и долговечным. Всем этим требованиям отвечает пенобетон, и по этой причине спрос на этот материал в настоящее время непрерывно растет. Итак, в данной статье мы рассчитаем необходимую толщину наружной стены, при её строительстве одним из 2-х наиболее популярных вариантов: кирпич-пенобетон или оштукатуренный пенобетон. Пенобетон в стене может быть различной плотности, мы рассчитаем варианты стены для плотностей 600, 800 и 1000кг\куб.м. Также, на основе примера расчета необходимой толщины стены в данной статье, Вы сможете, в будущем, рассчитывать толщину любой стены, из любых, материалов самостоятельно.Что нужно знать для расчета:1. Теплотехнические характеристики всех материалов, из которых будет состоять стенаУ каждого строительного материала есть теплотехнические характеристики. Это теплопроводность или сопротивление теплопередаче (величина обратная теплопроводности). Эти коэффициенты, необходимые для расчета теплопотерь, показывают какая мощность теряется каждым квадратным метром наружной поверхности конструкции при ее толщине в 1м и разницей температур между наружной и внутренней поверхностью в 1 градус (kt=ватт/(m*t)). Данные для многих материалов приведены в СНИП 2-3-79.2. ГСОП (Градусо-сутки отопительного периода, град.С в сут.)Данный показатель можно рассчитать по формуле из СНИП 2-3-79, а можно просто взять из справочника. Например, для Москвы и Санкт-Петербурга он менее 6000.3. Сопротивление стены теплопередачеОно зависит от ГСОП и берется из СНИП. В нашем случае, при ГСОП 6000, сопротивление теплопередаче у стены должно быть не менее 3,5 (град.С*кв.м./Вт).

Итак, наша стена должна иметь суммарное сопротивление теплопередаче не менее 3,5 (град.С*кв.м./Вт), т.к. каждый слой имеет свое сопротивление теплопередаче, то сопротивление всей стены, согласно СНИП 2-3-79, измеряется как сумма сопротивлений слоев. Также нам понадобится коэффициент теплопроводности Вт/(м*град.С) всех материалов используемых для стены:1.кирпич лицевой М-150 – 0,562.пенобетон плотность 600 – 0,143.пенобетон плотность 800 – 0,214.пенобетон плотность 1000 – 0,295.штукатурка – 0,58

Ниже следует расчет пенобетонного слоя для 2-х вариантов стен: 1-й вариант стены: облицовочный кирпич (250х120х65) + пеноблок (х мм)+ штукатурка (20мм)Рассчитаем какая толщина пенобетона нужна.Толщина кирпича в стене, при обычной укладке, 120мм. Разделим толщину в метрах на теплопроводность 012/0,56 и получим сопротивление теплопередаче кирпичного слоя 0,21. Толщина штукатурки 20мм, следовательно её сопротивление теплопередаче равно 0,02/0,58=0,03.Рассчитаем толщину пенобетонного слоя:

Плотность пенобетона Формула Результат — требуемая толщина слоя
600 х=(3,5-0,21-0,03)*0,14 450мм
800 х=(3,5-0,21-0,03)*0,21 680мм
1000 х=(3,5-0,21-0,03)*0,29 940мм

2-й вариант стены: штукатурка (20мм)+ пенобетон (х мм)+ штукатурка(20мм)Толщина штукатурки (суммарная) 40мм, следовательно её сопротивление теплопередаче 0,06. Соответственно толщина пенобетонного слоя должна быть:

Плотность пенобетона Формула Результат — требуемая толщина слоя
600 х=(3,5-0,06)*0,14 480мм
800 х=(3,5-0,06)*0,21 720мм
1000 х=(3,5-0,06)*0,29 1000мм

Мы рассчитали необходимую толщину стены для соответствия теплопроводности по СНИП 2-3-79, учитывая различные варианты укладки стен. Если вам что-то непонятно или у вас возникли вопросы — пишите на форум.

Виды пеноблоков

Пенобетон производят по единой технологии путем смешивания основных компонентов, разливки смеси в формы, сушки под давлением и высокой температурой в автоклаве, дальнейшей нарезки и складирования. Производство осуществляется по единой технологии, но вот состав раствора для заливки может быть разным. Чем меньше пенообразователя добавлено в смесь, тем более плотным и прочным, тяжелым получится материал.

Но за счет уменьшенного числа пор способность сохранять тепло у такого материала понижается пропорционально уменьшению количества пустот в структуре. По уровню плотности (а значит, и весу, прочности, теплопроводности) пенобетон делят на три основных категории – для теплоизоляции, строительства и комбинированный тип.

Основные виды пенобетонных блоков:

  1. Конструкционные (марки D900-1200) – плотность и вес, прочность максимальные за счет малого количества пор в структуре, можно использовать материал для кладки фундамента, создания цокольных этажей, несущих конструкций. Теплопроводность самая высокая, в диапазоне 0.29-0.38 Вт/м*К. Блоки предполагают обязательное проведение мероприятий по теплоизоляции.
  1. Конструкционно-теплоизоляционные (марки D500-800) – блоки демонстрируют средние показатели теплопроводности, плотности, прочности. Используются для кладки несущих стен, внутренних перегородок. Самый популярный материал на рынке, который чаще всего применяется в строительстве, особенно жилых зданий. Способность сохранять тепло средняя – теплопроводность в диапазоне от 0.15 до 0.29 Вт/м*К.
  2. Теплоизоляционные (марки D100-400) – применяются исключительно с целью утепления, наименее плотные и прочные, с самым небольшим значением теплопроводности (показатель на уровне 0.09-0.12 Вт/м*К). В структуре материала содержится максимальное число ячеек с воздухом. Строить здания и класть стены из материала нельзя, он выступает только теплоизоляционным слоем.

Пенобетонные блоки: виды, марки и основные параметры

Что важно знать покупателю о классификации бетона? Вопрос этот далеко не праздный, так как он напрямую связан с качеством будущей постройки.

Основные показатели качества материала регламентируются ГОСТом и ТУ. Здесь у специалистов по производству пеноблоков существуют определённые разногласия. Производители предъявляют претензии к требованиям ГОСТа, соответственно, выдвигая свои критерии оценки.

Как поступить в этом случае, чтобы выбрать качественный материал? Нужно помнить, что ГОСТ – требования государственных стандартов, которые контролируют качество продукции и не заинтересованы ни в чём другом, кроме качества. Стандарт пеноблока определяется по ГОСТ 25192-82, ГОСТ 21520-89.

ТУ – технические условия, которые формируют зачастую сами производители, так сказать, исходя из имеющихся возможностей.

Нельзя утверждать, что последние не заинтересованы в качестве выпускаемого товара, поэтому нужно, видимо, обладать определённым уровнем информации, который позволит составить собственное представление о том, какой пеноблок всё же нужно выбрать.

Пеноблок: что это такое?

Самый лучший дом – тот, что построен своими руками, по собственному проекту. И очень хочется, чтобы материал для строительства был сверхнадёжным, сверхпрочным и долговечным, чтобы строить было легко и быстро, и чтобы стоил он не очень дорого.

Пеноблок – материал, появившийся на строительном рынке одним из последних, сразу же завоевал огромную популярность среди застройщиков. Технология его изобретения и производства относится к числу тех, о которых принято говорить: «Всё гениальное просто». И просто настолько, что пеноблок сейчас производят даже в небольших частных, подсобных помещениях.

Расчет теплоизоляции стен из пенобетона и варианты их строительства. Что такое цемент? (первая статья о теории цементов)

Теплоизоляция (сопротивление теплопередаче) стен из пенобетона и варианты их строительства.

Гражданское и промышленное строительство из пенобетона стало востребовано в России после вступления в силу СНИП II 3 79. В нем были определены новые нормы по теплоизоляции стен, по которым, например, минимальная толщина кирпичной стены должна быть около 2 метров. Естественно, что строить дома с такими стенами экономически невыгодно и строители стали искать материал на замену кирпичу. Этот материал должен был обеспечивать хорошую теплоизоляцию, быть экологически чистым и долговечным. Всем этим требованиям отвечает пенобетон, и по этой причине спрос на этот материал в настоящее время непрерывно растет.

Итак, в данной статье мы рассчитаем необходимую толщину наружной стены, при её строительстве одним из 2-х наиболее популярных вариантов: кирпич-пенобетон или оштукатуренный пенобетон. Пенобетон в стене может быть различной плотности, мы рассчитаем варианты стены для плотностей 600, 800 и 1000кг\куб.м. Также, на основе примера расчета необходимой толщины стены в данной статье, Вы сможете, в будущем, рассчитывать толщину любой стены, из любых, материалов самостоятельно.

Что нужно знать для расчета:

1. Теплотехнические характеристики всех материалов, из которых будет состоять стена
У каждого строительного материала есть теплотехнические характеристики. Это теплопроводность или сопротивление теплопередаче (величина обратная теплопроводности). Эти коэффициенты, необходимые для расчета теплопотерь, показывают какая мощность теряется каждым квадратным метром наружной поверхности конструкции при ее толщине в 1м и разницей температур между наружной и внутренней поверхностью в 1 градус (kt=ватт/(m*t)). Данные для многих материалов приведены в СНИП 2-3-79.

2. ГСОП (Градусо-сутки отопительного периода, град.С в сут.)
Данный показатель можно рассчитать по формуле из СНИП 2-3-79, а можно просто взять из справочника. Например, для Москвы и Санкт-Петербурга он менее 6000.

3. Сопротивление стены теплопередаче
Оно зависит от ГСОП и берется из СНИП. В нашем случае, при ГСОП 6000, сопротивление теплопередаче у стены должно быть не менее 3,5 (град.С*кв.м./Вт).

Итак, наша стена должна иметь суммарное сопротивление теплопередаче не менее 3,5 (град.С*кв.м./Вт), т.к. каждый слой имеет свое сопротивление теплопередаче, то сопротивление всей стены, согласно СНИП 2-3-79, измеряется как сумма сопротивлений слоев.

Также нам понадобится коэффициент теплопроводности Вт/(м*град.С) всех материалов используемых для стены:

  1. кирпич лицевой М-150 – 0,56
  2. пенобетон плотность 600 – 0,14
  3. пенобетон плотность 800 – 0,21
  4. пенобетон плотность 1000 – 0,29
  5. штукатурка – 0,58

Ниже следует расчет пенобетонного слоя для 2-х вариантов стен:

1-й вариант стены: облицовочный кирпич (250х120х65) + пенобетон (х мм)+ штукатурка (20мм)
Рассчитаем какая толщина пенобетона нужна.
Толщина кирпича в стене, при обычной укладке, 120мм. Разделим толщину в метрах на теплопроводность 012/0,56 и получим сопротивление теплопередаче кирпичного слоя 0,21. Толщина штукатурки 20мм, следовательно её сопротивление теплопередаче равно 0,02/0,58=0,03.
Рассчитаем толщину пенобетонного слоя:





Плотность пенобетона

Формула

Результат — требуемая толщина слоя

600

х=(3,5-0,21-0,03)*0,14

450мм

800

х=(3,5-0,21-0,03)*0,21

680мм

1000

х=(3,5-0,21-0,03)*0,29

940мм

 

2-й вариант стены: штукатурка (20мм)+ пенобетон (х мм)+ штукатурка(20мм)
Толщина штукатурки (суммарная) 40мм, следовательно её сопротивление теплопередаче 0,06.

Соответственно толщина пенобетонного слоя должна быть:





Плотность пенобетона

Формула

Результат — требуемая толщина слоя

600

х=(3,5-0,06)*0,14

480мм

800

х=(3,5-0,06)*0,21

720мм

1000

х=(3,5-0,06)*0,29

1000мм

Мы рассчитали необходимую толщину стены для соответствия теплопроводности по СНИП 2-3-79, учитывая различные варианты укладки стен. Если вам что-то непонятно или у вас возникли вопросы — пишите на форум.

Примечание:
В статье коэффициент для плотности 600 — 0.14, это коэффициент в сухом состоянии.
Коэффициент расчетный для плотности 600 — 0.22, для плотности 800 — 0.33 Тогда толщина стены равна:
плотность 600 (3.5-0.21-0.03)х0.22= 0.717 м
плотность 800 (3.5-0.21-0.03)х0.33= 1.076 м

Дополнительная информация:
1. Описание технологии производства пенобетона
2. Описание установки пенобетона Фомм-Проф
3. Статья Обзор и сравнение материалов для межкомнатных перегородок
4. База данных производители пенобетона в России и СНГ
5. Статья Строительство дома из пенобетона (репортаж о строительстве дома с фотографиями).

Какова теплопроводность полиуретана?

Теплопроводность — это физическое свойство, которое проявляется в любом материале, включая полиуретан, и измеряет пропускную способность тепла через него, или, другими словами, перенос тепловой энергии через тело. Это движение энергии создается разностью температур , поскольку, согласно второму закону термодинамики, тепло всегда течет в направлении самой низкой температуры.

Когда изолирует здание , важно знать теплопроводность используемых материалов, так как от этого будет зависеть их энергоэффективность и тепловой комфорт . Например, металлы имеют более высокую теплопроводность, чем дерево, но изоляционные материалы, такие как стекловолокно или полиуретан, имеют более низкую теплопроводность.

Значение теплопроводности в утеплении зданий

Поведение теплоизоляции является ключом к достижению цели Европейского Союза по энергосбережению на 2020 год .Как в одноэтажных, так и в многоэтажных зданиях материалы, из которых изготовлено ограждение, определяют потребление энергии. Следовательно, если мы хотим, чтобы улучшил энергоэффективность зданий , одним из физических свойств, которые будут определять, является ли материал хорошей теплоизоляцией или нет, является теплопроводность.

Если вы сравните теплопроводность основных материалов, используемых в строительстве , вы можете проверить, как, в зависимости от выбора материалов, уровень теплопроводности будет напрямую влиять на теплоизоляцию дома .Например, традиционные материалы, такие как кирпич, древесная стружка или бетон, имеют более высокий уровень теплопроводности, чем изоляционные материалы, такие как полиуретан или полистирол.

Материал

Теплопроводность

Кирпич

0.49-0.87 км / Вт

Бетонный блок

0-35-0.79 км / Вт

Пенополистирол

0.031-0.050 км / Вт

Экструдированный полистирол

0,029-0,033 км / Вт

Полиуретановые системы

0,022-0,028 км / Вт

Минеральная вата

0,031-0,045 км / Вт

Вспученный перлит

0,040-0,060 км / Вт

Древесная щепа

0.038-0.107 км / Вт

Теплопроводность полиуретана

Полиуретановые системы являются одними из материалов на рынке, которые обеспечивают лучшую теплоизоляцию при минимальной толщине . Эта характеристика возможна благодаря низкой теплопроводности полиуретана, поскольку, хотя различия в уровнях теплопроводности между полистиролом (экструдированным и вспененным), минеральной ватой и полиуретановыми системами составляют лишь несколько десятых доли бумаги при применении в работе, такие десятичные знаки могут означать разницу в толщине на 3-4 см, чем для достижения такой же энергетической эффективности конверта.

Кроме того, полиуретановые системы (литьевые, напыленные или пластинчатые) являются оптимальным решением для теплоизоляции зданий. Помимо низкой теплопроводности, они также обеспечивают хорошее уплотнение оболочки, предотвращая проникновение воздуха и токов, возникающих в ее пустых пространствах. Это важно, потому что, если бы эти токи не были уменьшены, теплопроводность полиуретана перестала бы быть такой эффективной.

Коэффициент теплопроводности — обзор

2.5 Обнаружение и анализ тепловых свойств

Что касается тепловых свойств наноматериалов, физические величины, требующие определения характеристик, включают коэффициент теплопроводности, удельную теплоемкость, тепловое расширение, термическую стабильность и температуру плавления.

Когда тонкопленочный слой материала достигает определенной толщины, эффект границ зерен будет оказывать все более значительное влияние на теплопроводность. Кроме того, коэффициент теплопроводности перпендикулярно пленке имеет тенденцию к уменьшению с уменьшением толщины пленки.

Теоретические предсказания и экспериментальные результаты подтвердили, что наноструктурированные материалы имеют значения удельной теплоемкости намного выше, чем у обычных объемных материалов. Наноматериалы имеют сравнительно хаотичное распределение атомов по структуре, которая имеет больший объем по сравнению с объемными аналогами. Таким образом, энтропийные вклады из-за этой некристаллической поверхности вносят гораздо больший вклад в удельную теплоемкость, чем средние крупнокристаллические материалы, что приводит к увеличению удельной теплоемкости.

Нанокристаллы почти в два раза больше средних кристаллов по коэффициенту теплового расширения, причем увеличение t в основном связано с составом кристаллических границ. Основной прибор для измерения коэффициента теплового расширения материалов известен как анализатор теплового расширения, но он также известен как термодилатометрический анализатор или термомеханический анализатор . Анализ коэффициента теплового расширения материалов может дать представление о молекулярном движении, структурных изменениях и поведении при тепловом расширении.Для решения таких проблем, как термическое соединение различных материалов при производстве полупроводниковых устройств, анализатор теплового расширения является лучшим инструментом для анализа.

Точка плавления — это температура, при которой материал переходит из твердого состояния в жидкость. Для кристаллических объектов существует четкая точка плавления; однако некристаллические объекты имеют плохо определенную температуру плавления. Температура может увеличиваться до значения, при котором небольшое количество атомов в общей структуре начинает двигаться одновременно с жидким поведением.Эта температура известна как температура стеклования ( T г ). При температуре ниже T g стекломатериал находится в твердом состоянии; при температурах выше T г это переохлажденная жидкость. Выражаясь в механических терминах, если температура ниже T g , то произойдет упругая деформация; если температура выше Т г , то начинается вязкостная (жидкостная) деформация.

Температура термического разложения — это значение, при котором связи материала могут быть нагреты до разорванного состояния и диссоциированы на другие вещества.

Для пластифицированных некристаллических или аморфных наноматериалов температура стеклования и температура термической диссоциации, отличные от точки плавления, также являются очень важными тепловыми свойствами. Таблица 2.4 показывает температуру плавления нескольких видов материалов в различных масштабах.

Таблица 2.4. Точка плавления нескольких материалов в разных масштабах

Тип материала Размер частиц: диаметр (нм) или общее количество атомов Точка плавления (K)
Au Обычные сыпучие материалы 1340
300 нм 1336
100 нм 1205
20 нм 800
2 нм 600
Sn 10–30 555
500 480
Pb Обычные сыпучие материалы 600
30–45 583
CdS Обычные сыпучие материалы 1678
2 нм ≈910
1.5 нм ≈600
Cu Обычные насыпные материалы 1358
20 нм ≈312

Термические свойства наноматериалов обычно обнаруживаются и анализируются с помощью термогравитационного анализа (TGA) и производная термогравиметрия (DTG).

ТГА может обеспечивать непрерывное измерение на основе изменения веса материалов в процессе нагрева во время измерения.В частности, изменения массы отслеживаются как функция температуры с заданной температурной скоростью и могут быть соотнесены с потерями массы и тепловыми переходами в материале. Одновременно можно проводить дифференцированное лечение. А именно, запись изменений качества составляет метод измерения DTG.

С помощью TGA (или DTG) можно определить ряд термических свойств материалов, например температуру старения во время пиролиза и динамику старения, поведение при старении при разных температурах и в различных газовых средах, упаковочные материалы IC, используемые в процесс изготовления исполняемых полупроводниковых устройств, гибких печатных плат и стеклянных подложек, керамических подложек и других компонентов анализа.

В коллоидной системе соответствующие термические свойства частиц также включают, среди прочего, броуновское движение, баланс диффузии и седиментации.

При броуновском движении среднее смещение частицы X¯ может быть выражено как:

X¯ = RTN0Z3πηr

где R — постоянная идеального газа, T — абсолютная температура, N 0 — постоянная Авогадро, Z — интервал времени наблюдения, η — вязкость дисперсионной среды, r — радиус частицы.

Броуновское движение оказывает существенное влияние на природу коллоидных частиц. Броуновское движение — важный фактор, который может повлиять на стабильность дисперсной системы коллоидных частиц. Из-за броуновского движения осаждение коллоидных частиц происходит не из-за гравиметрических сил, а из-за коллоидной агрегации, вызванной столкновениями между частицами, что приводит к осаждению.

Явление диффузии связано с переносом массы, который возникает из-за броуновского движения частиц (броуновского движения) при наличии градиента концентрации.Чем крупнее частицы и чем меньше тепловая скорость, тем менее заметной становится диффузия. Обычно коэффициент диффузии используется для измерения скорости диффузии. Это физическое количество материала, указывающее на диффузионную способность.

В коллоидной системе коэффициент диффузии D можно выразить как:

D = RTN0⋅16πηr

Здесь R — постоянная идеального газа, T — абсолютная температура, N 0 — постоянная Авогадро, η — вязкость дисперсионной среды, r — радиус частицы.

Поскольку коэффициент диффузии коррелирует со средним смещением, полученный коэффициент диффузии D также может быть выражен как:

D = X¯22Z

Здесь Z — конкретный интервал времени наблюдения, а X¯ — среднее смещение частицы при броуновском движении. В таблице 2.5 показан коэффициент диффузии золя, образующегося из наночастиц золота, при 291 К.

Таблица 2.5. Коэффициент диффузии золя, образующегося из частиц нано-Au при 291 K

Размер частиц нано-Au (нм) Коэффициент диффузии (109 м 2 / с)
1 0 .213
10 0,0213
100 0,00213

Когда частицы, взвешенные в жидкости, показывают скорость осаждения, равную скорости диффузии, система достигает состояния равновесия, а именно равновесия седиментации. . В состоянии седиментационного равновесия концентрация коллоидных частиц подчиняется закону распределения Гаусса.

Закон распределения Гаусса для коллоидных частиц может быть выражен как:

n2 = n1e − N0RT⋅43r3 (ρp − ρ0) (x2 − x1) g

Здесь n 1 и n 2 — концентрация частиц в поперечном сечении на высоте x 1 и x 2 соответственно, R — постоянная идеального газа, T — абсолютная температура, A — Константа Авогадро, r — радиус частицы, ρ0 — плотность коллоидных частиц, ρp — плотность дисперсионной среды, г, — ускорение свободного падения.

Пенополиуретан — теплоизоляция

Пример — изоляция из пенополиуретана

Основной источник потерь тепла из дома — через стены. Рассчитайте скорость теплового потока через стену площадью 3 м x 10 м (A = 30 м 2 ). Стена толщиной 15 см (L 1 ) сделана из кирпича с теплопроводностью k 1 = 1,0 Вт / м · К (плохой теплоизолятор). Предположим, что температура внутри и снаружи составляет 22 ° C и -8 ° C, а коэффициенты конвективной теплопередачи на внутренней и внешней сторонах h 1 = 10 Вт / м 2 K и h 2 = 30 Вт / м 2 К соответственно.Обратите внимание, что эти коэффициенты конвекции сильно зависят, в частности, от внешних и внутренних условий (ветер, влажность и т. Д.).

  1. Рассчитайте тепловой поток ( потери тепла ) через эту неизолированную стену.
  2. Теперь предположим, что теплоизоляция на внешней стороне этой стены. Используйте изоляцию из пенополиуретана толщиной 10 см (L 2 ) с теплопроводностью k 2 = 0,028 Вт / м.К и рассчитайте тепловой поток ( потери тепла ) через эту композитную стену.

Решение:

Как уже было написано, многие процессы теплопередачи включают композитные системы и даже включают комбинацию теплопроводности и конвекции. С этими композитными системами часто удобно работать с общим коэффициентом теплопередачи , , известным как U-фактор . Коэффициент U определяется выражением, аналогичным закону охлаждения Ньютона :

Общий коэффициент теплопередачи связан с общим тепловым сопротивлением и зависит от геометрии проблемы.

  1. голая стена

Предполагая одномерную теплопередачу через плоскую стенку и не принимая во внимание излучение, общий коэффициент теплопередачи можно рассчитать как:

Тогда общий коэффициент теплопередачи равен:

U = 1 / (1/10 + 0,15 / 1 + 1/30) = 3,53 Вт / м 2 K

Тепловой поток можно рассчитать просто как:

q = 3,53 [Вт / м 2 K] x 30 [K] = 105.9 Вт / м 2

Суммарные потери тепла через эту стену будут:

q убыток = q. A = 105,9 [Вт / м 2 ] x 30 [м 2 ] = 3177 Вт

  1. композитная стена с теплоизоляцией

Предполагая одномерную теплопередачу через плоскую композитную стенку, отсутствие теплового контактного сопротивления и без учета излучения, общий коэффициент теплопередачи можно рассчитать как:

Тогда общий коэффициент теплопередачи равен:

U = 1 / (1/10 + 0.15/1 + 0,1 / 0,028 + 1/30) = 0,259 Вт / м 2 K

Тепловой поток можно рассчитать просто как:

q = 0,259 [Вт / м 2 K] x 30 [K] = 7,78 Вт / м 2

Суммарные потери тепла через эту стену будут:

q убыток = q. A = 7,78 [Вт / м 2 ] x 30 [м 2 ] = 233 Вт

Как видно, добавление теплоизолятора приводит к значительному снижению тепловых потерь. Его надо добавить, добавление следующего слоя теплоизоляции не дает такой большой экономии.Это лучше всего видно из метода термического сопротивления, который можно использовать для расчета теплопередачи через композитных стен . Скорость устойчивой теплопередачи между двумя поверхностями равна разнице температур, деленной на общее тепловое сопротивление между этими двумя поверхностями.

Пена из плавленого диоксида кремния-50 (2500 ° F + блок из изоляционной пены с низким коэффициентом расширения 50 pcf)

Пена из плавленого диоксида кремния-50 характеризуется однородной структурой с открытыми ячейками с превосходными теплоизоляционными свойствами, исключительной стойкостью к тепловому удару и стабильностью объема в течение широкий температурный диапазон.Материал можно обрабатывать с жесткими допусками с использованием стандартной твердосплавной оснастки. При облицовке силикатным цементом или другими подходящими растворами. Пена-50 может выдерживать умеренные рабочие условия на поверхности, включая футеровку желобов для расплавленного алюминия, меди и других цветных сплавов. Стандартный размер блока 4,5 ″ x 12 ″ x 18 ″ (другие размеры по запросу). Пена из плавленого кремнезема-30 также доступна в Foundry Service по специальному заказу. Foam-30 — это керамическая пена объемом 30 фунтов на фут.

Технические характеристики

Стандартный размер блока (дюймы) 4.5 x 12 x 18
Прочность на холодное раздавливание (кг / см²) 140
Прочность на холодное раздавливание (фунт / дюйм²) 2000
Насыпная плотность (г / см³) 0,80
Насыпная плотность (фунт / фут³) 50
Пористость (%) 85
Модуль разрыва при 2000ºF (1093ºC) (кг / см²) 55
Модуль разрыва при 2000ºF (1093ºC) (фунт / дюйм²) 750
Коэффициент теплового расширения до 1830ºF (1000ºC) (на ºF) 0.4
Коэффициент теплового расширения до 1830 ° F (1000 ° C) (на ° C) 0,7
Теплопроводность при 260 ° C (500 ° F) (БТЕ-дюйм / час-фут²-° F) 1,0
Теплопроводность при 500ºF (260ºC) (Вт / м-ºK) 0,14
Теплопроводность при 1000ºF (540ºC) (БТЕ-дюйм / час-фут²-ºF) 1,4
Теплопроводность при 1000ºF (540ºC) (Вт / м-ºK) 0.20
Теплопроводность при 1500ºF (816ºC) (БТЕ-дюйм / час-фут²-ºF) 1,7
Теплопроводность при 1500ºF (816ºC) (Вт / м-ºK) 0,24
Химический анализ (зажигание) Al 2 O 3 — 0,4%
Щелочи — следы
CaO — 1,4%
Fe 2 O 3 — 0,1%
MgO — следы
SiO 2 — 98%
Теплопроводность при 2000ºF (1093ºC) (БТЕ-дюйм / час-фут²-ºF) 2.8
Теплопроводность при 2000ºF (1093ºC) (Вт / м-ºK) 0,40

Примечание

Все механические свойства были определены при комнатной температуре. Это типичные лабораторные результаты для данного материала, которые могут изменяться при обычном производстве. Они предоставляются только в качестве технической услуги.

Области применения

Стабильность объема изоляционной пены-50 позволяет изготавливать изделия больших форм, которые могут использоваться в жестких циклических условиях с температурой около 2000 ° F.Поскольку это такой хороший тепловой барьер, использование Пены-50 приведет к экономии топлива по сравнению с обычными огнеупорами и огнеупорами. Возможности большого размера в сочетании с производством ячеек обеспечивают большую свободу в проектировании и дизайне имен ячеек. Блоки Пенопласт-50 легко соединяются с кварцевым цементом. Материал имеет высокую химическую чистоту, хорошую кислотостойкость, отличное электрическое сопротивление и не подвержен влиянию ядерной радиации. Типичные области применения включают дверцу печи, крышу и изоляцию стен, алюминиевые футеровки желобов, отражатели для кварцевых ламп и инфракрасных обогревателей, инструменты для аэрокосмических операций и операций по формованию стекла, паяльные приспособления, футеровки для впитывания газа и термобарьеры для ядерных применений.

Foundry Service может отливать, изготавливать и обрабатывать пену-50 в точном соответствии с требованиями заказчика. Отправьте запрос по факсу или электронной почте уже сегодня.

Теплопроводность — ERG Aerospace

Общая теплопроводность Ctotal пенопласта с открытыми ячейками фактически состоит из четырех компонентов, как указано ниже:

Ctotal = Csolid связок + Cgas + Cgas конвекция + Cradiant
Где
Csolid связок = проводимость трехмерного массива твердых связок или распорок, которые образуют структуру пены.Этот термин также часто называют «объемной теплопроводностью» пены. В большинстве случаев, особенно для металлических пен, используемых в качестве теплообменников, это самый крупный в количественном отношении и наиболее термически доминирующий из четырех компонентов и имеет следующую упрощенную форму уравнения:

Csolid связок = Csolid × относительная плотность × 0,33

Где
Csolid связок = прямая теплопроводность или объемная проводимость массива связок
Csolid = проводимость твердого материала распорок
Относительная плотность =% относительной плотности в десятичной форме, т.е.е. 10% = 0,1
0,33 = коэффициент, представляющий геометрическую структуру пены или коэффициент извилистости.

Следует отметить, что коэффициент 0,33 получен как из испытаний на проводимость, так и из концептуального анализа, в котором пену можно сравнить с трехмерной ортогональной решеткой штифтовых ребер. В этом случае очевидно, что одна треть штифтов или их массы ориентирована в каждом из ортогональных направлений x, y и z.

Также следует отметить, что это уравнение несколько упрощено, но является достаточно точным, немного консервативным и более легким для понимания с концептуальной точки зрения, чем некоторые из эмпирических уравнений, которые были разработаны на основе различных тестов.

Cgas = объемная проводимость любого газа, содержащегося в пене с открытыми порами. Обычно он вносит небольшой вклад в металлические пены, но может вносить значительный вклад в углеродные или керамические пены, которые по своей природе имеют низкую проводимость связочного материала. См. Диаграмму проводимости угольной пены (RVC), чтобы увидеть типичный пример этого эффекта.

Cгазовая конвекция = проводимость любого газа, содержащегося внутри ячеек и который может циркулировать внутри пены или внутри отдельных ячеек пены.Опять же, это также небольшой вклад для металлических пен, но может стать значительным при работе с углеродными или керамическими пенами, используемыми в качестве изоляции. В таких случаях пеноматериалы с малым размером пор 80–100 PPI используются для подавления этого эффекта, просто увеличивая удельную поверхность пенопласта и падение давления газового потока до точки, при которой конвективный поток эффективно предотвращается.

Cradiant = инфракрасное электромагнитное излучение, которое проходит через открытые отверстия пены. Этот элемент проводимости важен только при очень высоких температурах и обычно не играет роли, если пена не используется в качестве высокотемпературной изоляции.В таких случаях обычно используется пена с наименьшим размером пор, чтобы уменьшить коэффициент обзора и увеличить оптическую непрозрачность пены.

III. Разработка основных идей на основе фактов — изучение физических явлений

  • Не касаясь, рассмотрите различные виды материалов, которые часто встречаются на кухнях:

РИС. 2.1 Примеры алюминия, стали, пенопласта или бумаги и деревянных материалов

Оборудование: Кухонные предметы, такие как алюминиевые противни для пирогов, стальные открывашки для консервов, пенопласт или бумажные стаканчики, а также деревянные вилки для салатов, часто доступны, но все они имеют разные размеры и формы.Чтобы упростить представление об этих материалах, также подумайте об использовании четырех блоков примерно одинакового размера и формы, сделанных из алюминия, стали, пенополистирола или бумаги и дерева. Также приобретите термометр с лампочкой и трубкой, цифровой датчик температуры или приложение для мобильного телефона, которое измеряет повседневную температуру (а не только температуру тела человека), чтобы измерять температуру предметов после того, как вы их оценили.

  • Расположите эти материалы по температуре.
  • Объясните причину своего прогнозируемого ранжирования.

Когда все члены вашей группы будут готовы:

  • Прикоснитесь к материалам. Расположите их в порядке температуры.
  • Объясните причину вашего рейтинга.
  • Поговорите с членами вашей группы о своем рейтинге и рассуждениях.

Если вы хотите записать некоторые из их идей или изменить свою, оставьте свои первоначальные ответы без изменений на лицевой стороне листа и напишите вместо этого на обороте

  • Попытайтесь прийти к единому мнению о ранжировании этих материалов в порядке их температуры.
    Как вы как группа объясняете эти наблюдения, основываясь на прикосновении к блокам?
  • Измерьте температуру всех предметов с помощью термометра.

Существует несколько способов измерения температуры предметов. Один из простых способов — по очереди поставить термометр на каждый предмет. Также можно использовать набор предметов из разных материалов с просверленным отверстием в каждом для размещения термометра, как показано на рис. 2.2

При использовании обычной стеклянной колбы и трубчатого термометра важно держаться за термометр в верхней части, чтобы рука не влияла на показания.Также продолжайте держать термометр в ожидании стабилизации показаний, чтобы термометр не упал и не сломался.

Рис. 2.2 Пенополистирол, дерево и два вида металлических блоков и термометр.

  • Каков ваш рейтинг по показаниям температуры?
  • Объясните причину вашего рейтинга.
  • Поговорите с членами вашей группы о своем рейтинге и рассуждениях.

Если вы хотите записать некоторые из их идей или изменить свою, оставьте свои первоначальные ответы без изменений на лицевой стороне листа и продолжайте писать вместо этого на обороте.

  • Попытайтесь прийти к единому мнению о ранжировании этих материалов в порядке их температуры.
    Как вы как группа объясняете эти наблюдения, основанные на измерениях с помощью термометра?
  • Напишите краткое изложение ваших выводов и объяснение.

Заполнив собственное резюме, посмотрите на пример студенческой работы

1. Пример студенческой работы о том, как разные материалы ощущаются на ощупь

Многие студенты сообщают, что уверены в том, что пенополистирол на ощупь самый теплый, а металл — самый холодный, основываясь на предыдущем опыте работы с этими материалами, а также на фактическом прикосновении к ним сейчас.Обычно существуют некоторые расхождения во мнениях о том, как ранжировать пенополистирол и деревянные блоки и в каком порядке ранжировать стальные и алюминиевые металлические блоки.

Одна ученица описала свой опыт ранжирования температуры в четырех блоках после того, как она прикоснулась к ним, следующим образом:

Передо мной были выложены четыре блока. Я коснулся всех четырех блоков и заметил, что все они чувствовали себя так, как будто были разной температуры. Два металлических блока казались самыми холодными, деревянный блок чувствовал себя теплее металлических блоков, а пенополистирольный блок — самым теплым.Поскольку все эти разные материалы чувствовали себя так, как будто они были разной температуры, когда я прикасался к ним, это свидетельствует о том, что материалы различаются тем, насколько горячими или холодными они кажутся на ощупь .

Студент-физик, весна 2016 г.

Другая ученица описала, что произошло, когда ее группа использовала термометр для измерения температуры в четырех блоках. Шкала термометра была нанесена в градусах Цельсия. Эта температурная шкала названа в честь Андерса Цельсия (1701-1744), шведского ученого, который определил шкалу в сто градусов между точками замерзания и кипения воды.По нынешней шкале Цельсия, используемой во всем мире, точка замерзания воды составляет 0ºC, температура в помещении составляет около 20ºC, температура человеческого тела составляет около 37ºC, а точка кипения воды составляет 100ºC при стандартном атмосферном давлении. Краткое описание истории измерения температуры см. На https://www.britannica.com/technology/thermometer#ref227799.

Студент сообщил о следующем опыте:

Затем студентов попросили перевернуть пластины и обнаружили, что в каждой из них просверлено небольшое отверстие.Затем каждому столу дали термометр и попросили измерить температуру пластин. Наш стол сначала измерил древесину и пенополистирол и обнаружил, что оба они имеют температуру 24 ° ° C. Я подумал, что, возможно, что-то не так с моим термометром, поэтому я нагрел его до 30 ° ° C, а затем поместил его в отверстие на стене. одна из металлических пластин. Температура упала и показала 24 o C. Я не мог поверить в это. Я попробовал еще раз с более толстой металлической пластиной, и снова была измерена температура 24 o C.

Студент-физик, осень 2015 г.

Большинство групп с удивлением обнаруживают, что все материалы имеют примерно одинаковую температуру. Металл кажется прохладным, а пенополистирол теплый, но показания термометра для температуры металлов, дерева и пенополистирола почти или точно такие же! Как это может быть!

Одна из возможных причин — поломка термометра. Это легко проверить, взяв в руку лампочку термометра. Жидкость в трубке термометра обычно быстро поднимается, когда теплая рука лежит на лампочке.Другая возможность заключается в том, что термометр работает правильно и что блоки фактически имеют или почти одинаковую температуру.

Вопрос 2.3 Почему одни материалы кажутся теплее или холоднее других?

  • Поговорите с членами вашей группы о некоторых возможностях того, почему все материалы имеют одинаковую температуру, даже если одни кажутся теплее или холоднее других.
  • Поделитесь своими идеями с другими группами. Внимательно прислушивайтесь к идеям, которые предлагают другие группы.
  • Обсудите с членами вашей группы любые предложения других групп, которые кажутся полезными. Уточните идеи своей группы или используйте новые возможности для объяснения того, что происходило, когда вы касались различных материалов.
  • Поделитесь своими текущими идеями с другими группами. Внимательно слушайте идеи, которые сейчас предлагают другие группы.
  • Продолжайте обсуждать и уточнять идеи, пока ваша группа и другие группы не достигнут консенсуса по некоторым основным идеям о том, что должно происходить, чтобы материалы имели одинаковую температуру, но ощущались такими разными при прикосновении.
  • Напишите краткое изложение основных идей, основанное на данных, полученных в ходе бесед в малых группах и обсуждений в группе.

После того, как вы закончите свое собственное резюме, посмотрите на пример работы студентов о тепловых явлениях, нюансах изучения того, как горячие или холодные различные материалы ощущаются на ощупь, и некоторые мысли о природе науки в этом контексте.

1. Пример студенческой работы о развитии центральных идей на основе свидетельств о тепловых явлениях

Ученик объяснил удивительное открытие о том, что материалы могут ощущаться по-разному даже при одинаковой температуре, следующим образом:

… термометр не показывал другую температуру ни для одной из четырех пластин.Это заставило студентов понять, что, поскольку было обнаружено, что каждая из пластин имеет одинаковую температуру, все они были при комнатной температуре. По сути, каждая из пластин долгое время оставалась нетронутой в комнате, и на ней не было источника тепла или радиатора, которые могли бы повлиять на них. Это означает, что все они были одинаковой температуры.

Студент-физик, осень 2015 г.

Обычно, обсуждая, почему все блоки имеют одинаковую температуру, кто-то в конце концов произносит фразу комнатная температура .Иногда кто-то будет использовать фразу температура окружающей среды . Это имеет более общее значение, относящееся к температуре окружающей среды, иногда используемой для обозначения температуры воздуха, окружающего большой компьютер. Однажды произнесенная фраза комнатная температура переводит большинство студентов от недоумения к принятию вывода о том, что все четыре блока имеют одинаковую температуру.

Остается недоумение, почему блоки кажутся такими разными, хотя все они имеют комнатную температуру.

Отчеты малых групп о текущем мышлении могут варьироваться от «я понятия не имею» до мыслей, намекающих на следующий шаг. Кто-то, например, может сказать что-то о том, что руки теплее, чем все блоки, а кто-то другой может с трудом выразить идею о том, что материалы различных блоков каким-то образом отличаются, намекая на идею определенного свойства материалов. это имеет значение.

Услышав нерешительно высказанные эти все еще возникающие идеи, малые группы могут добиться некоторого прогресса, если им будет предоставлена ​​еще одна возможность поговорить друг с другом.Еще один раунд отчета может дать четко сформулированное объяснение, которое затем примет класс в целом. Этот студент, например, продолжил такое объяснение:

Студенты были удивлены, обнаружив, что все тарелки были одинаковой температуры, потому что, когда они возлагали на них руки, они чувствовали, что тарелки были холоднее или теплее друг друга. Студенты пришли к выводу, что они чувствовали передачу энергии за счет проводимости. По сути, металлические предметы являются проводниками тепла, а это означает, что энергия рук учеников перетекала из их ладоней в металл… что заставляло нашу руку чувствовать себя холоднее, когда энергия уходила.

В этом эксперименте ученики обнаружили, что металл является проводником, а это означает, что металл быстрее передает энергию и обладает высокой теплопроводностью. Однако пенополистирол, вещество, часто используемое для холодильников, является изолятором, что означает, что он имеет низкую теплопроводность, а это означает, что он передает энергию медленнее, поэтому он может сохранять горячие вещи горячими и холодные.

Студент-физик, осень 2015 г.

Раунды разговоров, которые приводят к такому четкому изложению происходящего, требуют времени, но, похоже, они помогают студентам разобраться в том, что могло быть очень загадочным опытом.Цель этого курса — поднять вопросы, но дать студентам возможность решить эти проблемы с помощью бесед в небольших группах и обсуждений в группах. Цель состоит в том, чтобы создать возможности для студентов познавать науку способами, аналогичными тому, как ученые воспринимают науку, как интересную и понятную.

2. Нюансы в исследовании того, насколько горячие или холодные различные материалы ощущаются на ощупь

Студенты, которые держали в руках лампочку своего термометра, отметили, что температура, показанная термометром, была выше, чем температура, которую термометр показал для четырех материалов.Они заметили, что между их руками и блоками существует разность температур , и сделали вывод, что энергия перетекала из их более горячих рук в металлические блоки , что снизило температуру их рук.

Трудно принять вывод о том, что энергия течет только от горячего к холодному, потому что предыдущий опыт может указывать на другое направление. Например, когда кто-то сидит на металлической трибуне во время футбольного матча поздней осенью, скорее всего, создается впечатление, что в его тело проникает холод.Однако здесь делается вывод, что на самом деле происходит то, что тепло тела человека отводится на весь металлический отбеливатель!

Металлические блоки казались холодными; пенопласт был теплым. Вывод состоит в том, что металлические блоки отличались от пенополистирола свойством из , насколько легко металлические блоки отводили энергию от рук учащихся, свойством теплопроводности .

Можно сделать вывод, что из рук учеников в металлические блоки потекло больше энергии, чем в пенополистирол.Энергия, текущая в металлические блоки, быстро распространяется по блокам; металлические блоки имели более высокую теплопроводность. Руки учеников потеряли больше энергии из-за металлических блоков, поэтому при прикосновении к металлическим блокам они чувствовали себя холодными.

Другой вывод состоит в том, что энергия, протекающая в блоки из пенополистирола, не распространялась по блокам из пенопласта, а оставалась там, где руки касались блоков. Руки учеников потеряли очень мало энергии из-за блоков из пенопласта, и поэтому их руки продолжали оставаться теплыми.

Это вводит основные идеи о передаче энергии от горячих предметов к холодным и легкости, с которой происходит такая передача энергии.Вывод заключается в том, что энергия быстро течет через материалы, которые являются проводниками , , которые имеют высокую теплопроводность ; Энергия медленно протекает через материалы, которые представляют собой изоляторы , которые имеют низкую теплопроводность.

Обратите внимание, что оба суждения о четырех блоках были основаны на доказательствах. Учащиеся составили рейтинги, которые различались на основе наблюдений, сделанных при прикосновении к блокам. Студенты составили те же рейтинги, основанные на наблюдениях, сделанных с помощью термометра.

Полезность рейтинга будет зависеть от цели. Если кто-то выбирает материал, на котором можно сидеть в холодный день, будет полезен рейтинг по теплопроводности . Если кого-то интересует температура в комнате (без источника тепла или радиатора), можно выбрать использование термометра для измерения температуры объекта, сделанного из любого из этих материалов, полученное число будет таким же или близким к тому же для всех. (Удерживание объекта в течение длительного времени во время измерения может привести к изменению его температуры, если объект имеет высокую теплопроводность.)

3. Некоторые мысли о природе науки в этом контексте

Наука предполагает вынесение суждений на основе доказательств. Однако необходимо осознавать как природу доказательств, так и их пригодность для ответа на вопрос. Когда возникают затруднения, может потребоваться прояснить двусмысленность при формулировке вопроса, а также при планировании исследования. Asking Как бы вы расположили различные материалы по температуре? Оказывается, не отвечает, ранжируя материалы по ощущениям на ощупь.В основе несоответствия этого вопроса с предлагаемой процедурой лежит концептуальное различие между теплом и температурой.

B. Уточнение различий между тесно связанными идеями

Если что-то кажется загадочным, один из способов поиска лучшего понимания — это обдумать идеи, которые кажутся тесно связанными, одинаковы они или разные?

Вопрос 2.4 В чем разница между понятиями тепла и температуры?

Полезный способ систематизировать результаты — это проанализировать установку, доказательства и соответствующий словарь для центральных идей, которые возникают в результате исследований и обсуждений, как в таблице II.1

  • Уточните для себя разницу значений слов heat и temperature в контексте физики, заполнив следующую таблицу:
    • Сделайте набросок декорации из четырех разных материалов
    • Обратите внимание на свидетельства того, как материалы ощущаются при прикосновении, и какова их температура, измеренная термометром
    • Определите любой подходящий словарь.
    • Затем напишите краткое изложение основных идей о тепловых явлениях, разработанных на данный момент в этом модуле.
ТАБЛИЦА II.1 Развитие основных представлений о тепловых явлениях.
ТАБЛИЦА II.1 Исследование тепловых явлений
Схема установки Доказательства Центральные идеи Соответствующий словарь
Материалы отличаются тем, насколько они горячие или холодные на ощупь
Температура измеряется термометром
Материалы, долгое время оставшиеся без источника тепла или радиатора в помещении, достигают одинаковой температуры, комнатной температуры Комнатная температура
Разница температур подразумевает поток энергии от более горячих объектов к более холодным.Когда объекты соприкасаются, этот процесс называется передачей энергии посредством проводимости . Проводимость
Материалы различаются по своим тепловым свойствам, например по тому, насколько хорошо они проводят энергию через материал, по теплопроводности . Проводники обладают высокой теплопроводностью. Изоляторы обладают низкой теплопроводностью. Теплопроводность

Проводников

Изоляторы

Тепло и температура — разные идеи

Заполнив приведенную выше таблицу и обобщив свое понимание каждой центральной идеи, взгляните на пример студенческой работы.

1. Пример студенческой работы, поясняющей значение слов тепло и температура

На рис. 2.3 показаны заметки одного учащегося к таблице выше. Также представлено краткое изложение этим студентом основных идей о тепловых явлениях, разработанных на данный момент в этом модуле.

ИНЖИР. 2.3. Записи учащихся, описывающие начальные исследования тепловых явлений.

Для «эскиза установки» в первом ряду этот ученик нарисовал четыре блока в порядке от «кажется самым холодным» слева до «кажется самым теплым» справа и обозначил блоки «легкий металл. , темный металл, дерево, пенополистирол .В качестве доказательства студент написал: « Я прикоснулся к четырем пластинам, и они физически почувствовали себя иначе.

Во втором ряду ученик нарисовал четыре блока с четырьмя термометрами и написал: « Мы вставили термометр в отверстие в каждой пластине и нашли их температуру ».

В третьем ряду ученик нарисовал четыре кубика и два настенных часа, показывающих время 1 и 2 часа. Студент написал: « Материалы лежат в течение часа и имеют одинаковую температуру.

В четвертом ряду ученик нарисовал изображение блока и руки с изображением энергии, исходящей из трех пальцев руки в блок. Студент написал: « Пластина была холодной, потому что энергия покинула мою руку и ушла в пластину ».

В пятом ряду ученик нарисовал изображение из двух кубиков, каждый из которых касался рукой. Рука, касающаяся металлического блока, представляет собой энергию, исходящую из четырех пальцев; рука, касающаяся блока пенополистирола, представляет собой энергию, исходящую только из одного пальца.Студент написал: « Металл на ощупь холоднее пенопласта, потому что он лучше проводит энергию ».

В шестом ряду ученик нарисовал изображение термометра и подписал его « температура » и изображение блока с рукой на нем и пометило « тепла ». Студент написал: « Температура — это число, измеряемое термометром, а тепло — это энергия, которая течет или не течет от нас к металлу ».

Учащийся написал следующие обоснования основных идей, заявленных в третьем столбце таблицы:

Материалы различаются по тому, насколько они горячие или холодные на ощупь .Передо мной были выложены четыре квартала. Я коснулся всех четырех блоков и заметил, что все они чувствовали себя так, как будто были разной температуры. Два металлических блока казались самыми холодными, деревянный блок чувствовал себя теплее металлических блоков, а пенополистирольный блок — самым теплым. Поскольку я прикасался к этим различным материалам, как будто они были разной температуры, это свидетельствует о том, что материалы различаются по тому, насколько горячими или холодными они кажутся на ощупь.

Температура измеряется термометром. Термометр, который мы использовали для измерения температуры четырех блоков, был длинным и узким, с закругленными краями. Термометр был сделан из стекла и измерял температуру в градусах Цельсия.

Материалы, которые долгое время оставались без источника тепла или радиатора в помещении, имеют одинаковую температуру, комнатную температуру . Четыре блока из разных материалов долго раскладывались, совершенно не трогая их.В комнате не было источников тепла или раковин. Это позволило блокам успокоиться при комнатной температуре.

В каждом из четырех блоков было небольшое отверстие, через которое термометр мог находиться внутри материала. Чтобы измерить температуру каждого из блоков, я подержал термометр в отверстии в течение минуты, держа его вверху, чтобы моя рука не влияла на температуру. Подождав минуту, пока термометр закончит считывать температуру материала, я записал температуру каждого из блоков.

Светлый металлический блок имел температуру 18 ° C, темный металлический блок был 18,25-18,5 ° C, деревянный блок был 18,5-18,75 ° C, а пенополистирол был 19 ° C. Несмотря на то, что блоки различались по тому, насколько горячими или холодными они казались на ощупь, все показания находятся в пределах 1 ° C друг от друга. Поскольку показания термометра для четырех блоков из разных материалов были относительно одинаковой температуры, комнатной температуры, это свидетельствует о том, что материалы, оставшиеся в течение длительного времени без источника тепла или радиатора в комнате, достигают одной и той же температуры, комнатной температуры. .

Разница температур означает, что энергия течет от горячих объектов к более холодным. Передо мной были выложены четыре блока комнатной температуры. Мы знаем, что блоки имеют комнатную температуру, потому что они долгое время оставались без каких-либо источников тепла или радиатора в помещении.

Когда ученики коснулись блоков, они заметили, что некоторым было холоднее или теплее, чем другим. Температура человеческого тела выше комнатной, поэтому рука теплее блоков.Когда я прикоснулся к металлическому блоку, мне стало холодно. Между моей рукой и металлическим блоком существует разница в температуре, которая позволяет энергии течь от более теплого объекта, моей руки, к более холодному объекту, металлическому блоку. Энергия, уходящая из моей руки к металлическому блоку, заставила мою руку похолодеть. Металл обладает высокой теплопроводностью, поэтому энергия быстро уходит из моей руки, и я сразу чувствую разницу температур.

Древесина и пенополистирол являются изоляторами, поэтому имеют более низкую теплопроводность.Поскольку для этих материалов передача энергии занимает больше времени, течет меньше энергии, и в результате моя рука не чувствует такой большой разницы температур.

Передача энергии за счет проводимости в данном контексте означает скорость, с которой энергия передается от прикосновения между двумя объектами, такими как рука и металлический блок. Энергия передается от моей руки к блокам, потому что они разной температуры. Температура моего тела выше, чем у металлического блока, и когда я прикасаюсь к металлическому блоку, моя рука становится холодной, что свидетельствует о том, что разница температур означает, что энергия течет от горячих предметов к более холодным.

Материалы различаются по своим тепловым свойствам, например по тому, насколько хорошо они проводят энергию по всему материалу . Под теплопроводностью понимается скорость или скорость передачи энергии между двумя объектами при их соприкосновении. Прежде всего, металл — это проводник. Когда я почувствовал металл, он оказался самым холодным из четырех блоков. Поскольку металл обладает высокой теплопроводностью, он быстро передает энергию. Итак, когда я касаюсь металла, энергия быстро покидает мою руку, поэтому течет много энергии, поэтому я чувствую большую разницу температур между предметом и моей рукой.

Далее, древесина и пенополистирол являются изоляторами. Древесина и пенополистирол имеют низкую теплопроводность, поэтому они медленно передают энергию. Пенополистирол передает энергию медленно, поэтому он может сохранять горячие вещи горячими, а холодные — холодными, поэтому его часто используют для охладителей. Поскольку для передачи всей энергии от моей руки к этим материалам требуется некоторое время, течет меньше энергии, и я чувствую меньшую разницу температур между объектом и моей рукой.

Итак, поскольку металл, который является проводником, и дерево, и пенополистирол, которые являются изоляторами, кажутся на ощупь разной температурой, это говорит нам о том, что они проводят энергию с разной скоростью.Эта разница в скорости передачи энергии свидетельствует о том, что материалы различаются по своим тепловым свойствам, например по тому, насколько хорошо они проводят энергию по всему материалу.

Тепло и температура — разные идеи. … Температура — это число, измеряемое в градусах. В классе мы использовали термометр для измерения температуры различных блоков. По термометру температура светлого металлического блока составляла 18 ° C, темного металлического блока — 18.25-18,5 ° C, деревянный блок 18,5-18,75 ° C, пенополистирол 19 ° C. Итак, числа, измеренные термометром, были температурами блоков.

Тепло можно рассматривать как ощущение, например, металлические блоки кажутся более холодными, чем другие блоки, однако ученики ощущают передачу энергии. Тепло — это энергия, которая течет или не течет от нас к металлу. Итак, когда я коснулся металла рукой, энергия моей руки быстро перешла к металлу, потому что он является проводником.Тепло — это то, что человек чувствует из-за передачи энергии от одного предмета к другому. Меньше энергии текло от моей руки к дереву и еще меньше к пенополистиролу, потому что они изоляторы и медленнее проводят энергию.

Поскольку разные материалы ощущались как имеющие разную температуру, скорость потока энергии для каждого из материалов разная. Несмотря на то, что скорость потока энергии для каждого материала разная, все температуры на термометре находятся в пределах 1 ° C друг от друга.Итак, поскольку теплопроводность материалов разная, а температуры материалов примерно одинаковы; это доказательство того, что тепло и температура — разные идеи.

Студент-физик, весна 2016 г.

Этот студент осознал, что даже несмотря на то, что измеренные температуры были в ожидаемом направлении, с температурой блока пенополистирола немного выше, чем температура блока светлого металла, измеренная разница в пределах 1 ° C не могла объяснить очень большую разницу, ощущаемую при прикосновении к ним. материалы.Вывод заключается в том, что большая разница в том, как эти материалы ощущаются на ощупь, объясняется большой разницей в свойствах материалов, в том, насколько хорошо они отводят энергию от теплых рук, их теплопроводности .

Пенополистирол — изолятор; он имеет низкую теплопроводность. Энергия, текущая от теплой руки к пенопласту, оставалась там, где рука касалась пенопласта; поэтому энергия перестала течь от руки к пенополистиролу, когда рука и небольшое место, где рука касалась пенопласта, стали одной теплой температуры.Остальная часть пенопласта оставалась близкой к комнатной температуре.

Металлы же являются проводниками; они обладают высокой теплопроводностью. Энергия, текущая от руки к металлу, продолжала течь и распространяться по металлическому блоку. Энергия продолжала течь из руки, заметно охлаждая руку, так что металл казался прохладным.

Теплопроводность легкого бетона в зависимости от влажности материала — Международный журнал психосоциальной реабилитации

Том 24 — Выпуск 8

Теплопроводность легкого бетона в зависимости от влажности материала