Расчет на ветровую нагрузку: Ветровая нагрузка

Содержание

Программы и формулы для расчета ветровой нагрузки


Программы для расчета ветровой нагрузки

Формулы для расчета ветровой нагрузки

Источник: СНиП 2.01.07-85 (с изм. 1 1993)

Давление ветровой нагрузки определяется по формуле: 

W= W0kc

где Wo- нормативное значение давления (см. таб.1)

k — коэффициент, учитывающий изменение ветрового давления по высоте, определяется по таб.2 в зависимости от типа местности. Принимаются следующие типы местности:

  • А — открытые побережья морей, озёр и водохранилищ, пустыни, лесостепи, тундра;
  • В — городские территории, лесные массивы и другие местности, равномерно покрытые препятствиями высотой не более 10 м;
  • С — городские районы с застройкой зданниями высотой более 25 м.

с — аэродинамический коэффициент.

W= 0,61V02

где V-численно равно скорости ветра, м/с, на уровне 10 м над поверхностью земли для местности типа А, соответствующей 10-минутному интервалу осреднения и превышаемой в среднем раз в 5 лет (если техническими условиями, утверждёнными в установленном порядке, не регламентированы другие периоды повторяемости скоростей ветра).

Таблица 1.



Ветровые районы СССР Ia 1 2 3 4 5 6 7
 Wo,кПа(кгс/м3)

0,17

(23)

0,23

(23)

0,30

(30)

0,38

(38)

0,48

(48)

0,60

(60)

0.73

(73)

0,85

(85)

 

Таблица 2.
















Высота z,м коэффициент k для типов местности
A B C
< 5 0,75 0,5 0,4
10 1 0,65 0,4
20 1,25 0,85 0,55
40 1,5 1,1 0,8
60 1,7 1,3 1
80 1,85 1,45 1,15
10 2 1,6 1,25
150 2,25 1,9 1,55
200 2,45 2,1 1,8
250 2,652 2,3 2
300 2,75 2,5 2,2
350 2,75 2,75 2,35
>480 2,75 2,75 2,75

 

Таблица 3.
















Высота z,м Коэффициент пульсаций давления ветра z для типов местности
A B C
£ 5 0,85 1,22 1,78
10 0,76 1,06 1,78
20 0,69 0,92 1,5
40 0,62 0,8 1,26
60 0,58 0,74 1,14
80 0,56 0,7 1,06
100 0,54 0,67 1
150 0,51 0,62 0,9
200 0,49 0,58 0,84
250 0,47 0,56 0,8
300 0,46 0,54 0,76
350 0,46 0,52 0,73
³ 480 0,46 0,5 0,68

Таблица 4. Определение аэродинамического коэффициента для разных типов сооружений

4.1. Сфера

 






b, град 0 15 3 45 60 75 90
с 1 0,8 0,4 -0,2 -0,8 -1,2 -1,25
               
b, град 105 120 135 150 175 180  
с -1 -0,6 -0,2 0,2 0,3 0,4  

 

4.2. Призматические сооружения



l 5 10 20 35 50 100 беск.
k 0,6 0,65 0,75 0,85 0,9 0,95 2

 

Пример расчета ветровой нагрузки:

Для трубы диаметром D=500 мм, высотой h=1000 мм, расположенной на высоте 10 м. Скорость ветра v0=8 м/с. Местность-город.

W = W0kc = (0,61*64)*0,65*0,75 = 19,032 (кПа)

 

 

Ветровая нагрузка. Расчет в Excel.

Опубликовано 15 Дек 2013
Рубрика: О жизни | 22 комментария

Смесь газов, названная воздухом и образующая атмосферу нашей планеты, постоянно движется с различной скоростью и в разных направлениях над  сушей и океанами Земли. Это явление мы называем ветром. Ветер создает комфортные условия среды обитания, но…

…ветровая нагрузка может создавать угрозу для жизни живых существ и угрозу разрушений для конструкций и сооружений.

Человеку комфортно, когда скорость ветра мала и не превышает 5 м/с. Сильный ветер – это ветер со скоростью более 12 м/с. Ветер со скоростью более 20 м/с – это шторм, а более 30 м/с – ураган.

Энергия ветра.

С точки зрения полезного использования ветровой энергии в энергетике на сегодняшний день оптимальными являются скорости ветра 8…18 м/с. При меньших скоростях ветроэнергетические установки малоэффективны, при больших возникает опасность разрушения конструкций установки.

Так как воздух имеет массу, и эта масса движется с некоторой скоростью относительно поверхности земли, то трудно даже представить, какой колоссальной кинетической энергией обладает окружающее нас воздушное пространство!!!

Чтобы составить представление о величине этой энергии, давайте вырежем из пространства его часть в виде цилиндра, мысленно расположив  некий обруч плоскостью перпендикулярно направлению вектора скорости ветра. Площадь сечения  обруча – S=1 м2 (диаметр d=1,13 м).

Если на вашем компьютере не установлена программа MS Excel, можно воспользоваться свободно распространяемой программой OOo Calc из пакета Open Office.

Правила форматирования ячеек листа Excel, применяемые в статьях этого блога, можно посмотреть на странице «О блоге».

Включаем Excel и на листе «Энергия ветра» и составляем простую расчетную программу, которая позволит быстро рассчитывать мощность ветроустановок при различных исходных условиях.

Исходные данные:

1. Скорость ветра vв в м/с записываем

в ячейку D3: =10,0

2. Время t в с заносим

в ячейку D5: =1

3. Площадь сечения потока воздуха S в м2 вписываем

в ячейку D6: =1,000

4. Плотность воздуха или удельный вес воздуха при нормальных условиях (атмосферном давлении 101325 Па = 760 мм рт. ст. и температуре +273,15° К = 0° C) γ в кг/м3 вписываем

в ячейку D7: =1,293

5. Коэффициент полезного действия — КПД ветроустановки (реально достигаемые значения не превышают 0,3…0,4) записываем

в ячейку D8: =0,35

Результаты расчетов:

6. При скорости ветра v за время t через сечение обруча пройдет объем воздуха в виде цилиндра V, который вычисляем в м3

в ячейке D10: =D3*D4*D5 =10,000

V=S*vв*t

7. Массу воздуха m в кг, прошедшую через сечение кольца за время t определяем

в ячейке D11: =D6*D9 =12,930

m=γ*V

8. Кинетическую энергию T в Дж, которой обладает движущийся цилиндр воздуха рассчитываем

в ячейке D12: =D10*D3^2/2 =647

T=m*vв2/2

9. Мощность N в КВт, которую мы смогли бы отобрать из этой струи воздуха при заданном КПД, вычисляем

в ячейке D13: =D11/D4*D7/1000 =0,226

N=(T/t)*КПД=(S*γ*vв3/2)*КПД

При реальных КПД ветроэнергетических установок около 0,3…0,4, при скорости ветра vв=10 м/с и диаметре лопастей ветряка d=1,13 м (площадь круга S=1 м2) можно получить мощность  порядка N=200…250 Вт. Этой мощности хватит чтобы за час вспахать полсотки земли! Представляете сколько вокруг нас энергии, которую мы никак не научимся эффективно отбирать и преобразовывать?! Сегодняшние ветроэнергетические установки мало-мальски начинают работать при скорости ветра vв>4 м/с, выходя на рабочий режим при скорости  vв=9…13 м/с. Однако уже при скорости ветра vв>17 м/с приходится больше заботиться о безопасности окружающих людей, животных, сооружений и сохранности установки, нежели о производстве энергии…

Итак, возможности использования ветра слегка затронули, переходим к проблемам, которые он создает.

Упрощенный расчет в Excel ветровой нагрузки.

Ветровая нагрузка, воздействуя на сооружение, пытается его опрокинуть, разорвать, сдвинуть в направлении действия потока воздуха.

Определим ветровое давление на плоскую стенку перпендикулярную направлению ветра, используя законы и формулы элементарной физики.

В файле Excel на листе «Упрощенный расчет» составляем небольшую расчетную программу, которая позволит рассчитывать ветровую нагрузку на плоскую стенку.

Исходные данные:

1. Скорость ветра vв в м/с записываем

в ячейку D3: =24,0

Скорость ветра необходимо принять для расчетов максимально возможную в данной местности с учетом даже кратковременных порывов, например, для города Омска это 24 м/с.

2. Плотность воздуха γ в кг/м3 вписываем

в ячейку D5: =1,293

3. Ускорение свободного падения на поверхности нашей планеты g в м/с2 записываем

в ячейку D6: =9,81

4. Коэффициент k, учитывающий аэродинамику формы и положения объекта, а также некоторый запас  заносим

в ячейку D7: =1.6

Результаты расчетов:

5. Расчетный скоростной напор воздуха на поверхность стенки Q в кг/м2 определяем

в ячейке D9: =D3^2*D5/2/D6 =38,0

Q=vв2*γ/(2*g)

6. Максимальную для данной местности ветровую нагрузку на плоскую поверхность W в кг/м2 рассчитываем

в ячейке D10: =D9*D7 =60,7

W=Q*k

Расчет в Excel ветровой нагрузки по СП 20.13330.2011.

В главе №11 СП 20.13330.2011 «Нагрузки и воздействия» /Актуализированная редакция СНиП 2.01.07-85* от 20.05.2011/ для профессионалов-строителей расписана методика определения ветровой нагрузки. Кроме нормального (перпендикулярного к поверхностям) давления она учитывает силу трения воздуха о неровности поверхностей, пульсации воздушного потока, аэродинамические колебания (флаттер, дивергенцию, галопирование), предусматривает проверку на отсутствие вихревого резонанса. Мы не будем далеко забираться в эти дебри и ограничимся укрупненным расчетом. Если вам необходим полный профессиональный расчет по действующим нормативам, то открывайте СП 20.13330.2011 – и считайте, разобраться в алгоритме не сложно. Дело в том, что расчеты для разных объектов весьма индивидуальны! Могу порекомендовать адрес в Интернете, где расположены ссылки на три бесплатные неплохие программы определения ветровых нагрузок: http://fordewind.org/wiki/doku.php?id=опр_ветра.

Перед началом работы необходимо найти и скачать из Интернета СП 20.13330.2011, включая все приложения.

Часть материалов из СП 20.13330.2011 находятся в файле, который подписчики сайта могут скачать по ссылке, размещенной в самом конце этой статьи.

В примечаниях к ячейкам столбца C с исходными данными поместим некоторые важные данные и ссылки на пункты СП 20.13330.2011!!!

В файле Excel на листе «Расчет по СП 20.13330.2011» начинаем составлять программу, которая позволит определять расчетную ветровую нагрузку по второму алгоритму.

Исходные данные:

1. Вписываем коэффициент надежности по нагрузке γf

в ячейку D3: =1,4

2. Определяем тип местности, воспользовавшись примечанием к ячейке C4. Например, наша местность относится к типу B. Выбираем соответствующую строку с записью B в поле с выпадающим списком, расположенном поверх

ячейки D4: =ИНДЕКС(I5:I7;I2) =B

3. Открываем Приложение Ж в СП 20.13330.2011 и по карте «Районирование территории Российской Федерации по давлению ветра» определяем для интересующей нас местности номер ветрового района (карта есть в файле для скачивания). Например, для Санкт-Петербурга и Омска – это II ветровой район. Выбираем соответствующую строку с записью II в поле с выпадающим списком, расположенном поверх

ячейки D5: =ИНДЕКС(G5:G12;G2) =II

О том, как работает функция ИНДЕКС совместно с полем со списком можно прочитать здесь.

4. Задаем эквивалентную высоту объекта над землей ze в м, пользуясь п.11.1.5 СП 20.13330.2011

в ячейке D6: =5

5. Аэродинамический коэффициент c выбираем по приложению Д.1 СП 20.13330.2011, например, для плоской стенки и записываем

в ячейку D7: =1,3

cmax < 2,2  — с наветренной стороны

cmin > -3,4 — с подветренной стороны

Определение двух следующих коэффициентов, влияющих на значение пульсационной составляющей ветровой нагрузки, является очень непростой задачей, требующей расчета частот собственных колебаний объекта! Расчет этот для разных сооружений ведется по различным и очень непростым алгоритмам!!! Я укажу далее лишь примерные возможные диапазоны значений этих коэффициентов. Желающие разобраться досконально с частотами колебаний должны обратиться к другим источникам.

6. Коэффициент пространственной корреляции пульсаций давления ветра ν определяем по п.11.1.11 СП 20.13330.2011 и заносим

в ячейку D8: =0,85

0,38 < ν < 0,95

7. Коэффициент динамичности ξ определяем по п.11.1.8 СП 20.13330.2011 и вписываем

в ячейку D9: =1,20

1,00 ≤ ξ < 2,90

Результаты расчетов:

8. Нормативное значение ветрового давления w0 в кг/м2 считываем

в ячейке D11: =ИНДЕКС(H5:h22;G2) =30

9. Ориентировочную скорость ветра vв в м/с и км/ч определяем соответственно

в ячейке D12: =(D11*9,81*2/1,2929)^0,5 =21,3

vв = (w0 *g*2/γ)^0,5

и в ячейке D13: =D12/1000*60*60 =76,8

vв= vв/1000*60*60

10. Параметр k10 считываем

в ячейке D14: =ИНДЕКС(K5:K7;I2) =0,65

11. Параметр α считываем

в ячейке D15: =ИНДЕКС(J5:J7;I2) =0,20

12. Параметр ζ10 считываем

в ячейке D16: =ИНДЕКС(L5:L7;I2) =1,06

13. Коэффициент, учитывающий изменение ветрового давления по высоте k (ze) вычисляем

в ячейке D17: =D14*(D6/10)^(2*D15) =0,49

k (ze) = k10*(ze/10)^(2*α)

14. Коэффициент пульсации ветра ζ(ze) вычисляем

в ячейке D18: =D16*(D6/10)^(-D15) =1,22

ζ(ze)= ζ10*(ze/10)^(-α)

15. Нормативное значение средней составляющей ветровой нагрузки wm в кг/м2 рассчитываем

в ячейке D19: =D11*D17*D7 =19,2

wm= w0* k (ze)*c

16. Нормативное значение пульсационной составляющей ветровой нагрузки wp вкг/м2 определяем

в ячейке D20: =D19*D9*D18*D8 =23,9

wp= wm*ξ*ζ(ze)*ν

17. Нормативное значение ветровой нагрузки w вкг/м2 вычисляем

в ячейке D21: =D19+D20 =43,1

w = wm+wp

18. Расчетную ветровую нагрузку W вкг/м2 с учетом коэффициента надежности рассчитываем

в ячейке D22: =D21*D3 =60,3

W = w*γf

Итоги

В расчетах по упрощенной методике и по СП 20.13330.2011 мы получили очень близкие результаты. Хотя во  многом это скорее случайное совпадение, обе методики имеют право на жизнь и могут использоваться  каждая для решения своих задач. По упрощенному расчету можно быстро сделать оценку нагрузки и при выполнении детального проекта уточнить ветровую нагрузку расчетом  по СП 20.13330.2011.

В заключении хочу сказать, что эта статья написана для того, чтобы читающий смог составить общее представление о том, что такое энергия ветра, понять созидательные и разрушительные аспекты темы. Расчет ветровой нагрузки достаточно сложная и многофакторная задача. Я не спроста разместил статью в рубрике «О жизни». Это не справочный материал для инженера-проектировщика! Пользуясь представленными материалами можно приблизительно рассчитать нагрузку на небольшой забор, легкую теплицу или маленькую доску объявлений. Ветровая нагрузка на более серьезные объекты должна быть рассчитана специалистом строго по главе №11 СП 20.13330.2011!

Прошу уважающих труд автора  скачать файл после подписки на анонсы статей.

Ссылка на скачивание файла: veter (xls 1,97MB).

Буду рад прочитать ваши комментарии, уважаемые читатели!!! Профессионалам – строителям в комментариях прошу учитывать, что статья написана для широкой аудитории.

Другие статьи автора блога

На главную

Статьи с близкой тематикой

Отзывы

Обновленный расчет ветрового давления в Excel

zzzzz-5

, 15 января 2009 в 07:01

#1

спасибо .проверим

Геннадий1147

, 20 января 2009 в 00:13

#2

Спасибо. На неделе посмотрю — отпишу.

IVlad

, 22 января 2009 в 16:20

#3

tutanhamon,

если не секрет, по какому нормативному документу считается

Значение коэф. K на высоте?

В нашей фирме используют к-ты поболее.

tutanhamon

, 22 января 2009 в 16:26

#4

Коэффициент k, учитывающий изменение ветрового давления по высоте z, определяется по табл.6 СНиП 2.01.07-85* «Нагрузки и воздействия» в зависимости от типа местности. Для промежуточных значений высоты, значение коэффициента k определяется линейной интерполяцией.

А у вас, наверно, по МГСН береться?…

tutanhamon

, 22 января 2009 в 16:28

#5

Но если есть желание — то можете изменять эту таблицу в экселевской книге по своему желанию =))..

IVlad

, 22 января 2009 в 16:38

#6

Нет, у нас по МДС 20-1.2006.

IVlad

, 22 января 2009 в 16:48

#7

…там например на 20 м и типе местности В

К(z)- 1,65, т.е. почти в 2 раза больше!

tutanhamon

, 22 января 2009 в 16:51

#8

Подправил в описании к листу — сделал указание на соответствующий лист…

В принципе, тут проблемы нет никакой, достаточно подправить значения в диапазоне «Значения_по_высоте» на листе «Таблицы СНиП».. Но если возникнет у вас желание — могу добавить расчет и по МДС 20-1.2006 сегодня к вечеру…

IVlad

, 22 января 2009 в 17:09

#9

tutanhamon,

нет, спасибо, мне то не надо.

Я себе сделал файлик считающий все нагрузки требуемые для статического расчета вент. фасада (учитывая тип системы, массы отделки и элементов систем и т.д.).

Я то к тому, кто по каким нормам проектирует.

vlr

, 28 января 2011 в 22:14

#10

Можно добавить мелочь, но приятную? Шаг поперечных рам здания. Затем перемножить значения ветрового давления на шаг, т.е. погонную нагрузку на раму получить. Ну чтобы уж всё в одном флаконе было.

Расчет ветровой нагрузки, ветровой район таблица

Основные повреждения, которые получают здания при порывистых ветрах, приходятся, в основном, на крышу. По телевизору, в интернете мы можем увидеть достаточно много наглядных примеров того, как не только отдельные элементы крыши, но и вся крыша, полностью, срывается под порывами ураганного ветра. Почему же происходят подобные случаи? Давайте рассмотрим механику подобных явлений и попробуем сделать расчет ветровой нагрузки.

Ветровые потоки

Расчет ветровой нагрузки учитывает направление господствующих ветров. При фронтальном направлении ветра происходит столкновение с фасадной частью здания и крышей. У вертикальной поверхности поток создаёт вихревые разнонаправленные векторы, — происходит деление на нижнюю, боковую и вертикальную составляющие:

  1. нижнее направление – самое безопасное для здания, так как все усилия направлены в сторону фундамента, то есть одной из самой прочной и массивной части дома.
  2. боковые составляющие воздействуют на фасадные части здания, окна, двери.
  3. вертикальный поток направлен прямо на свес крыши и создаёт подъёмное усилие, стремящееся приподнять кровлю, сдвинуть её с места.

Атака ветрового потока, направленная на скат крыши, образует три усилия, влияющие на расчет ветровой нагрузки, стремящиеся сдвинуть кровлю:

  • касательное, скользящее вдоль кровли, огибающее конёк и, захватывая свободные молекулы воздуха, уходящее прочь, стремясь, при этом, опрокинуть крышу;
  • перпендикулярное скату кровли, создавая давление, способное вдавить элементы кровли внутрь конструкции крыши;
  • и, наконец, из-за разницы давлений воздушной массы (с наветренной стороны образуется зона высокого давления, а с подветренной стороны – низкого), в верхней, подветренной, стороне строения образуется подъемная тяга, как у крыла самолета, стремящаяся  поднять крышу.

Силы, действующие на крышу

Проанализировав все усилия воздушных потоков, можно сделать вывод, что при высокой наклонной кровле ветер образует силы, стремящиеся опрокинуть крышу. Но чем больше угол наклона крыши, тем меньше действуют на нее касательные силы и больше – перпендикулярные скату.

Пологие скаты способствуют созданию больших подъёмных сил, старающихся приподнять конструкцию, отправив её в свободный полёт.

Расчет ветровой нагрузки

Как видим, если не подойти серьезно к учету ветровой нагрузки на крышу, то может произойти беда. Как и кто может это сделать?

Расчёт ветровой нагрузки на крышу, в зависимости от высоты её местонахождения над уровнем земли, определяется специалистами-проектировщиками по формуле:

Wр = 0,7 * W * k * C.

  • W – нормативная величина усилия, создаваемого напором воздуха; определяется по картам в приложении к СП 20.133330.2011;
  • k – коэффициент, показывающий зависимость давления от высоты над срезом верхнего уровня земли;
  • C – аэродинамический коэффициент, учитывающий направление «набегания» воздушного потока на скат крыши.

Таблица коэффициента k для типов местности:

Высота над уровнем земли, метр

Тип местности

A

B

C

≤ 5 0,75 0,5 0,4
10 1,25 0,65 0,4
20 1,25 0,85 0,55
40 1,5 1,1 0,8
60 1,7 1,3 1,0
80 1,85 1,45 1,15
100 2,0 1,6 1,25
150 2,25 1,9 1,55
200 2,45 2,1 1,8
250 2,65 2,3 2,0
300 2,75 2,5 2,2
350 2,75 2,75 2,35
≥ 480 2,75 2,75 2,75

Типы местности:

  • A – открытые пространства на побережьях морей, озёр, водохранилищ, пустыня, степь, лесостепь, тундра;
  • B – населённые пункты, лес, местность с равномерно распределёнными искусственными строениями с высотой больше 10 метров;
  • C – территория города с плотным расположением строительных сооружений высотой более 25 метров.

Таблица значений коэффициента С для двускатной кровли при векторе потока в скат крыши:

Угол наклона ά

F

G

H

I

J

15° -0,9 -0,8 -0,3 -0,4 -1,0
0,2 0,2 0,2
30° -0,5 -0,5 -0,2 -0,4 -0,5
0,7 0,7 0,4
45° 0,7 0,7 0,6 -0,2 -0,3
60° 0,7 0,7 0,7 -0,2 -0,3
75° 0,8 0,8 0,8 -0,2 -0,3

Таблица значений коэффициента С для двускатной кровли при направлении потока во фронтон крыши:

Угол наклона ά

F

H

G

I

-1,8 -1,7 -0,7 -0,5
15° -1,3 -1,3 -0,6 -0,5
30° -1,1 -1,4 -0,8 -0,5
45° -1,1 -1,4 -0,9 -0,5
60° -1,1 -1,2 -0,8 -0,5
75° -1,1 -1,2 -0,8 -0,5

Положительная величина аэродинамического коэффициента означает, что ветер давит на поверхность. Отрицательные показатели – поток создаёт разрежение у поверхности кровли, иными словами – «отсос» воздушной подушки.

Зависимость давления, создаваемого потоком воздуха от высоты здания

Как бороться с ветровыми «проказами»?

Во избежание разрушений строители нижние концы стропил надежно прикрепляют к вмонтированным в стену кронштейнам. Если неизвестно, с какой стороны будет направление господствующих ветров, то стропила закрепляют подобным образом по всему периметру здания. Общую устойчивость каркаса крыши обеспечивают ее элементы — подкосы, раскосы и связки, сечение которых рассчитано, исходя из тех природных условий, в которых ведется строительство или ремонт здания.

Уважаемые посетители!

Мы с удовольствием ответим на возникшие вопросы. Для этого Вы можете:

позвонить по номеру: +7 (495) 669 31 74

или отправить сообщение по адресу: [email protected]

и получить подробную консультацию.

 

Отраслевая энциклопедия. Окна, двери, мебель

Ветер в сочетании с изменяющейся температурой, влажностью воздуха и осадками существенно осложняет условия эксплуатации светопрозрачных конструкций. Он может создавать пылевые бури, метели; совместно с дождем вызывает увлажнение ограждающих конструкций и даже обуславливает проникновение пыли, снега и влаги через притворы оконных блоков. Ветер оказывает силовое воздействие на здания и сооружения.

В холодное время года под воздействием ветра значительно увеличиваются теплопотери здания, особенно через неплотности окон и дверей. При большой скорости ветра теплопотери в зданиях возрастают на 30-40%. Вместе с тем, ветер может способствовать улучшению аэрации территории застройки, наилучшему воздухообмену внутри здания, высушиванию строительных материалов, а при определенных параметрах- и смягчению отрицательного воздействия высоких температур и влажности.

Ветровой режим в строительной климатологии оценивают повторяемостью направлений ветра и средней скорости ветра по румбам. Повторяемость направления ветра рассчитывают в процентах от общего числа случаев направления ветра без учета штилей. Среднюю скорость ветра по румбам м/с, рассчитывают делением суммы скоростей на сумму случаев с ветром каждого румба.

В архитектурно-строительном проектировании принято характеризовать направления ветра по 8 румбам.

В соответствии со сторонами света, различают:

  1. северный
  2. северо-восточный
  3. восточный
  4. юго-восточный
  5. южный
  6. юго-западный
  7. западный
  8. северо-западный румбы.

Значения повторяемости направлений и скорости ветра в январе и июле для населенных пунктов России представлены в СНиП 23-01-99.

Сила ветра-величина переменная, как в вертикальной, так и горизонтальной проекции; она зависит от направления и скорости ветрового потока. Ветер при встрече препятствия в виде здания формирует с наветренной стороны давление (+), а с подветренной-откос (-) Величина ветрового давления увеличивается при высоте.

Рисунок 1 Эпюры ветрового давления на вертикальные преграды:

где, 1-направление ветра; 2-воздушные потоки внутри здания.

Районирование территории России но скорости ветра и ветровому давлению установлено в СНиП 2.01.07-85  «Нагрузки и воздействия».

Ветровой напор является доминирующим силовым воздействием либо на отдельно стоящие здания, либо во фронте ветрозащитной постройки. В этом случае возможно существенное охлаждение помещений с наветренной стороны фасадов. На светопрозрачные ограждения действует также так называемое гравитационное давление, возникающее из-за разности плотностей холодного наружного и тёплого внутреннего воздуха. Это давление изменяется по высоте. Максимальный его уровень проявляется в нижней части здания: вверху оно меняет свой знак, переходя через ноль. Уровень нейтральной зоны повышается с увеличением этажности здания.

Рисунок 2 Уровень нулевой зоны гравитационного давления в зданиях различной этажности

Внутри застройки ветер трансформируется по направлению и силе. Кроме того, движение воздушных масс имеет пульсирующий характер и не зависит от наружной температуры. Поэтому внутри застройки доминирующим является гравитационное давление на наружные стены зданий и оконные конструкции. Ниже на рисунке показана зависимость величины гравитационного давления на ограждающие конструкции здания при разных температурах наружного воздуха. Расчёты показали, что величина гравитационного давления при расчётных температурах наружного воздуха на уровне первого этажа девятиэтажного здания составляет в Красноярске — 800 Па, а в Москве — 500 Па.

Рисунок 3 График гравитационного давления на стены здания

Гравитационное и ветровое давление в общем случае действуют совместно. Формирование избыточного давления на внешних поверхностях здания под влиянием естественных гравитационных сил и ветра показано на рисунке:

Рисунок 4 Построение эпюр избыточных давлений.

При отсутствии ветра на поверхностях наружных стен будет действовать разной величины гравитационное давление. По закону сохранения энергии среднее давление по высоте внутри и снаружи будет одинаково. Относительно среднего уровня в нижней части здания давление столба тёплого воздуха будет меньше, чем давление столба холодного наружного воздуха с внешней поверхности стены. Эпюра этого избыточного ( относительно давления внутри здания) гравитационного давления показана на рис. a. На противоположных стенах здания эпюры одинаковы. В нижней части здания внешнее давление больше внутреннего, и величина избыточного давления имеет знак плюс. Вверху здания внутреннее давление больше внешнего, поэтому избыточное давление имеет знак минус. На некоторой высоте избыточное гравитационное давление будет равно нулю. Плоскость нулевого избыточного давления называется нейтральной плоскостью здания. Величина Рt= ± hg (ph-pb),<span /> где g = 9,81 м/с2 — ускорение свободного падения, рb и рh — соответственно плотности воздуха внутри и снаружи здания.

Если здание обдувается ветром, а температуры внутри здания и снаружи его равны (т. с. гравитационного давления нет), то на внешних поверхностях ограждений будет создаваться повышенное статистическое давление или разрежение. Внутри здания давление будет равно среднему между повышенным с наветренной и пониженным с подветренной сторон, если проницаемости ограждающих конструкций одинаковы. Эпюры давлений но высоте здания на рис. б показаны одинаковыми в предположении постоянства скорости ветра и аэродинамического режима обтекания по высоте. На практике, как известно, скорость ветра, а, следовательно, и ветровое давление увеличиваются с высотой. В СНиП 2.01.07-85 «Нагрузки и воздействия» в табл. 6 приводятся значения коэффициента К, учитывающего изменение ветрового давления по высоте, в зависимости от типа местности. [1]

Таблица 1 Изменение ветрового давления по высоте

            

Высота Z, м                    

Коэффициент K для типов местности                                                               
А В С
5 0,75 0,5 0,4
10 1,0 0,65 0,4
20 1,25 0,85 0,55
40 1,5 1,1 0,8
60 1,7 1,3 1,0
80 1,85 1,45 1,15
100 2,0 1,6 1,25
150 2,25 1,9 1,55
200 2,45 2,1 1,8
250 2,65 2,3 2,0
300 2,75 2,5 2,2
350 2,75 2,75 2,35
480 2,75 2,75 2,75

Примечание
При определении ветровой нагрузки типы местности могут быть различными для разных расчётных направлений ветра.

Принимаются следующие типы местности:

  • А — открытые побережья морей, озёр и водохранилищ, пустыни, степи, лесостепи, тундра;
  • В — городские территории, лесные массивы и другие местности, равномерно покрытые препятствиями высотой более 10 м;
  • С — городские районы с застройкой зданиями высотой более 25 м.

В соответствии со СНиП 2.01.07-85 «Нагрузки и воздействия» ветровую нагрузку, действующую на окна, необходимо рассчитывать по формуле:

Wm=Wo·k·Cгде

  • Wm— нормативное значение средней составляющей ветровой нагрузки на высоте z над поверхностью земли;
  • С — аэродинамический коэффициент, учитывающий геометрию здания (+0,8-для наветреннго фасада, -0,6- для подветреннго фасада)
  • Wo — нормативное значение ветрового давления, принимаемое в зависимости от ветрового района по таблице:

Таблица 2. Нормативное значение ветрового давления

Ветровые районы (принимаются по карте 3 приложения 5 СНиП 2.01.07-85)                           Ia        I         II        III      IV       V        VI      VII      
WкПА 0.17 0.23 0.30 0.38 0.48 0.60 0.73 0.85
Wo кгс/м2 17 23 30 38 48 60 73 85

Нормативное значение пульсационной составляющей ветровой нагрузки Wp на высоте Z находится в зависимости от коэффициента пульсации давления ветра £ на уровне Z:

Таблица 3 Коэффициент пульсации давления ветра

            

Высота              Z, м

Коэффициент K для типов местности                                                               
А В С
5 0,85 1,22 1,78
10 0,76 1,06 1,78
20 0,69 0,92 1,50
40 0,62 0,80 1,26
60 0,58 0,74 1,14
80 0,56 0,70 1,06
100 0,54 0,67 1,00
150 0,51 0,62 0,90
200 0,49 0,58 0,84
250 0,47 0,56 0,80
300 0,46 0,54 0,76
350 0,46 0,52 0,73
480 0,46 0,50 0,68

Wp=1.4 ξWph·Z/H

где Wph — нормативное значение пульсационной составляющей ветровой нагрузки на высоте Н верха дома. По ветровой нагрузке коэффициент надёжности γf принимается равным 1,4, т. е. расчётное значение ветровой нагрузки:

Wp=1.4 (Wm+Wp)

При совместном действии гравитационных сил и ветра применим принцип независимости действия сил. Поэтому величина избыточного давления определяется простым сложением частных результатов, см. рис. 4в. Эпюры избыточного давления на ограждающую конструкцию используются в дальнейшем для выбора конструктивного исполнения окна с точки зрения его воздухопроницаемости и сопротивления ветровой нагрузке и позволяют сделать вывод о дифференцированном подходе к остеклению многоэтажных зданий: на различных этажах и различно ориентированных по отношению к розе ветров фасадах здания должны устанавливаться различные по классам типы оконных конструкций.

Осадки в виде дождя и снега также должны учитываться при выборе конструкции остекления, т. к. светопрозрачные ограждения не являются абсолютно водонепроницаемыми, а снежный покров, ложащийся на горизонтальные или наклонные поверхности светопрозрачных элементов фонарей, зимних садов, оказывает силовое воздействие в виде весовой нагрузки.

Полное нормативное значение снеговой нагрузки на горизонтальную проекцию ограждения S определяется по формуле:

S=Soδ где

So— — нормативное значение веса снегового покрова на 1 м2 горизонтальной поверхности земли; принимается в соответствии с картой снегового районирования территории России по СНиП 2.01.07-85* и табл. 3

Таблица 4 Нормативное значение веса снегового покрова

Снеговые районы (принимаются по карте 1 приложения 5)                                                              I II III IV V VI
So, кПА (кгс/м2) 0.5(50) 0.7(70) 1.0(100) 1.5(150) 2.0(200) 2.5(250)

Коэффициент и перехода от веса снегового покрова земли к снеговой нагрузке зависит от схем распределения снеговой нагрузки, значений скорости ветра за три наиболее холодных месяца и углов наклона покрытий. Например, для односкатных зданий — зимних садов, коэффициент перехода

µ = 1 при a < 25°
µ = 0 при а < 60°,

при этом промежуточные значения µ определяются линейной интерполяцией.[2]

Примечание

  1. ↑ А.Ю. Безруков,В.Л.Миков «Справочник замерщика» Методическое пособие по проведению замеров оконных и дверных блоков»
  2. ↑ Интерполяция — способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений.

Вклад участника:

Смирнова Дана

Ветровая нагрузка на башню: определение, сбор и приложение

В ходе расчета и конструирования высотных решетчатых стальных сооружений, таких как башни и мачты связи, инженер-проектировщик неизбежно сталкивается с интересным и очень ответственным этапом построения расчетной схемы сооружения, а именно — ветровая нагрузка на башню, ее сбор и приложение.

Предпосылки к расчету

Специфика назначения ветровой нагрузки для выше обозначенных конструкций заключается в том, что башни и мачты не являются сплошностенчатыми, что влечет за собой особый порядок действий по определению усилий, возникаемых от ветра. Стоит отметить, что именно усилия от ветровой нагрузки являются основополагающими при назначении необходимых размеров сечения отдельных стержней разрабатываемой конструкции — ее влияние достигает 70-80%.

Как и в любом другом
проекте, вся работа начинается с получения технического задания от заказчика,
который передает проектирующей организации наиважнейшие данные для
проектирования: район строительства, высота башенного сооружения, масса и
парусность дополнительного оборудования. Как только вся необходимая информация,
прошедшая двухстороннее согласование, находится в наличии у инженера,
начинается этап расчета.

При определении и назначении ветровых нагрузок следует пользоваться рекомендациями, изложенными в СП 20.13330.2016 п.11 и прил. Д.1.14. А сам процесс расчета в общем случае выполняется методом последовательного приближения.

Алгоритм сбора ветровой нагрузки на башню или ствол мачты

В первую очередь следует выполнить предварительное, исходя из опыта проектирования, назначение сечений элементам расчетной схемы, соблюдая при этом универсальность элементах в переделах одного — двух поясов башенной конструкции.

Чтобы подсчитать общую парусность назначенных элементов инженеру придется столкнуться с проблемой отсутствия универсального программного обеспечения, которое способно автоматически собирать и суммировать площадь поверхностей элементов секции, автоматически проставляя аэродинамические коэффициенты Cx в зависимости от вида используемого сечения: есть большая разница между уголковым профилем и трубами в связи с их разной формой обтекания и способностью к завихрению от ветрового потока.

В СП 20.13330.2016 приведен алгоритм действия по подсчету ветровых нагрузок, но это не реализовано ни в одном современном САПР, поддерживающем российские стандарты. Инженеру приходится решать данную проблему, создавая вручную таблицу в программе Microsoft Excel, занося все данные и формулы вручную, получая сухую информацию, в которой достаточно легко ошибиться при дальнейшей корректировке расчетов.

Упуская детали подсчета, в общих словах, алгоритм сбора ветровой нагрузки на секцию башенной конструкции можно сформулировать следующим образом:

  • Выделить плоскую стержневую ферму, расположенную во фронтальной плоскости, перпендикулярной оси действия ветровой нагрузки.
  • Разделить плоскую ферму на j-ое количество участков (секций) по высоте.
  • Вычислить площади контуров выделенных секций Aki и площади проекций элементов, входящих в состав j-ой секции, т.е. сумму Aij.
  • Вычислить коэффициент проницаемости секции:
  • Определить коэффициенты снижения аэродинамических коэффициентов на последующие сквозные фермы (определение значения по табл. В.8 [2]):
  • Вычислить аэродинамический коэффициент для каждой j-ой секции рассматриваемой башни (мачты) Cj:
  • Вычислить аэродинамические коэффициенты каждой пространственной j-ой секции:
  • Определить среднюю статическую ветровую нагрузку на каждую j-ую секцию башни или мачты:

Полученное значение средней статической ветровой нагрузки требуется привести к узлам рассматриваемой трапеции (очертания секции):

Где aj — относительная координата центра тяжести трапеции j-ой секции.

Рассматривать влияние ветра на четырехгранную башенную конструкцию следует в 2 опасных направлениях воздействия: при его действии на ребро и грань секции. Так при направлении ветра на грань в работе участвуют только 2 параллельные ветру грани. При направлении ветра на диагональ будут работать все грани, но с меньшими усилиями. При этом усилия в поясах от составляющих ветровой нагрузки будут суммироваться. Таким образом, опасным направлением ветра для поясов является направление на диагональ, для решетки – на грань. Ветровая нагрузка на башню чаще всего становится определяющей при расчете конструкции на внутренние силовые факторы.

При построении расчетной схемы в САПР на основе внесенных значений статического ветра будет рассчитываться пульсационная составляющая для создания расчетных сочетаний нагрузок по таблице 1.

В зарубежных САПР, например, Robot Structural Analysis, удобно реализовано трехмерное проектирование с автоматическим сбором ветровых нагрузок на трех- и четырехгранные башенных конструкций, однако, по американским и французским нормам.

Ветровая нагрузка на башню аналогична мачтам, которая одинаково настраивается в ПК «Лира» и SCAD.

Поделиться ссылкой:

Нагрузка ветровая: правила расчета, рекомендации специалистов

При создании проектов по возведению сооружений и зданий расчет ветровой нагрузки приходится выполнять достаточно часто. Рассчитывается этот показатель по специальным формулам. Важно принимать во внимание такую нагрузку, например, при создании чертежей для возведения стропильных систем кровель домов, подборе конструкции и площади расположения рекламных щитов и проч.

Значение процедуры

Если пренебречь расчетами нагрузки движения воздуха, можно, как говорится, на корню загубить все дело и подвергнуть опасности жизни людей.

Если с давлением снега на стены зданий обычно сложностей не возникает — нагрузку эту видно, её можно взвесить и даже потрогать — то с ветровой всё гораздо сложнее. Ее не видно, предугадать ее интуитивно очень сложно. Да, конечно, ветер какое-то воздействие на несущие конструкции оказывает, и в некоторых случаях оно бывает даже разрушительное: скручивает рекламные баннеры, заваливает заборы и каркасы стен, срывает крыши. Но как же возможно предугадать и учесть эту силу? Поддаётся ли в принципе она расчётам?

Поддаётся! Однако дело это муторное, и непрофессионалы ветровую нагрузку подсчитывать крайне не любят. Тому существует понятное объяснение: значение расчетов — дело очень ответственное и трудное, гораздо сложнее расчётов снеговой нагрузки. Если в специально посвященному этому СП снеговой нагрузке уделено всего лишь две с половиной страницы, то исчисление ветровой втрое больше! Плюс к нему приписано обязательное приложение, размещаются на 19 страницах с указанием аэродинамических коэффициентов.

Если гражданам России еще повезло с этим, то для жителей Беларуси всё ещё сложнее — документ TKP_ЕN_1991−1−4−2О09 «Ветровые воздействия», регламентирующий нормативы и расчеты, имеет объем в 120 страниц!

С Еврокодом (ЕN_1991−1−4−2О09) в масштабах постройки частного сооружения по ветровым воздействиям немногим захочется разбираться дома за чашкой чая. Профессионально интересующимся рекомендуется скачать и изучать его основательно, имея в окружении специалиста-консультанта. Иначе из-за неверного подхода и понимания последствия расчетов могут быть плачевными.

Нормативы СНиП

Фактически само определение данному параметру дает СНиП № 2.01. 07−85. Согласно этому документу, нагрузка ветровых масс обязана рассматриваться как совокупность следующих входных данных:

  • давления, которое действует на наружные поверхности конструкций элемента сооружений или всего сооружения;
  • силы трения, которая направлена по касательной к плоскости конструкции, отнесенной к площади ее горизонтальной либо вертикальной проекции;
  • фактического давления, приложенного к внутренней плоскости здания с открытыми проемами или проницаемыми ограждающими конструкциями.

Как рассчитать нагрузку

При ее вычислении необходимо учитывать два ключевых параметра − пульсационную и среднюю составляющую. Нагрузка определяется как сумма двух этих параметров.

Рассмотрим основную формулу расчета средней составляющей. Если при проектировании ветровой напор учтен не будет, то впоследствии это крайне негативно отразится на эксплуатационных свойствах сооружения или здания.

Средняя составляющая рассчитывается по следующей формуле: W = Wо * k.

Расшифровывается так:

  • W — это расчетный показатель ветровой нагрузки при высоте над поверхностью земли,
  • Wo — это ее нормативный показатель,
  • k — обозначает коэффициент перемены давления по высоте.

Каждое начальное значение из указанной формулы определяется согласно уже имеющимся таблицам. В некоторых случаях при вычислениях употребляют также параметр C — это обозначение аэродинамического коэффициента. Формула в этом случае будет выглядеть таким образом: W = Wo * kс.

Нахождение нормативного значения

Чтобы определить, какое конкретное значение имеет этот параметр, потребуется прибегнуть к таблице районов по ветровой нагрузке Российской Федерации. Таковых имеется всего восемь, и они легко находятся в свободном доступе в интернете.

Для малоизученных местностей государства, а также для горных регионов этот параметр СНиП позволяет определять по информации официально зарегистрированных метеорологических станций и на основе опыта использования уже имеющихся сооружений и зданий. В таком случае для установления нормативного значения ветровой нагрузки употребляется специальная формула. Выглядит она таким образом: Wo=0.61 * V2o. Здесь V2o — скорость ветра в измерении метр в секунду на уровне 10 метров, который соответствует интервалу усреднения за 10 мин. и превышающей 1 раз за 5 лет.

Краткие рекомендации специалистов

Для подсчета показателей возможностей ветровой нагрузки инженеры зачастую советуют использовать хорошо известные большинству компьютерных пользователей программами ОOo Calc и MS Excel из пакета Open Office. Порядок расчетов при применении этого обеспечения может быть следующим:

  • Excel включают на листе «Мощность ветра»;
  • скорость ветра записывают в строку D3;
  • время — в строку D5;
  • зона сечения потока воздуха — в строке D6;
  • удельный вес воздуха или его плотность — в ячейку D7;
  • КПД ветроустановки — строка D8.

Далее программа сама произведет расчеты согласно введенным в них формулам.

Существуют и другие способы применения этого ПО с другими исходными данными. Но как бы то ни было, применять OOo Calc и МS Excel для подсчета ветровой нагрузки на сооружения и здания, а также их раздельные конструкции, довольно удобно.

Расчет ветровой нагрузки — Orgadata EN

Горизонтальная ветровая нагрузка на вертикальные конструкции либо рассчитывается в соответствии с различными национальными стандартами, либо применяются произвольные значения. Следующие параграфы описывают примерный порядок действий в соответствии с разрешенными методами действующего стандарта DIN 1055-4: 2005-03. Для этого выберите в разделе «Страна» вариант «Германия (DIN 1055, часть 4 и TRLV)». Другие национальные стандарты следуют тем же принципам ввода и установки.

Упрощенный метод согласно DIN 1055-4

Установите «Упрощенный метод» в разделе «Метод расчета».Этот метод обычно разрешается применять для зданий высотой до 25 м над уровнем земли. Кроме того, введите размеры кубоида, т.е. высоту здания h, ширину здания b и глубину здания d, а также введите высоту площадки (уровень моря). Наконец, вы должны определить ветровую зону и категорию местности (внутренняя или прибрежная зона), которые подходят для вашей работы. В случае сомнений всегда следует применять более невыгодные значения, например, «Прибрежная зона» вместо «Внутренняя территория».

В зависимости от высоты, скорости порыва, давления в соответствии с DIN 1055-4

Второй метод расчета согласно DIN 1055-4: 2005-03 — это расчет давления скорости порыва в зависимости от высоты.В основном он используется для зданий, высота которых превышает 25 м над уровнем земли. Зона ветра определяется напрямую или путем выбора города. В последнем случае LogiKal ® определяет ветровую зону автоматически. В категориях местности есть четыре дополнительных категории, кроме двух смешанных профилей «Прибрежная зона» и «Внутренняя территория». Это также применимо и здесь: в случае сомнений выберите более неблагоприятную категорию местности. Ввод параметров здания идентичен упрощенному методу.

Прямой ввод ветровой нагрузки в зависимости от высоты

В качестве альтернативы расчету в соответствии с DIN 1055-4: 2005-03 можно напрямую ввести высоту, зависящую от ветровой нагрузки. Выберите «Прямой ввод» вместо «Страна» и нажмите кнопку «Добавить». Имейте в виду, что вы уже должны ввести здесь окончательную распределенную нагрузку, а не скоростное давление, которое всегда умножается на аэродинамический коэффициент. Ветровое давление положительное, а ветровое — отрицательное.Предполагается, что нагрузка постоянно распределяется по ширине и глубине здания, то есть различные нагрузки из-за повышенных значений всасывания в угловых областях не применяются.

Предельные значения

Максимально допустимые значения, применимые к конструкции лучей и стекол, определены на вкладке «Предельные значения». Для балок можно определить только пределы прогиба, для стеклянных панелей также можно указать дополнительные пределы напряжений.

Пределы отклонения

Прогиб балок и оконных стекол не регулируется стандартами DIN, общими техническими допусками или руководящими указаниями по применению.В основном, так называемое «предельное состояние эксплуатационной пригодности» определяется требованиями поставщиков стекла. Пользователь вправе запросить эти значения у производителя стекла и ввести их позже. Часто применяемые значения — «8 мм» или «L / 300». Помимо стекла, можно также ограничить прогиб балок отдельно для стоек и ригелей. Уже предложены наиболее часто используемые предельные значения. Если применимо, они могут быть изменены индивидуально в любое время.

Пределы напряжений

Максимально допустимые значения напряжений для разных типов стекла указаны в нижней части формы. Значения, указанные в Техническом регламенте на использование остекления с линейными опорами (сокращение на немецком языке: TRLV), отображаются автоматически. Доступны для редактирования только значения для оконных стекол, изготовленных из закаленного стекла (STG), поскольку они регулируются общими техническими допусками. Общие предельно допустимые значения напряжений STG уже предложены.

Шт.

Пользователь может определить единицы давления ветра и напряжения, отображаемые в программе и на распечатках. Помимо [кН / м²] или [Н / мм²] доступны альтернативные единицы измерения, такие как [Н / м²], [Па], [кПа] и [МПа].

.

Скорость ветра и ветровая нагрузка

Когда движение воздуха — ветер — останавливается поверхностью — динамическая энергия ветра преобразуется в давление. Давление, действующее на поверхность, преобразуется в силу

F w = p d A

= 1/2 ρ v 2 A (1)

где

F w = сила ветра (Н)

A = площадь поверхности (м 2 )

p d = динамическое давление (Па)

ρ = плотность воздуха (кг / м 3 )

v = скорость ветра (м / с)

Примечание. На практике сила ветра, действующая на объект, создает более сложные силы из-за сопротивления и других эффектов.

Калькулятор ветровой нагрузки

Плотность воздуха (кг / м 3 )

Скорость ветра (м / с)

площадь (м 2 )

Wind velocity - wind load on surface

1) плотность воздуха 1,2 кг / м 3

  • 1 м / с = 3,6 км / ч = 196,85 фут / мин = 2,237 миль в час
  • 1 Па = 1 Н / м 2 = 1,4504×10 -4 psi (фунт / дюйм 2 )

Пример — Ураганная ветровая нагрузка, действующая на поверхность стены

Ураган со скоростью ветра 35 м / с воздействует на 10 м 2 стенка.Динамическая сила может быть рассчитана как

F w = 1/2 ρ v 2 A

= 1/2 (1,2 кг / м 3 ) (35 м / с) 2 (10 м 2 )

= 7350 Н

= 7,35 кН

Или — из приведенной выше таблицы ветровая нагрузка на квадратный метр составляет 735 Н / м 2 . Общая нагрузка на стену может быть рассчитана как

(735 Н / м 2 ) ( 10 м 2 ) = 7350 Н

Ураган, действующий на 10 м 2 стена создает силу, равную весу ок. 750 кг .

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*

*

*