Расчет ростверка свайного фундамента пример: Cвайно-ростверковый фундамент и расчет свайного фундамента с ростверком

Содержание

Расчёт свайного ростверка для свайного фундамента, примеры, формулы

Долговечность и надежность свайного ростверка зависит не только от соблюдения технологии его монтажа, но и от правильных расчетов. Все полученные результаты проверки переносятся на проект, который передается строителям.

Основные правила расчёта свайного ростверка, формулы и СНИП нормативы, полная информация далее на странице.

Расчет свайного фундамента с ростверком

Для проведения расчетов такого плана следует обращаться к специалистам, специализирующихся в этом профиле. Перед этим проводятся геологические изыскания, позволяющие разработать проект, соответствующий почве на стройплощадке.

Совет эксперта! Если работы по геодезическому изысканию проведены не будут, то произвести точные расчеты основания с ростверком будет невозможно. Объясняется это тем, что несущая способность определяется только на основании силы сопротивления почвы.

 

Рис: Схема свайно-ростверкового фундамента

Для проведения изысканий на участке бурится отверстие в почве для ее пробы и анализа. Только потом можно проводить важные расчеты.

При разработке проекта учитываются такие параметры по сваям:

  • Глубина погружения.
  • Диаметр сваи.
  • Количество свай.
  • Схема их расположения.

По ростверку:

  • Форма ростверка (3 вида: высокий, повышенный, низкий).
  • Диаметр.
  • Устойчивость на изгиб и продавливание.
  • Метод армирования.

Рис: Схематическое положения ростверка свайного фундамента

Совет эксперта! Определить высоту ростверка следует исходя из веса будущего сооружения и уровня пучинистости грунта.

Как делается расчет

Существует 2 группы, благодаря которым происходит расчет свайного фундамента.

  • Прочность используемых материалов, несущая способность почвы и оснований.
  • Осадка вследствие трещин, нагрузки вертикальной и движения свай.

Процесс проектирования по указанным предельным выполняется при помощи следующих формул.

Устойчивость к продавливанию:

Устойчивость на изгиб:

Устойчивость к поперечным нагрузкам:

СНиП для проведения полного расчета свайного ростверка

За основу берется два СНиПа:

  • Для ростверка СНиП №2.03.01.
  • Для свай СНиП №2.17.77.

Совет эксперта! Соблюдение всех рекомендаций в СНиПе является обязательным условием.

Что учитывается при расчетах

Крайне важно учитывать такие аспекты:

  • Все предполагаемы нагрузки и воздействия по СНиПу.
  • Несущая способность опор и основания на основе особых и сочетаемых нагрузок.
  • Сочетание всех используемых материалов с почвой на стройплощадке. В этом случае берутся во внимание геодезические изыскания на предмет исследования почвы и динамических/статических испытаний ЖБИ свай. Опять же, в расчет берутся показания в СНиП.

  • Обращается внимание на тип свай, они могут быть висячими или стойки. Обязательно учитывается общий вес. Не менее важны и нагрузка воздушных масс.
  • В процессе расчетов, основание с ростверком представляет собой единой рамной конструкцией. Она должна воспринимать нагрузку по вертикали и горизонтали. Также изгибающая сила.
  • Если почва сложная (грунтовые воды очень высоко и тому подобное), а проектная нагрузка высокая, то учитывается негативная сила трения в процессе осадки строения.
  • Учитываются и другие немаловажные факторы при проектировании. Особенно те, которые непосредственно связаны с разными грунтами.

Пример расчета

Предлагаем рассмотреть пример расчета ростверкового фундамента на основе свай. Хотя в интернете есть множество подобных расчетов, если вы не имеете достаточного опыта в этом вопросе, то будет крайне сложно со всем разобраться. Хотя и так, лучше обращаться к профильным специалистам, но для общего понимания стоит узнать важные детали.

Так, учитываются при расчетах следующие данные:

  • Масса постройки. Чтобы получить конкретную и точную сумму массы, то необходимо сложить массу каждого элемента строения, а, в частности: стены, стяжка пола, стропильная система, кровля, перекрытия и прочее. Для определения этой суммы необходимо использовать средний показатель конкретного строительного материала.

Рис: Вес конструктивных элементов здания

  • Полезная нагрузка. В этом случае учитывается вся создаваемая нагрузка от мебели, отделки стен, бытовых приспособлений, количество проживающих человек и тому подобное. Согласно установленным нормам, на 1 м2 приходится нагрузки до 100 кг на перекрытие.

Совет эксперта! Определение полезной нагрузки происходит путем умножения площади перекрытия на 100 кг.

  • Снеговая нагрузка. Для этого используются данные и нормативы для конкретного региона страны. Полученную сумму необходимо умножить на площадь всей крыши.

Рис: Карта снеговых нагрузок РФ

  • Вся нагрузка на фундамент строения. В этом случае следует сложить всю массу будущего строения, нагрузку от снега в вашем регионе и полезную нагрузку. Полученный результат умножается на коэффициент надежности 1,2 (для жилого дома).
  • Грузонесущая способность ЖБИ свай. Подобные расчеты выполняются согласно следующей формуле на основании геологических изысканий:

  • Сколько будет опор и какая их длина. Для этого необходима информация обо всей предполагаемой нагрузке на будущее основание. Что касается длины, то она вычисляется, отталкиваясь от характера почвы. Всегда к полученному результату следует добавить 400 мм по длине.
  •  
  • Это позволит выполнить сопряжение ростверка со сваями. Что касается шага между опорами, то преимущественно шаг колеблется от 2 до 2,5 метров. Свая всегда устанавливается по углам и в местах соединения стен.

Рис: Схема заглубления ЖБ свай

  • Расчет ростверка. Итак, все расчеты выполняются согласно предоставленным формулам.

Совет эксперта! Помните, самостоятельно делать такие расчеты не рекомендуется, необходимо обращаться исключительно к профильным специалистам, которые имеют опыт в этом вопросе.

В большинстве случаев ростверк имеет сечение 400×300 мм. Для изготовления бетона используется цемент М200 и 300. Для армирования применяются прутья А2 и 1 Ø10-15 мм.

В нашей компании работает команда высококвалифицированных специалистов, которые обладают достаточным опытом по разработке свайного фундамента с ростверком. При этом учитываются все ГОСТы и СНиПы. За счет этого достигается высочайшее качество и надежность построенного строения.

Поможем с расчётами и работами по свайному фундаменту

Мы опытная компания по погружению железобетонных свай и шпунтов, с большим парком техники и большим количеством сданных объектов. Поможем Вам с возведением свайного фундамента любой сложности, примеры наших работ на фото. Видео наших работ. Ждём Вашего обращения по заявке:

Оставить заявку

Расчет свайного фундамента v8.24 EXCEL 2010 и выше

v8.13 исправлен перебор загружений при расчете столбчатого фундамента
v8.14 откорректировано зануление расчетной нагрузки на сваю при расчете на продавливание угловой сваей. (при этом факторы отображались верно)
v8.15 исправлен баг некорректного отображения фактора прочности по наклонным сечениям.
v8.16 исправлен баг при расчете на продавливание ростверка из 1,2 свай.
v8.17 незначительные исправления в работе интерфейса программы.
v8.18 добавлен пункт: «показывать только те что используются в расчете»
v8.19 добавлен выбор уровня приложения нагрузки. Убран коэффициент перегрузки для угловой сваи = 1,2
v8.20 исправления в отчете
v8.21 добавлена возможность считать составные сваи.
v8.22 исправление орфографии.
v8.23 разблокировка отчета (что бы копировать содержимое).
v8.24 появление новых вкладок для легкого подсчета спецификаций

Преимущества:

— концепция «одного экрана» весь расчет на одном экране.

— не нужно вводить все характеристики грунтов (те характеристики что не используются в расчете затеняются

— возможность задать произвольный ростверк по координатам

— не требует лицензии, т.к. отчет — это имитация ручного расчета

— предупреждает о различных ошибках ввода данных

— несущая способность сваи указана отдельно под нижним концом и по каждому слою.

Возможности:

— определение несущей способности одиночной сваи (забивная, буровая, набивная) + ОТЧЕТ

— определение фактич. нагрузок на сваи в кусте + ОТЧЕТ

— расчет ростверка на продавливание колонной + ОТЧЕТ

— расчет ростверка на продавливание угловой сваей + ОТЧЕТ

— расчет по прочности наклонных сечений ростверков на действие поперечной силы + ОТЧЕТ

— расчет ростверка на изгиб (подбор арматуры в плитной части) + ОТЧЕТ

— подбор арматуры в подколоннике

— расчет свай на совместное действие вертикальной и горизонтальной сил и момента

— расчет осадки куста

— определение величины остаточного отказа от 1 удара.

Постараюсь ответить на все Ваши вопросы, а так же готов выполнять подобные расчеты на заказ.

группа VK https://vk.com/excel_gryzunov

Евгений Грызунов

[email protected]

Расчет свайного фундамента

На странице представлена технология расчетов фундаментов на железобетонных сваях. Вы узнаете, какие нормативы СНиП регулируют расчет свайного фундамента с ростверком и как реализуется этот процесс на практике. 

Для того чтобы свайный фундамент был надежен и долговечен, необходимо профессионально производить его расчет. Результаты расчета свайного фундамента (ростверка) отражаются в проекте и являются обязательными для исполнения строителями. Наша компания осуществляет забивку свай для свайных фундаментов в строгом соответствии со строительными нормами и на основании проекта.

Расчет свайного фундамента с ростверком

Расчетом свайно-ростверковых фундаментов занимаются профильные специалисты — инженеры-проектировщики. Выполнению расчетов предшествуют геодезические изыскания на строительной площадке, которые дают проектировщикам необходимую исходную информацию о характеристиках грунтов на объекте. Важно: без реализации геодезического анализа почвы на объекте проектирование ростверкового фундамента не может быть выполнено правильно, поскольку ключевой параметр  фундамента — его несущую способность, можно рассчитать только на основании силы сопротивления грунта.

Рис: Схема свайно-ростверкового фундамента

Процесс геодезии участка начинается с бурения пробных скважин, из которых забирается керн (проба) почвы для дальнейшего анализа в лабораторных условиях. На основе полученных данных производится расчет следующих параметров фундамента.

Свайная часть:

  • Требуемая глубина заложения опор;
  • Диаметр опор;
  • Общее количество опор в фундаменте;
  • Схема размещения свай.

Ростверковая часть:

  • Конфигурация ростверка — низкий, повышенный, высокий;
  • Сечение ростверка;
  • Устойчивость конструкции к нагрузкам на изгиб, продавливание;
  • Способ армирования обвязки.


Рис
: Схема положения ростверка фундамента

Важно: высота размещения ростверка выбирается исходя из степени пучинистости почвы на объекте и веса возводимого здания — легкие дома на склонном к пучению грунте строятся на высоких (поднятых на 20-30 см. над уровнем почвы) ростверках, в нормальных грунтах обвязка укладывается на поверхность почвы, при необходимости обустройства технического подпола либо цокольного этажа, ростверк размещается ниже глубины промерзания почвы. 

 

Как производится расчет свайного фундамента

Производство расчетов свайных фундаментов и оснований выполняется по предельным состояниям 1-й и 2-й группы.

К первой группе предельных состояний относятся:

  • прочность материалов, из которых изготовлены сваи и свайные ростверки
  • несущая способность грунта
  • несущая способность оснований, в случаях наличия значительных горизонтальных нагрузок

Смотрите так же:

Ко второй группе предельных состояний относятся:

  • осадки свайных оснований от вертикальных нагрузок
  • перемещения (или горизонтальные повороты) свай вместе с окружающим грунтом при наличии горизонтальных нагрузок и моментов
  • образование или раскрытие трещин в железобетонных конструкциях свайных фундаментов.

Проектирование свайного ростверка по вышеуказанным предельным состояниям ведется по следующим формулам.

Устойчивость к продавливанию угловой сваей: , где: 

  • Fаi — нормативная нагрузка на угловую свайную опору;
  • h01 — высота обвязки в месте стыковки с угловой сваей;
  • — сила нагрузки, образуемой давлением сваи на ростверк;
  • Ві — расчетный коэффициент, который определяется на основании формулы Ві = К(Hоі/Соі).

Устойчивость к нагрузкам на изгиб:  и , где: 

  • Мхі, Муі — действующие на ростверк изгибающие моменты;
  • — нормативна нагрузка на свайные опоры;
  • Хі, Уі — расстояние между нижней гранью ростверка и осями свайных опор;
  • Мfx, Мfy — действующие на ростверк изгибающие моменты местного типа;

Прочностная устойчивость к поперечным нагрузкам:   :

  • Q — нормативная устойчивость свайных опор, размещенных вне части ростверка, испытующей наибольшие поперечные нагрузки;
  • b — ширина обвязки;
  • Rbt — сопротивление обвязки к нагрузкам на растяжение по материалу;
  • Ho — высота обвязки;
  • С — расстояние от нижнего контура ростверка до оси свайной опоры. 

Расчет свайного фундамента СНиП

Проектирование свайного фундамента ведется на основании двух нормативных актов:

  • Ростверк рассчитывается согласно рекомендаций СНиП №2.03.01 «Конструкции из бетона и железобетона»;
  • Сваи рассчитываются по СНиП №2.17.77 «Свайные фундаменты».

Важно: соблюдение положений вышеуказанных строительных документов при проектировании свайно-ростверковых фундаментов обязательно.

Что учитывается при расчете свайных фундаментов

Итак, рассмотрим, какие аспекты при расчете свайных фундаментов принимаются в учет:

  • Все возможные нагрузки и воздействия на свайный фундамент рассчитываются на основании СНиП, при этом указанные значения умножаются на так называемый коэффициент надежности, определенный в «Правилах учета степени ответственности зданий и сооружений при проектировании конструкций».
  • Несущая способность сваи и свайного фундамента рассчитывается как на основные сочетания нагрузок, так и особые.  Расчет по деформациям производится на основные сочетания.
  • В расчетах используются расчетные значения характеристик применяемых материалов и грунтов на строительной площадке (на основании исследований грунтов и проведенных статических или динамических испытаний свай), исходя из значений, указанных в СНиП.

  • Кроме того в обязательном порядке учитываются тип используемых свай (сваи-стойки или висячие сваи), их собственный вес и показатели ветровых (креновых) нагрузок.
  • При расчетах фундамент с ростверком на сваях рассматривается, как единая рамная конструкция, воспринимающая как вертикальные, так и горизонтальные нагрузки, и изгибающие силы.
  • При значительных проектных нагрузках и в условиях сложных грунтов, в том числе с высоким уровнем грунтовых вод, в расчетах учитываются и отрицательные силы трения при осадке здания.
  • Есть и другие аспекты, связанные с различными грунтами и их состоянием, которые также учитываются в расчетах.

Пример расчета свайного фундамента

Пример расчета свайного фундамента можно легко найти в интернете, однако он изобилует специфическими формулами и символами, в которых неподготовленному человеку разобраться весьма проблематично, да и ни к чему – это дело специалистов.

В качестве примера приводим алгоритм расчета свайно-ростверкового фундамента:

  • Расчет массы строения;

 Чтобы определить массу здания необходимо отдельно рассчитать вес каждого конструктивного элемента дома  (кровли, перекрытий, стен, стяжки, стропильной системы). Делается это исходя из размеров конструктивных частей зданий и усредненного веса одного квадратного метра стройматериалов.

Рис: Вес конструктивных элементов здания

  • Расчет полезных нагрузок;

К полезным нагрузкам относится вес мебели, декоративной облицовки стен, людей и предметов, находящихся в доме во время эксплуатации сооружения. Согласно действующим строительным нормативам, величина эксплуатационной нагрузки составляет 100 кг на 1 м2 перекрытия жилого здания.

Важно: нагрузка высчитывается посредством умножения совокупной площади перекрытий дома (с учетом всех этажей) на 100 кг.

  • Расчет снеговых нагрузок;

Необходимо определить, какая нормативная снеговая нагрузка приходится на ваш регион, и умножить полученную величину на площадь кровли здания.

Рис: Карта снеговых нагрузок РФ

  • Определение совокупных нагрузок на фундамент;

Суммируем массу здания, полезную и снеговую нагрузку и умножаем полученную величину на коэффициент надежности. Для жилых зданий его величина составляет 1,2.

  • Определение грузонесущей способности сваи;

Исходя из полученных в результате геодезических изысканий характеристик грунтов высчитываем несущую возможность одной железобетонной сваи по формуле:

  • Определение количества свай в фундаменте и требуемой длинны опор.

Чтобы рассчитать количество свай делим совокупные нагрузки, действующие на основание, на грузонесущую способность одной сваи.

Длина свай определяется исходя из типа грунтов на объекте. Опорная подошва опоры должна вскрывать неустойчивые верхние пласты грунта и углубляться  не менее чем на 1 метр в высокотвердые песчаные либо глинистые породы.

Рис: Схема заглубления ЖБ свай

К требуемой длине добавляются 40 см., необходимые для сопряжения свай с железобетонным ростверком. В фундаменте сваи размещаются с шагом в 2-2.5 метров, по одной опоре устанавливается на углах дома и в точках пересечения его стен.

  • Расчет ростверка

Расчет ростверка выполняется по указанных в предыдущем разделе статьи формулам. Рекомендуем доверить проектирование обвязки профессионалам, поскольку самостоятельно произвести правильные расчеты, не обладая должным опытом, невозможно.

Наиболее часто используемое сечение ростверка — 40*30 см. Тело обвязки формируется из бетона марок М200 и М300, конструкция дополнительно армируется продольно-поперечным каркасом из прутьев арматуры А2 и А1 (10-15 мм. в диаметре).

Наша компания производит свайные работы, в том числе испытания свай, в строгом соответствии с расчетными данными и СНиП. Тем самым обеспечивается высокое качество результатов и надежность построенного свайного фундамента.

Получить детальную консультацию по погружению свай вы можете у наших специалистов, предварительно заполнив форму:

Так же рекомендуем посмотреть:

 
Наша компания занимается свайными работами — обращайтесь, поможем!

 

Пособие к СНиП 2.03.01-84 Пособие по проектированию железобетонных ростверков свайных фундаментов под колонны зданий и сооружений

На главную | База 1 | База 2 | База 3
Поиск по реквизитамПоиск по номеру документаПоиск по названию документаПоиск по тексту документа
Искать все виды документовДокументы неопределённого видаISOАвиационные правилаАльбомАпелляционное определениеАТКАТК-РЭАТПЭАТРВИВМРВМУВНВНиРВНКРВНМДВНПВНПБВНТМ/МЧМ СССРВНТПВНТП/МПСВНЭВОМВПНРМВППБВРДВРДСВременное положениеВременное руководствоВременные методические рекомендацииВременные нормативыВременные рекомендацииВременные указанияВременный порядокВрТЕРВрТЕРрВрТЭСНВрТЭСНрВСНВСН АСВСН ВКВСН-АПКВСПВСТПВТУВТУ МММПВТУ НКММПВУП СНЭВУППВУТПВыпускГКИНПГКИНП (ОНТА)ГНГОСТГОСТ CEN/TRГОСТ CISPRГОСТ ENГОСТ EN ISOГОСТ EN/TSГОСТ IECГОСТ IEC/PASГОСТ IEC/TRГОСТ IEC/TSГОСТ ISOГОСТ ISO GuideГОСТ ISO/DISГОСТ ISO/HL7ГОСТ ISO/IECГОСТ ISO/IEC GuideГОСТ ISO/TRГОСТ ISO/TSГОСТ OIML RГОСТ ЕНГОСТ ИСОГОСТ ИСО/МЭКГОСТ ИСО/ТОГОСТ ИСО/ТСГОСТ МЭКГОСТ РГОСТ Р ЕНГОСТ Р ЕН ИСОГОСТ Р ИСОГОСТ Р ИСО/HL7ГОСТ Р ИСО/АСТМГОСТ Р ИСО/МЭКГОСТ Р ИСО/МЭК МФСГОСТ Р ИСО/МЭК ТОГОСТ Р ИСО/ТОГОСТ Р ИСО/ТСГОСТ Р ИСО/ТУГОСТ Р МЭКГОСТ Р МЭК/ТОГОСТ Р МЭК/ТСГОСТ ЭД1ГСНГСНрГСССДГЭСНГЭСНмГЭСНмрГЭСНмтГЭСНпГЭСНПиТЕРГЭСНПиТЕРрГЭСНрГЭСНсДИДиОРДирективное письмоДоговорДополнение к ВСНДополнение к РНиПДСЕКЕНВиРЕНВиР-ПЕНиРЕСДЗемЕТКСЖНМЗаключениеЗаконЗаконопроектЗональный типовой проектИИБТВИДИКИМИНИнструктивное письмоИнструкцияИнструкция НСАМИнформационно-методическое письмоИнформационно-технический сборникИнформационное письмоИнформацияИОТИРИСОИСО/TRИТНИТОсИТПИТСИЭСНИЭСНиЕР Республика КарелияККарта трудового процессаКарта-нарядКаталогКаталог-справочникККТКОКодексКОТКПОКСИКТКТПММ-МВИМВИМВНМВРМГСНМДМДКМДСМеждународные стандартыМетодикаМетодика НСАММетодические рекомендацииМетодические рекомендации к СПМетодические указанияМетодический документМетодическое пособиеМетодическое руководствоМИМИ БГЕИМИ УЯВИМИГКМММНМОДНМонтажные чертежиМос МУМосМРМосСанПинМППБМРМРДСМРОМРРМРТУМСанПиНМСНМСПМТМУМУ ОТ РММУКМЭКННАС ГАНБ ЖТНВННГЭАНДНДПНиТУНКНормыНормы времениНПНПБНПРМНРНРБНСПНТПНТП АПКНТП ЭППНТПДНТПСНТСНЦКРНЦСОДМОДНОЕРЖОЕРЖкрОЕРЖмОЕРЖмрОЕРЖпОЕРЖрОКОМТРМОНОНДОНКОНТПОПВОПКП АЭСОПНРМСОРДОСГиСППиНОСНОСН-АПКОСПОССПЖОССЦЖОСТОСТ 1ОСТ 2ОСТ 34ОСТ 4ОСТ 5ОСТ ВКСОСТ КЗ СНКОСТ НКЗагОСТ НКЛесОСТ НКМОСТ НКММПОСТ НКППОСТ НКПП и НКВТОСТ НКСМОСТ НКТПОСТ5ОСТНОСЭМЖОТРОТТПП ССФЖТПБПБПРВПБЭ НППБЯПВ НППВКМПВСРПГВУПереченьПиН АЭПисьмоПМГПНАЭПНД ФПНД Ф СБПНД Ф ТПНСТПОПоложениеПорядокПособиеПособие в развитие СНиППособие к ВНТППособие к ВСНПособие к МГСНПособие к МРПособие к РДПособие к РТМПособие к СНПособие к СНиППособие к СППособие к СТОПособие по применению СППостановлениеПОТ РПОЭСНрППБППБ-АСППБ-СППБВППБОППРПРПР РСКПР СМНПравилаПрактическое пособие к СППРБ АСПрейскурантПриказПротоколПСРр Калининградской областиПТБПТЭПУГПУЭПЦСНПЭУРР ГазпромР НОПРИЗР НОСТРОЙР НОСТРОЙ/НОПР РСКР СМНР-НП СРО ССКРазъяснениеРаспоряжениеРАФРБРГРДРД БГЕИРД БТРД ГМРД НИИКраностроенияРД РОСЭКРД РСКРД РТМРД СМАРД СМНРД ЭОРД-АПКРДИРДМРДМУРДПРДСРДТПРегламентРекомендацииРекомендацияРешениеРешение коллегииРКРМРМГРМДРМКРНДРНиПРПРРТОП ТЭРС ГАРСНРСТ РСФСРРСТ РСФСР ЭД1РТРТМРТПРУРуководствоРУЭСТОП ГАРЭГА РФРЭСНрСАСанитарные нормыСанитарные правилаСанПиНСборникСборник НТД к СНиПСборники ПВРСборники РСН МОСборники РСН ПНРСборники РСН ССРСборники ценСБЦПСДАСДАЭСДОССерияСЗКСНСН-РФСНиПСНиРСНККСНОРСНПСОСоглашениеСПСП АССП АЭССправочникСправочное пособие к ВСНСправочное пособие к СНиПСправочное пособие к СПСправочное пособие к ТЕРСправочное пособие к ТЕРрСРПССНССЦСТ ССФЖТСТ СЭВСТ ЦКБАСТ-НП СРОСТАСТКСТМСТНСТН ЦЭСТОСТО 030 НОСТРОЙСТО АСЧМСТО БДПСТО ВНИИСТСТО ГазпромСТО Газпром РДСТО ГГИСТО ГУ ГГИСТО ДД ХМАОСТО ДОКТОР БЕТОНСТО МАДИСТО МВИСТО МИСТО НААГСТО НАКССТО НКССТО НОПСТО НОСТРОЙСТО НОСТРОЙ/НОПСТО РЖДСТО РосГеоСТО РОСТЕХЭКСПЕРТИЗАСТО САСТО СМКСТО ФЦССТО ЦКТИСТО-ГК «Трансстрой»СТО-НСОПБСТПСТП ВНИИГСТП НИИЭССтП РМПСУПСССУРСУСНСЦНПРТВТЕТелеграммаТелетайпограммаТематическая подборкаТЕРТЕР Алтайский крайТЕР Белгородская областьТЕР Калининградской областиТЕР Карачаево-Черкесская РеспубликаТЕР Краснодарского краяТЕР Мурманская областьТЕР Новосибирской областиТЕР Орловской областиТЕР Республика ДагестанТЕР Республика КарелияТЕР Ростовской областиТЕР Самарской областиТЕР Смоленской обл.ТЕР Ямало-Ненецкий автономный округТЕР Ярославской областиТЕРмТЕРм Алтайский крайТЕРм Белгородская областьТЕРм Воронежской областиТЕРм Калининградской областиТЕРм Карачаево-Черкесская РеспубликаТЕРм Мурманская областьТЕРм Республика ДагестанТЕРм Республика КарелияТЕРм Ямало-Ненецкий автономный округТЕРмрТЕРмр Алтайский крайТЕРмр Белгородская областьТЕРмр Карачаево-Черкесская РеспубликаТЕРмр Краснодарского краяТЕРмр Республика ДагестанТЕРмр Республика КарелияТЕРмр Ямало-Ненецкий автономный округТЕРпТЕРп Алтайский крайТЕРп Белгородская областьТЕРп Калининградской областиТЕРп Карачаево-Черкесская РеспубликаТЕРп Краснодарского краяТЕРп Республика КарелияТЕРп Ямало-Ненецкий автономный округТЕРп Ярославской областиТЕРрТЕРр Алтайский крайТЕРр Белгородская областьТЕРр Калининградской областиТЕРр Карачаево-Черкесская РеспубликаТЕРр Краснодарского краяТЕРр Новосибирской областиТЕРр Омской областиТЕРр Орловской областиТЕРр Республика ДагестанТЕРр Республика КарелияТЕРр Ростовской областиТЕРр Рязанской областиТЕРр Самарской областиТЕРр Смоленской областиТЕРр Удмуртской РеспубликиТЕРр Ульяновской областиТЕРр Ямало-Ненецкий автономный округТЕРррТЕРрр Ямало-Ненецкий автономный округТЕРс Ямало-Ненецкий автономный округТЕРтр Ямало-Ненецкий автономный округТехнический каталогТехнический регламентТехнический регламент Таможенного союзаТехнический циркулярТехнологическая инструкцияТехнологическая картаТехнологические картыТехнологический регламентТИТИ РТИ РОТиповая инструкцияТиповая технологическая инструкцияТиповое положениеТиповой проектТиповые конструкцииТиповые материалы для проектированияТиповые проектные решенияТКТКБЯТМД Санкт-ПетербургТНПБТОИТОИ-РДТПТПРТРТР АВОКТР ЕАЭСТР ТСТРДТСНТСН МУТСН ПМСТСН РКТСН ЭКТСН ЭОТСНэ и ТЕРэТССЦТССЦ Алтайский крайТССЦ Белгородская областьТССЦ Воронежской областиТССЦ Карачаево-Черкесская РеспубликаТССЦ Ямало-Ненецкий автономный округТССЦпгТССЦпг Белгородская областьТСЦТСЦ Белгородская областьТСЦ Краснодарского краяТСЦ Орловской областиТСЦ Республика ДагестанТСЦ Республика КарелияТСЦ Ростовской областиТСЦ Ульяновской областиТСЦмТСЦО Ямало-Ненецкий автономный округТСЦп Калининградской областиТСЦПГ Ямало-Ненецкий автономный округТСЦэ Калининградской областиТСЭМТСЭМ Алтайский крайТСЭМ Белгородская областьТСЭМ Карачаево-Черкесская РеспубликаТСЭМ Ямало-Ненецкий автономный округТТТТКТТПТУТУ-газТУКТЭСНиЕР Воронежской областиТЭСНиЕРм Воронежской областиТЭСНиЕРрТЭСНиТЕРэУУ-СТУказУказаниеУказанияУКНУНУОУРврУРкрУРррУРСНУСНУТП БГЕИФАПФедеральный законФедеральный стандарт оценкиФЕРФЕРмФЕРмрФЕРпФЕРрФормаФорма ИГАСНФРФСНФССЦФССЦпгФСЭМФТС ЖТЦВЦенникЦИРВЦиркулярЦПИШифрЭксплуатационный циркулярЭРД
Показать все найденныеПоказать действующиеПоказать частично действующиеПоказать не действующиеПоказать проектыПоказать документы с неизвестным статусом
Упорядочить по номеру документаУпорядочить по дате введения

Как выполнить расчет количества свай для свайно-винтового фундамента

Чтобы понять, как сделать расчет количества винтовых свай для дома, можно использовать калькулятор расчета свайного фундамента или рассмотреть пример, приведенный для каркасного дома. Характеристики здания:

  • Один этаж с мансардой. Крыша, крытая металлочерепицей, вальмового типа, стены без фронтонов имеют одинаковую высоту;
  • Межкомнатные перегородки толщиной 8 см выполнены из гипсокартона без шумоизоляции.
  • Наружные стены с утеплителем толщиной 15 см, перекрытия деревянные.
  • Высота фасада первого этажа 3 м, высота потолков 2,6 м.
  • Высота стен мансарды 1,5 м.
  • Размеры дома в плане 6×8 м.
  • Общая длина межкомнатных перегородок 25 м

Для подсчета того, сколько свай нужно для дома, требуются данные о типе почвы и особенностях ландшафта. В приведенном примере расчета количества свай для дома строительство ведется на ровном участке с глинистым грунтом, несущий пласт залегает на глубине 3 м от поверхности. Средняя снеговая нагрузка составляет 170 кг/м2.

Для фундамента понадобятся сваи диаметром 108 мм и длиной 3,5 м. Свайные конструкции берут с запасом по длине — 3,8-4,0 м. Для расчета нагрузок принимается примерное количество опор, равное 10. Чтобы понять, как рассчитать свайный фундамент, сбор нагрузок лучше выполнить в форме таблицы. Все полученные значения округляются в большую сторону до целого числа.

Таблица 3. Сбор нагрузок.

Тип нагрузки

Коэффициент надежности

Расчет

наружные стены

1,1

Площадь стен умножить на массу 1 м2.

((2 шт x 6 м) + (2 шт x 8 м)) x 4,5 м x 50 кг x 1,1 = 6930

внутренние стены

1,1

2 шт (на двух этажах) х 3 м (высота стен первого этажа) х 8 м (длина) х 50 кг x 1,1 = 2640

межкомнатные перегородки

1,2

25 м х 2,6 м (высота потолков) x 32 кг x 1,2 = 2496

перекрытия

1,1

2 шт (пол первого этажа и пол мансарды) x 6 м x 8 м x 170 кг x 1,1 = 17952

кровля

1,2

(6 м x 8 м х 65 кг x 1,2) / cos45ᵒ (угол наклона) = 5317

фундамент (предварительно)

1,05

10 шт x 48 кг (вес 1 сваи длиной 4 м) х 1,05 = 504

полезная

1,2

2 этажа х (160 кг x 6 м x 8 м) x 1,2 = 18432

снеговая

1,4

170 кг/м2 х 48 м (площадь кровли) x 1,4 =11424

По предварительным подсчетам сумма всех нагрузок на основание равна 65695 кг. В расчет принимается округленное значение 65,7 тонн. Далее проводится подсчет количества свай. Средняя несущая способность одной опоры составляет 6 тонн. Общий вес конструкции нужно разделить на это число: 65,7 т / 6 т = 10,95 шт. Округляем до целого, получаем 11 свай. Значение окончательно принимается, хотя и отличается от предварительного. Свайные конструкции будут установлены по углам и серединам наружных стен, а также в точках пересечения внутренних стен. Проектирование фундамента позволяет обеспечить устойчивое и прочное основание для постройки дома, избежать перерасхода материалов.

Расчёт свайного фундамента с ростверком: алгоритм и наглядный пример

Расчёт свайного фундамента с ростверком: алгоритм и наглядный пример

Строительство здания на слабом грунте со сложным рельефом начинается с заложения столбчатого фундамента. Чтобы конструкция держалась на стационарном уровне, не подвергалась воздействию влаги и холода , инженеры-проектировщики выполняют расчет свайного фундамента с ростверком.

Алгоритм расчета свайного фундамента с ростверком

Вычисление полезных нагрузок

Полезная нагрузка – это сумма веса мебели, людей, половых покрытий, бытовых приборов, облицовок. Рассчитывается приблизительно, согласно нормам колеблется между 100 и 200 кг. на единицу площади перекрытия помещения.

S – совокупная площадь перекрытия дома.

Вычисление снеговых нагрузок

Карта снеговых нагрузок для расчета

Снеговая нагрузка – давление на поверхность кровли снежного покрова. Нормативное снеговое давление определено для каждого региона индивидуально. Например, С. Н в Иркутске колеблется между 392 кг/м 2 и 560 кг/м 2 .

N – вес снегового покрова,

S – площадь кровли здания.

Вычисление массы здания

Масса здания – сумма веса элементов дома: стен, стропильной системы, перекрытий, кровли, стяжки.

M – масса строения,

m – удельный вес элемента.

V = усредненный вес 1 м 2 стройматериала,

S = площадь элемента.

Пример составления сводки для вычисления массы здания:

Вычисление совокупных нагрузок

Совокупные нагрузки – это сумма воздействий на опоры.

С. Н = (М + П.Н + С. Н) * К.Н

К. Н – коэффициент надежности, соответствующий предельному состоянию. Прописан в своде правил №2.01.07-85*. Например, для жилых зданий – 1,2.

Вычисление грузонесущей способности сваи

Грузонесущая способность – это давление, которое выдерживает опора. Высчитывается по данным исследования грунта, например, основываясь на сопротивлении почвы.

  • Fdf = u * ∑ Ycr * Fi * Hi,
  • Fdr = Ycr * R * A,
  • Fd = Ycr * (Fdf + Fdr).

Fd – грузонесущая способность сваи,

Ycr — коэффициент работы столба в почве после заложения (=1),

u – внешний периметр сечения опоры,

Fi – сопротивление грунта у боковой стенки столба,

Hi – толщина грунта, соприкасающаяся с боковой стенкой опоры,

R – нормативное сопротивление почвы под основой столба,

А – площадь опоры.

Нормативные значения или формулы для их нахождения даны в своде правил 2.02.01-83*.

Расчет количества свай ростверкового фундамента

Количество свай – минимальное число опор, поддерживающих сооружение.

В обязательном порядке опоры устанавливаются на углах дома, а также в местах стыковки стен. Расстояние между столбами свайно-ростверкового фундамента — 2-2,5 м.

n – количество столбов

Вычисление длины свай

Длина сваи – глубина заложения стержня, необходимая для устойчивого положения основания конструкции. Высчитывается по данным исследования грунта, например, основываясь на высоте пластов.

Подошва углубляется на 1 метр в твердые породы (крупный песок). К длине на уровне растительного слоя добавляется 40-50 см. (определяет высота обвязки) для соединения опор и рамы.

Расчет ростверка свайного фундамента

Ростверк – железобетонная рама, которая соединяет верхнюю часть столбов, а также служит опорной конструкцией для несущих элементов здания.

Расчет свайного фундамента с ростверком выполняется в соответствии с предельными состояниями. Предельное состояние – состояние, при котором конструкция получает необратимую деформацию или локальное повреждение, а также не способна сопротивляться внешним воздействиям. Классификация пределов:

  • 1 группа: несущая способность грунта, прочность материалов свай и обвязки, глубина заложения,
  • 2 группа: усадки, повороты опор и контактной почвы под воздействием внешних факторов, например, мерзлоты.

При расчете свайного фундамента с ростверком для практически верного заложения учитываются силы трения при усадке, например в почвах с грунтовыми водами. Принимают во внимание тип свай, а также величину креновых нагрузок.

Согласно вышеуказанной классификации и сборникам правил №2.17.77, №2.03.01 размер обвязки и глубина ее заложения рассчитываются по формулам:

  1. Fаi ≤ Rbt * h01 * ∑ Uі * Ві – устойчивость к продавливанию угловой опорой.
  2. Мхі = ∑ Fі * Хі – Мfx – устойчивость к изгибам.
  3. Q ≤ 1.5 * b * Ho * Rbt * – устойчивость к поперечному давлению.

Fаi – нормативное давление на угловую сваю,

Rbt – сопротивление рамы к растяжению,

h01 – глубина заложения обвязки на угловой опоре,

Uі – сила давления опоры на раму,

Ві = К * (Hоі / Соі) – расчетный коэффициент (свод №2.03.01),

Мхі – изгибающие моменты, действующие на ростверк,

Fі – нормативная нагрузка на столбы,

Хі – расстояние между осями опор и нижней гранью рамы,

Мfx – изгибающие факторы местного типа, действующие на обвязку,

Q – нормативная устойчивость столбов вне рамы (испытывают наибольшее поперечное давление),

b – ширина ростверка свайного фундамента,

Ho – глубина заложения ростверка в свайном фундаменте.

Расчет свайного фундамента с ростверком производят согласно рекомендациям сборников №2.01.07-85*, №2.02.01-83, №2.17.77, №2.03.01.

Пример расчета свайного фундамента с ростверком

Требуется построить одноэтажный жилой дом в Сургуте. Длина 8 м., ширина 9 м. Болотная почва. Опоры – винтовые, размером 86х250х2500. Итак, как правильно рассчитать свайно-ростверковый фундамент?

  1. П.Н = 8 * 9 * 100 кг = 7200 кг
  2. Нормативная снеговая нагрузка в Сургуте – 180 кг/м 2 . С.Н = 180 * 8 * 9 = 12960 кг.
  3. Предположим, что сумма веса облицовки, крыши и бруса – 30126 кг.
  4. С. Н = (М + П.Н + С. Н) * К.Н = (30126 + 7200 + 12960) * 1,2 = 60343 кг. (так как дом жилой, К.Н – 1,2).
  5. Предположим, что Fd (грузонесущая способность сваи) – 2000 кг. Следовательно, n = С.Н / Fd = 60343 / 2000 = 30. Таким образом, для строительства понадобится 30 столбов. Между опорами 2 м.
  6. Допустим, что грунт имеет 6 пластов: растительный, супесь, глина, суглинок, глина, песок средней крупности. Опора углубляется на 1 м. в твердую породу – песок, суммарная высота остальных слоев — 7.25 м. Дополнительно прибавляется 40 см. для соединения с обвязкой. Высота свай = 1 + 7,25 + 0,4 = 8,65 м.
  7. Стандартное сечение обвязки – 40 * 30 см. Масса рамки формируется из бетона, армируется каркасом из арматуры.

Дом – это крепость, основа которой — фундамент. В слабых грунтах со сложным рельефом давление на опоры увеличивается в разы. Рама – единая конструкция, выдерживающая изгибающие силы, вертикальный и горизонтальный навал. Точный расчет свайно-ростверкового фундамента делает проживание в здании безопасным.

Прочитайте еще:

Чтобы решить, свайно-винтовой, ленточный или какой еще фундамент лучше выбрать под строящийся дом, важно понять, какие винтовой фундамент имеет плюсы .

Дом устойчив к промерзанию, грунтовым водам, защищен от проседания, выдерживает постоянные и временные нагрузки, если имеет надежную опору – .

Фундамент на винтовых сваях используется при малоэтажном строительстве. Его главными преимуществами является возможность возведения любого типа .

Расчёт свайного фундамента с ростверком: алгоритм и наглядный пример
Пример правильного расчета свайного фундамента с ростверком – на какую глубину закладывать, какой ширины делать, оптимальная высота ростверка, количество свай

Источник: myfundament.ru

Подбор расстояния между опорами при закладке свайного фундамента

Решив использовать в качестве опоры дома свайный фундамент, человек сталкивается с необходимостью правильно рассчитать расстояние между столбами.

Это крайне важный параметр, от которого надежность дома зависит в такой же степени, как и от правильного подбора количества свай и их грамотной установки.

Расстояние между столбами зависит от множества параметров:

  • массы постройки,
  • площади дома,
  • архитектурных особенностей проекта (количество углов и пересечений стен, их взаимного расположения,
  • жесткости и упругости материала стен постройки и особенностей ростверка,
  • несущей способности почвы и прочих характеристик грунта,
  • выбранного типа опор фундамента, их размеров.

При расчете следует ориентироваться на требования и рекомендации строительных норм и правил. Перед определением промежутков следует высчитать необходимое количество свай.

Расчет количества

Чтобы знать, как распределять элементы в кусте, где ставить каждую конкретную опору, какие промежутки будут между ними, нужно знать их общее количество.

Для начала следует подсчитать массу постройки вместе с ветровыми, снеговыми и прочими нагрузками. Также нужно определить несущую способность грунта под основанием сваи.

Далее, зная несущую способность почвы и размеры подошвы, можно определить, какую нагрузку способен выдержать один столб.

При этом в зависимости от точности исследований грунта нужно добавлять 20-25% запаса.

В конце остается высчитать необходимое количество опор фундамента, разделив массу постройки на несущую способность одной опоры.

Определение расстояния

Стоит помнить, что опорные элементы обязательно должны быть под углами постройки, в местах пересечения стен. Максимальное расстояние от одной опоры к другой определяется путем расчета сопротивления материала балок ростверка и стен изгибающим, продавливающим нагрузкам.

Таким образом, чем прочнее стены, чем массивнее ростверк, тем больше можно делать пролеты. Обычно не целесообразно делать расстояние в свету более 2,5-3 метров, потому что иначе неоправданно возрастают требования к прочности ростверка. Строительные нормы также регламентируют минимальный промежуток от столба к столбу фундамента. Оно зависит от типа свай и характеристик грунта.

Если погружение столба связано с вытеснением и деформацией почвы, то расстояние между осями столбов должно быть не менее 3d, где d — диаметр подошвы. К примеру, если используются вдавливаемые бетонные сваи размером 30 см, то между ними должно быть не менее 90 см или же 60 см просвет.

Расстояние между винтовыми сваями тоже должно учитывать данное требование, однако из-за очень малого диаметра применяемых труб на практике нарушить его нереально.

Зато легко нарушить следующее правило — промежуток в свету должен быть не менее 0,5 метра для сухих глинистых твердых почв и не менее 1 метра для прочих типов грунтов (СНиП 2.02.03-85).

Это требование обусловлено тем, что при близком расположении опор несущие конусы почвы под подошвой пересекаются на слишком близком расстоянии и это отрицательно влияет на совокупную несущую способность фундамента.

В данном случае, если высчитывается расстояние между винтовыми сваями, брать в расчет нужно не диаметр трубы, а размеры лопастей. Ведь именно они выполняют роль опорного расширения.

Если используются сваи ТИСЭ или другие разновидности с увеличенным диаметром подошвы, то брать в расчет нужно именно размер нижней, широкой части.

Если вместо круглой формы используются квадратные или прямоугольные, то вместо диаметра берется крупнейший линейный размер подошвы.

Таким образом составление проекта расположения выполняется следующим образом:

  1. Выполняется расчет общего требуемого числа столбов.
  2. На схеме фундамента расставляются все необходимые сваи, с учетом требований к размещению.
  3. При необходимости добавляются еще столбы, если где-то слишком большой пролет.

Если это бетонные типы, установка которых сопряжена с выдавливанием грунта, то нельзя устанавливать следующую сваю, если в соседней, расположенной ближе 1,5 м раствор еще не набрал прочности. В таком случае установка совершается через одну.

Подбор расстояния между опорами при закладке свайного фундамента
Как можно самостоятельно рассчитать расстояние между сваями и их количество для фундамента? Особенности выполнения расчета для различных типов свай и грунтов.

Источник: proffu.ru

Расстояние между сваями играет важную роль в надежности фундамента

Содержание статьи:

Основа на сваях требует от человека определенных знаний. Чтобы правильно рассчитать расстояние между сваями, требуется разобраться в нагрузке объекта. При возведении дома на фундаменте данной разновидности, обязательно нужно учитывать характеристики используемых строительных материалов.

Правильный расчет повышает уровень надежности столбчатого фундамента

В строительстве любого здания главную роль играет качество фундамента. Он должен быть надежным, чтобы выдерживать большую нагрузку.

Расчет расстояния между опорными столбами

Свайный фундамент отличается своей доступностью, стоимость колеблется в достаточно большом промежутке. На цену влияет регион, где будет осуществляться приобретение материала и спрос. Но даже при самой высокой стоимости материала, он все равно будет доступнее, чем использование цемента или бетона. Установка столбов может осуществляться на любой разновидности грунта.

Чтобы рассчитать расстояние между винтовыми сваями для каркасного дома, требуется предварительно произвести оценку грунта. Это помогает выявить глубину заложения и оценить целесообразность применения специальной техники в строительстве.

Поэтапная правильная оценка грунта:

  • Разновидность почвы может быть определена самостоятельно без использования специальных инструментов, потребуется только выкопать две или три ямы глубиной 2 метра,
  • Выкапывать требуется на том участке, где будет осуществляться возведение фундамента. При извлечении грунта, появится возможность определения оптимального уровня, который нужен для установки свай,
  • Для уверенности в фундаменте и его надежности, следует учитывать, что столбы устанавливаются только в жестких породах грунта, отлично подойдет твердая глина. Песчаный грунт не сможет качественно зафиксировать сваи,
  • Следующий этап – это тщательное вычисление имеющейся нагрузки установленного объекта на участок, требуется учитывать все варианты климатических условий,
  • Далее требуется вычисление площади объекта, точнее требуется узнать количество требуемого участка для установки фундамента. Обязательно наличие ориентиров, обозначающих расположение внешних стен будущего объекта.

Пройдя данные этапы, можно перейти к тому, чтобы рассчитать расстояние между сваями для каркасного строения, узнав количество требуемых столбов. Для этого берется масса всех строительных материалов, которые будут использованы в возведении объекта. К этой сумме требуется добавить несколько десятков килограмм на 1 квадратный метр. Размещение опор должно осуществляться по определенному принципу, согласно которому распределение нагрузки должно быть равномерным.

Выполнение вычисления количества опорных труб

Приведем в пример приблизительный расчет, в котором сваи приведены буронабивного типа. Поэтапный процесс:

  • Для этого требуется осуществить некоторые математические подсчеты. Высчитанную максимальную нагрузку делим на площадь опорного элемента. Полученную сумму умножаем на коэффициент противодействия. Из этого получается количество требуемых опор, которые устанавливаются в тех местоположениях, где это наиболее необходимо,
  • Далее следует учесть, что опоры также оказывают давление на грунт. Чтобы рассчитать дополнительную нагрузку, требуется перемножить полученные результаты, учитывая при этом вес материалов, которые потребуются для замешивания цементного состава.

Допустимые величины

Согласно имеющимся стандартам, установлено меньшее расстояние между сваями для каркасного объекта равное величине 3d. Буквой d обозначается диаметр используемой сваи. К примеру, при деревянных сваях требуется придерживаться определенного размера в 70 см, у железобетонных свай это значение равно 90 см. Это требование является обязательным к соблюдению, в противном случае уменьшается уровень надежности фундамента, а значит и строения.

Максимальное расстояние между сваями ограничивается определенными требованиями. Специалисты считают, что в некоторых случаях монтаж свай осуществляется так, чтобы промежуток между ними равнялся 5d или 6d. Применимо расстояние между сваями в значении 8d. Для этого требуется наличие максимально надежной почвы и маленькой нагрузки на сам фундамент и грунт. Кроме того, эксплуатация объекта также должна быть маленькой.

Расстояние между сваями для каркасного объекта, установленного на песчаном грунте, применяется значение 4d. Это объясняется тем, что при использовании минимального промежутка, может уплотниться почва, что значительно затруднит последующие монтажные работы.

Чтобы выполнить правильный расчет требуется определение толщины уплотнения почвы, которое проявляется в процессе возведения фундамента. Это исключит возможность появления пространственного уплотнения при осуществлении монтажа свай. Поэтому установлен минимальный шаг, который равняется трем диаметральным величине опорного столба. Меньшее расстояние не предусматривается. Но есть исключения, например, монтаж свай наклонной разновидности, в данном случае промежуток сокращается вдвое.

Дополнения, которые следует учесть

Для правильного расчета и возведения фундамента необходимо учитывать максимальную несущую способность, которой обладает ростверк. Это горизонтальная часть фундамента, соединяющая опоры в общую конструкцию. Он устанавливается для равномерного распределения нагрузки и передачи ее со стен на опорные столбы и грунт. Он надежно фиксирует сваи в вертикальном положении, что увеличивает надежность объекта.

Плита не должна прогибаться более чем на установленную величину. Стандартная величина равняется от 5 до 6 диаметров опорных столбов.

Расстояние между сваями в стандартном варианте используется только при возведении фундамента на хорошей почве.

Вывод

Строительство объекта – это сложный процесс, требующий максимальной внимательности и точности. Главное учитывать, что от расчетов зависит надежность объекта. Если нет уверенности в том, что не получиться правильно все подрасчитать, то лучше обратиться к специалисту, который поможет выполнить работу быстро и без погрешностей.

Если учитывать все нюансы, то сделать расчеты достаточно просто, главное поэтапно выполнять все шаги. Требуется внимательное отношение для получения правильно результата, от которого зависит качество и надежность постройки. Каждый объект возводится согласно прописанным инструкциям и стандартам, которые требуется четко соблюдать. Самостоятельные расчеты можно осуществлять при наличии определенного опыта в строительстве и понимании схемы работы.

Расстояние между сваями играет важную роль в надежности фундамента
Расстояние, которое тщательно рассчитывается, между установленными сваями влияет на качество и надежность основы. Этот трудоемкий процесс экономит деньги.

Источник: imbuilder.ru

8.3.4. Проектирование свайного поля и ростверков

Основная задача проектирования свайного поля и ростверков сводится к максимальному использованию допускаемой на сваю расчетной нагрузки, обеспечению равнопрочности сваи по грунту и материалу, определению оптимальных типоразмеров свай к ростверков и их унификации, обеспечению минимального заложения ростверков и наименьших объемов земляных работ.

Под сооружениями с несущими стенами сваи располагаются, как правило, в один ряд. Не следует допускать недоиспользование несущей способности свай более чем на 15 %, перегрузку свай от постоянных и длительных нагрузок более чем на 5 %, от кратковременных нагрузок более чем на 20 %.

Для каркасных сооружений число свай в кустах должно быть минимальным. Не рекомендуется принимать число свай в кустах с нагрузкой до 10 000 кН более 16 шт. при сечении 30×30 см, более 12 шт. при сечении 35×35 см, более 9 шт. при сечении 40×40 см или диаметре 50—60 см.

В табл. 8.20 и 8.21 приведены параметры унифицированных кустов из забивных свай квадратного сечения для одноэтажных и многоэтажных зданий, в табл. 8.22 и 8.23 — унифицированных кустов из буронабивных свай без уширения и с уширенной пятой, в табл. 8.24 — унифицированных кустов из полых круглых свай и свай-оболочек. Данные этих таблиц облегчают определение передаваемой на сваю расчетной нагрузки по формуле

где Np, Мx, Мy — расчетные нагрузки, действующие на фундамент на отметке низа ростверка, n — число свай в кусте, kх, ky — коэффициенты, принимаемые по табл. 8.20–8.24.

Для сокращения трудоемкости подбора требуемого куста свай целесообразно воспользоваться номограммой, приведенной на рис. 8.15. Куст свай подбирают по заданным расчетным нагрузкам на фундамент N, М и принятой в проекте расчетной нагрузке на сваю Fh в следующем порядке:

– вычисляются n = N/Fh и e = M/(k2N) , где коэффициент k2 принимается в зависимости от ширины грани или диаметра сваи:

– точка пересечения линии n и е определяет требуемые параметры куста свай и шаг свай a в продольном направлении,

– шаг свай в поперечном направлении вычисляется по формуле

Кусты свай принимаются по табл. 8.20.

ТАБЛИЦА 8.18. ОБЛАСТИ ПРИМЕНЕНИЯ ЗАБИВНЫХ СВАЙ

Примечание. То же, что и к табл. 8.18.

ТАБЛИЦА 8.20. ПАРАМЕТРЫ ТИПОВЫХ СВАЙНЫХ ГРУПП (КУСТОВ) ИЗ ЗАБИВНЫХ СВАЙ ДЛЯ ОДНОЭТАЖНЫХ ПРОМЫШЛЕННЫХ ЗДАНИЙ
ТАБЛИЦА 8.21. ПАРАМЕТРЫ ТИПОВЫХ СВАЙНЫХ ГРУПП (КУСТОВ) ИЗ ЗАБИВНЫХ СВАЙ ДЛЯ МНОГОЭТАЖНЫХ ПРОМЫШЛЕННЫХ ЗДАНИЙ
ТАБЛИЦА 8.22. ПАРАМЕТРЫ ТИПОВЫХ СВАЙНЫХ ГРУПП (КУСТОВ) ИЗ БУРОНАБИВНЫХ СВАЙ ДЛЯ ПРОМЫШЛЕННЫХ ЗДАНИЙ
ТАБЛИЦА 8.23. ПАРАМЕТРЫ ТИПОВЫХ СВАЙНЫХ ГРУПП (КУСТОВ) ИЗ БУРОНАБИВНЫХ СВАИ С УШИРЕНИЕМ В НИЖНЕЙ ЧАСТИ ДЛЯ ПРОМЫШЛЕННЫХ ЗДАНИЙ

1 Перед чертой указан диаметр ствола, за чертой — диаметр уширения.

ТАБЛИЦА 8.24. ПАРАМЕТРЫ ТИПОВЫХ СВАЙНЫХ ГРУПП (КУСТОВ) ИЗ ПОЛЫХ КРУГЛЫХ СВАЙ И СВАЙ–ОБОЛОЧЕК ДЛЯ ПРОМЫШЛЕННЫХ ЗДАНИЙ

Пример 8.7. Подобрать куст свай. Дано: N = 8000 кН, M = 2000 кН×м, bp = 35 см, Fh = 1200 кН, k2 = 1,167.

Решение. Определяем: n = 8000/1200=7, е =2000/(1,167 · 8000) = 0,214. По номограмме выбираем куст КС-8 с параметрами:

Размеры ростверков в плане принимаются кратными 30 см и на 20 см больше размеров куста свай по наружному контуру. Конструктивная высота ростверков назначается на 40 см больше глубины стакана или с учетом необходимой заделки анкерных болтов. Расчетная высота ростверков должна быть наименьшей. При ее подборе целесообразно сначала увеличить марку бетона ростверков, а затем его высоту. Размеры ростверков по высоте принимаются кратными 15 см.

Ростверки армируют сварными арматурными изделиями. Стенки стакана ростверка армируют пространственным каркасом, устанавливаемым на подготовку, и поперечными сетками, надеваемыми на пространственный каркас. Расстояние между поперечными сетками принимается не более 1/4 глубины заделки колонны и не более 20 см.

Число арматурных сеток, рассчитанных на местное сжатие, должно быть не менее двух под железобетонными колоннами и не менее четырех под стальными колоннами. Расстояние между сетками по высоте принимается 5—10 см.

Фундаменты из свайного поля размером более 10×10 м проектируют по той же схеме, что и кустовой свайный фундамент, но при этом должны быть обоснованы формы расположения свай (сплошная или кольцевая, по прямоугольной сетке, по радиальным прямым или концентрическим окружностям), расстояние между сваями и порядок их забивки, исключающие выпучивание грунта и недобивку свай.

Сопряжение свай с ростверком осуществляется в соответствии с рекомендациями Руководства [3].

Число свай в фундаменте следует определять из условия восприятия вдавливающих нагрузок и моментов. Если установленное число свай не обеспечивает восприятия горизонтальных нагрузок, следует применять: наклонные сваи, балки-связи, позволяющие распределить горизонтальные нагрузки на менее загруженные фундаменты, короткие дополнительные сваи в кусте, воспринимающие только горизонтальную нагрузку, зуб, устраиваемый на 1—1,5 м ниже подошвы ростверка и бетонируемый враспор.

Проектирование свайных фундаментов при агрессивных грунтовых водах проводится с учетом требований СНиП по защите строительных конструкций от коррозии.

На стадии изысканий следует установить источник агрессивности подземных вод и, если это возможно, разработать мероприятия по его устранению. В. последнем случае антикоррозионная защита свай и ростверков не требуется. Защита свай и ростверков от коррозии должна проводиться в зависимости от степени и характера агрессивности подземных вод одним из следующих способов:

  • – повышением защитных свойств бетона за счет увеличения его плотности, повышением трещиностойкости, применением сталей, вяжущих и заполнителей, наиболее стойких к данной агрессивной среде,
  • – применением цементов сульфатостойких, кислотостойких и с умеренной экзотермией,
  • – обмазкой или пропиткой свай и ростверков химическими составами.

Обмазку или пропитку следует применять в том случае, если нельзя повысить защитные свойства материала или применить специальные цементы.

При наличии агрессивных подземных вод под ростверки рекомендуется устраивать подготовку из втрамбованного в грунт щебня толщиной не менее 10 см с проливкой битумом.

При устройстве свайного фундамента вблизи подземного сооружения заложение ростверков следует принимать наименьшим независимо от глубины подземного сооружения, принимая дополнительные мероприятия для восприятия сваями горизонтальных нагрузок.

Сорочан Е.А. Основания, фундаменты и подземные сооружения

Расстояние между сваями в ростверке снип
8.3.4. Проектирование свайного поля и ростверков Основная задача проектирования свайного поля и ростверков сводится к максимальному использованию допускаемой на сваю расчетной нагрузки, обеспечению равнопрочности сваи по грунту и материалу, определению оптимальных типоразмеров свай к ростверков и их унификации, обеспечению минимального заложения ростверков и наименьших объемов

Источник: xn--h3aleim.xn--p1ai

Требования СНиП по забивке свай

Основными нормативными документами, регламентирующими подготовку и проведение свайных работ, являются Строительные Нормы и Правила (СНиП).

Все основные положения по проектированию свайных фундаментов изложены в СНиП 2.02.03-85 «СВАЙНЫЕ ФУНДАМЕНТЫ», а по непосредственному производству свайных работ – в СНиП 3.02.01-87«ЗЕМЛЯНЫЕ СООРУЖЕНИЯ, ОСНОВАНИЯ И ФУНДАМЕНТЫ».

Наша компания при проектировании и осуществлении свайных работ строго руководствуется этими документами. Кроме того мы имеем Свидетельство СРО «Межрегиональный альянс строителей», подтверждающее наш допуск к производству свайных работ.

СНиП 2.02.03-85 «СВАЙНЫЕ ФУНДАМЕНТЫ»

Этот документ имеет 13 разделов и 4 приложения, общим содержанием которых является вся необходимая регламентирующая и справочная информация, необходимая для проектирования свайных фундаментов различных типов.

Мы не строим фундаменты, однако разделы, в которых описаны виды применяемых в строительстве свай и порядок производства всех необходимых расчетов для определения их несущей способности, в том числе на основании результатов полевых исследований, являются обязательными для знания и исполнения нашими специалистами.

Так, согласно СНиП, все сваи различаются по следующим признакам:

    по способам погружения свай в грунт
  • по особенностям конструкции (цельные и составные)
  • по форме нижнего конца сваи

Каждый вид свай имеет свои особенности при погружении, что в обязательном порядке учитывают наши сотрудники.

СНиП 3.02.01-87«ЗЕМЛЯНЫЕ СООРУЖЕНИЯ, ОСНОВАНИЯ И ФУНДАМЕНТЫ»

Что касается этого документа, в нем изложены все необходимые данные и требования к технологии забивки применяемых в строительстве свай в различных условиях, включая:

  • наличие вблизи участка производства работ зданий, сооружений и прочих объектов, которые могут быть подвержены негативному вибрационному воздействию в ходе производства работ
  • с учетом санитарных норм
  • с учетом типа грунтов на участке, включая особенности погружения свай в вечномерзлые грунты
  • с учетом видов свай

и других особенностей.

Наши специалисты имеют не только все необходимые знания перечисленных выше положений СНиП, но и огромный опыт забивки свай в различных условиях.

Хорошая теоритическая подготовка и наработанный опыт позволяют нам добиваться высокой производительности труда при неизменном качестве произведенных работ.

Если Вы хотите иметь надёжную опору для своего дома или иного строения – обращайтесь к нашим специалистам

Требования СНиП по забивке свай
Все основные положения по проектированию свайных фундаментов изложены в СНиП 2.02.03-85 «СВАЙНЫЕ ФУНДАМЕНТЫ», а по непосредственному производству свайных работ – в СНиП 3.02.01-87«ЗЕМЛЯНЫЕ СООРУЖЕНИЯ, ОСНОВАНИЯ И ФУНДАМЕНТЫ».

Источник: ustanovkasvai.ru

сбор информации и количество конструкций

Содержание статьи:

Фундаменты, изготовленные с использованием винтовых свай, применяются для постройки частных домов и мостовых конструкций, при возведении мелкоразмерных строений, таких как беседки и теплицы. Лопастные элементы, уплотняющие находящуюся под ними почву, способствуют большей прочности основания. Чтобы конструкция была долговечной, нужно правильно произвести подготовительные работы и расчет винтовых свай.

Изучение характеристик грунта

Для расчета количества винтовых свай необходимо определить тип грунта

Чтобы рассчитать количество винтовых свай, нужно определить тип грунта, на котором планируются строительные работы. Чтобы узнать его прочность, можно бурить его вручную на полметра глубже, чем будет располагаться основание. Расчет свайного фундамента требует знания характеристик и коэффициентов, влияющих на прочность постройки. Необходимо выяснить:

  1. Тип почвы: суглинок, супесь, песчаный грунт и т.д.
  2. Коэффициент, показывающий соотношение частиц почвы и пустот.
  3. Тип консистенции и соответствующий ей прочностной коэффициент. Для глинистых грунтов используют 2 значения, одно из которых характеризует область вдоль протяженности сваи, другой – в районе ее подошвы. Почва может быть твердой, полутвердой либо пластичной (легко или туго разминающейся).

Для определения вида почвы нужно воспользоваться информацией из приложения к госстандарту «Грунты. Классификация». В этом документе приводятся характеристики, на которые надлежит опираться. Также нужны таблицы, в которых приводятся значения прочности грунтов, имеющих те или иные состав и консистенцию. Коэффициент зависит от твердости и состава почвы. При рассмотрении показателя для глинистых грунтов по длине сваи можно заметить: чем больше глубина, тем выше значение.  Прочность мелкопесчаных почв, и без того небольшая, понижается при увлажнении.

Нельзя строить дом на пылеватом грунте: нужно заменить его на крупнопесчаный либо выбрать более подходящее место.

Сбор нагрузок свайного фундамента

Для определения нагрузки рассчитывают вес строительных материалов

При расчете свайно-винтового фундамента требуется найти сумму воздействующих на него нагрузок в единицах массы (для крупных зданий это тонны). Их можно разделить на константные и временные. В последнюю категорию входят:

  • Длительные – стационарное оборудование с его наполнением, временные ограждения.
  • Кратковременные – факторы климата (снег и т.д.), передвижное оборудование, транспорт, воздействия живых существ.
  • Специфические – действие пожаров, взрывов, повреждений фундамента (влияющие на внутреннее строение грунта), сейсмического фактора. Их значение может быть отрицательным.

Подсчет общей нагрузки на фундамент реализуется посредством простого суммирования значений нагрузок по всем приведенным категориям. Чтобы узнать сумму константных воздействий, нужно определить удельный вес затрачиваемых на строительные работы материалов. Требуемую информацию может предоставить их поставщик. Зная материал, его толщину и тип конструкции, можно воспользоваться табличным значением параметра. Наибольший удельный вес на каждый квадратный метр имеет железобетон. Это относится к стеновым конструкциям и к перекрытиям. Обязательно учитывается вес кровли.

Когда расчет свай и фундамента производится собственноручно, нужно брать во внимание, что показатель нагрузки определяется как нормативный параметр, перемноженный на коэффициент надежности γf. Последнее значение зависит от материала конструкции и его плотности и обычно находится в границах 1,05-1,3.

К примеру, периметр P внутренних и внешних стен деревянного дома равен 50 м, высота h – 5 м, а удельный показатель сырья – 70 кг/м2. Тогда нагрузка будет рассчитываться по формуле P*h*удельный вес=50 м*5 м*70 кг/м² = 17500 кг = 17,5 т. Аналогичные показатели вычисляют для крыши и перекрытий. В первом случае удельный вес материала умножают на площадь. Во втором добавляют еще один множитель – количество перекрывающих элементов. Эти три значения – для каркасных конструкций, крыши и перекрытий – суммируют. Результат, перемноженный на коэффициент надежности (для постройки из дерева он равен 1,1), будет являть собой значение константной нагрузки.

Примерная нагрузка на квадратный метр составляет 150 кг

Поскольку на стадии проектирования нельзя точно узнать общую массу мебели, техники и живых существ, воздействующих на перекрытия, для расчетов используют принятый в нормативах показатель равномерно распределенной нагрузки на квадратный метр (Pt). В жилищах его значение считают равным 150 кг/м². Формула расчета имеет такой вид: S*Pt*n, где n – число использованных перекрытий.

Также при строительстве учитывается снеговая нагрузка на здание, свойственная данному региону. В центральной части ЕТР расчетный показатель считают равным 180 кгс/м². В ряде мест это число значительно выше – в некоторых сибирских регионах оно может достигать 400 кгс/м². Узнать искомое значение можно по карте снеговых районов. Формула для нагрузки состоит из трех множителей: площади крыши, расчетного показателя и коэффициента наклона. Последний параметр для самых типичных покрытий с наклоном в 30-45 градусов считают равным 0,7.

Ветровой нагрузочный показатель часто выражается отрицательным числом (что означает снижение общей массы). Из-за этого при постройке массивных сооружений им часто пренебрегают. Для небольших парусных конструкций, напротив, он очень важен, так как при их возведении нужно представлять влияние на сваи выдергивающих и иных действий. Определяют ветровое давление по формуле: W=0,7* k(z)*c*g, где k(z) – коэффициент для высоты z (находится по таблице для типов местности), с – аэродинамический показатель (зависит от наклона крыши и от того, куда чаще дует ветер – во фронтон или в скат), g – коэффициент надежности, равный 1,4. Чтобы рассчитать общую нагрузку на кровлю, получившееся число W умножают на площадь крыши.

Размеры ростверка и его армирование

Размеры ростверка обычно варьируются в пределах 30 – 40 см

Прежде чем проводить для свайного фундамента расчет количества свай, нужно выяснить, какие размеры будет иметь ростверк. Согласно СНиП 52-01, глубина заделки сваи должна соответствовать габариту арматурной анкеровки. Таким образом, при расчете ростверка наименьшая высота подбирается сообразно уровню заделки выпуска устанавливаемых арматурных элементов. Как стандартный показатель в малоэтажных постройках применяется значение 30-40 см. Но нередко можно встретить отклонения в одну или другую сторону.

На показатель высоты оказывают влияние несколько факторов:

  • масса постройки – определяет уровень нагрузки на грунт;
  • материал и устройство фундамента, метод монтажа свай;
  • особенности почвы, зависящие от региона и климата.

Если приходится работать в требовательном грунте или специфичном климате, учитываются все вышеприведенные факторы. В целом принято считать, что высота плиточной части равна Н + 25 см, где Н – глубина установки свайного элемента в ростверк. При проведении вычислений учитывают нормы СНиП.

Расчет армирования ростверка не столь сложен, как в случае ленточного фундамента, из-за предсказуемости появляющихся напряжений. Преимущество в данной ситуации – надежные несущие качества свай, что особенно важно для нестабильных почв (насыпных, болотистых и т.д.), снижающие в таких случаях затраты в несколько раз. Арматурная конфигурация помогает компенсировать растяжения. Устраивать ее надлежит из стержней и прутков из стали. Первые имеют периодическое сечение, вторые – гладкое.

Использовать для бетонных построек композитные арматуры не рекомендуется из-за их высокой склонности к растяжению, влекущему за собой раскрытие трещин.

Как и в ленточных конструкциях, для продольного армирования используют хомуты для организации пространственной геометрии. Помимо них устанавливаются и вертикальные стержневые элементы для областей растяжения и иных требовательных участков. Если арматура маркирована литерой С, стыковые места соединяются свариванием, в прочих случаях выполняется обвязка проволокой. Если нет возможности пригласить для расчетов специалистов, их можно провести в программе Scad Office (инструмент «Арбат»). Сформированный каркас выкладывают в опалубку на низовые бетонные подкладки и монтируют вертикальные усилительные стержни.

Рекомендации по правильному армированию стыков можно изучить в СП 63. 13330.

Расчет количества винтовых свай

Количество свай рассчитывают из несущей способности 1 сваи и общей нагрузки

Расчет количества свай для фундамента требует знания двух параметров: общей нагрузки на фундамент, полученной из суммации постоянного и временного показателей, и несущей способности одной сваи. Разделив первое число на второе и округлив результат в большую сторону, можно получить искомое количество. К примеру, если нагрузочная сумма постройки равна 60 тонн, а несущая способность одного элемента – 3,8 тонны, потребуется 60/3,8=15,8 → 16 свай. Однако часто бывает, что на практике их нужно на несколько штук больше, особенно на «неудобных» грунтах.

Важно правильно провести расчет свай для фундамента и расставить их по периметру. По одному элементу ставят на каждом внутреннем и наружном углу, а также во всех местах пересечения и соединения ограждающих частей. Остальные сваи равномерно расставляют на прямолинейных участках. Дистанция между соседними опорами должна быть не более 3 м.

Для расчета несущей способности единичного элемента формулу можно представить так: W=(S*R)/k, где W – несущая способность, S – площадь поперечного среза лопасти, R – расчетное сопротивление почвы в области углубления (табличное значение), k – коэффициент для эксплуатационного запаса. Последний параметр зависит от точности выявления структуры почвы. Поскольку ее профессиональное изучение в лабораториях является дорогостоящим процессом и редко применяется при возведении частных домах, коэффициент обычно берут большим, равным 1,5-1,7 (тогда как при подключении услуг специалистов – 1,2-1,3). Таким образом, за экономию на данном аспекте платят увеличением количества задействованных свай.

Часто встречающиеся ошибки при проектировании свайного фундамента

Пристройки имеют меньшую нагрузку, поэтому рассчитываются по-другому

Распространенная ошибка – проведение общего расчета для жилища и связанных с ним построек (сараев, веранд и т.п.). Так делать нельзя, поскольку у этих легких помещений совершенно другой уровень нагрузок. Для них проект составляют отдельно. То же самое относится к массивным внутренним объектам – чугунным котлам, печкам. В этом случае также подготавливается отдельный проект и выполняется дополнительное укрепление участка.

Также нельзя вывинчивать свайный элемент обратно. Иногда с помощью такой манипуляции пытаются отрегулировать высоту. Действие вредно тем, что почва при этом разрыхляется, несущая способность понижается и возникает опасность оседания опоры.

При гибочных работах на ростверке нельзя нагревать арматуру. Для соединения элементов друг с другом используют оправки, трубогибы и подобный инвентарь. Углы армируются по специально подготовленным схемам. Нельзя пренебрегать защитной прослойкой и допускать соприкосновения арматурных компонентов с опалубкой.

Сваи должны стоять строго вертикально. Если в процессе заглубления она хоть немного отклонилась, уперевшись в жесткую породу, закручивать ее дальше нельзя. Это приводит к потере опорных свойств. В месте установки не нужно заранее копать яму. Чтобы свая сохраняла функциональные характеристики, ее нужно именно ввинчивать в почву. Опасно монтировать опору недостаточно глубоко. Также к распространенным оплошностям относятся пренебрежение антикоррозионной обработкой и геологическим анализом грунта.

Перед монтажными работами нужно правильно рассчитать общую нагрузку на фундамент. Оплошности при проектировании и монтаже приводят к необходимости ремонта, обходящегося дороже, чем корректная установка фундамента.

Метод местного проектирования свайных фундаментов

В данной работе делается попытка предложить метод местного проектирования свай на основе результатов испытаний свайной нагрузки для эталонного участка. Такой LPDM просто основан на идентификации трех безразмерных величин, таких как коэффициент мощности CR, коэффициент жесткости SR и коэффициент групповой осадки. Чтобы доказать надежность LPDM, экспериментальные данные, собранные в течение многих лет в Неаполитанской области (Италия), были использованы для получения вышеупомянутых коэффициентов.Затем LPDM был применен в качестве метода предварительного проектирования к трем хорошо задокументированным случаям с применением подходов, основанных на мощности и расчетах (CBD и SBD). Удовлетворительное соответствие между геометрией первоначального проекта свай и геометрией, полученной с помощью LPDM, доказывает, что предложенная методика может быть очень полезной для предварительного проектирования, обеспечивая разумную точность при небольшом количестве ручных расчетов.

1. Введение

Проектирование фундаментных систем — это инженерный процесс, который поэтому включает упрощенное моделирование более сложного реального мира.Применительно к свайным фундаментам при проектировании свай всегда учитывается осевая несущая способность одиночной сваи. Среди основных методов оценки значений сопротивления основания агрегата и сопротивления вала агрегата есть методы, основанные на фундаментальных свойствах грунта ( теоретических методов ), таких как угол трения, и методы, основанные на результатах испытаний на месте. ( эмпирических методов ), таких как стандартные тесты на проникновение (SPT) или тесты на проникновение конуса (CPT).Понимание разницы между моделью и реальностью, границ модели и осуществимости различных методов имеет решающее значение.

Теоретические методы состоят в оценке расчетных значений следующих выражений: где — эффективное горизонтальное напряжение при разрушении, его оценка является одним из самых сложных методов в инженерно-геологической инженерии, и — угол трения грунт-сваи. Горизонтальное эффективное напряжение может быть принято как некоторое отношение вертикального эффективного напряжения, что дает в результате вторую форму выражения в уравнении (1).

В уравнении (2) — коэффициент несущей способности, часто принимаемый как функция угла внутреннего трения грунта вблизи вершины сваи, как было предложено в работе Березанцева и др. [1]; — эффективное вертикальное напряжение, действующее на глубине вершины сваи.

Эмпирические методы, основанные на результатах CPT, состоят в оценке следующих эмпирических соотношений: где и — эмпирические коэффициенты, зависящие как от типа грунта, так и от типа сваи, — значение точечного сопротивления CPT, представляющего слой вдоль ствола сваи. , и — среднее значение, измеренное в подходящем интервале глубины вокруг основания сваи.

Для повышения надежности уравнений (3) и (4) данные нагрузочных испытаний экспериментальных свай можно интерпретировать, чтобы получить значения и для эталонного участка, и только для такого конкретного участка, используя вычисленные назад значения вышеуказанные коэффициенты делают расчет сваи более точным.

Хотя за последние десятилетия были сделаны значительные улучшения в понимании процессов, управляющих поведением системы грунт-сваи вплоть до разрушения, недавние статьи [2, 3] демонстрируют, что наша способность оценивать реакцию сваи на нагрузку все еще далека от совершенства. удовлетворительно для практических целей по конкретному проекту.

Орр [3] проанализировал прогнозы, сделанные 15 геотехническими специалистами в отношении забивных, буронабивных, винтовых свай и свай CFA в различных грунтовых условиях. Прогнозы полностью теоретические, в том смысле, что каждый специалист получил все данные, необходимые для прогнозирования реакции сваи, но не было экспериментальных данных для сравнения прогнозов и производительности. По словам автора, наблюдается большой разброс значений предельной вертикальной несущей способности (Таблица 1), особенно в отношении монолитных свай (буронабивных, винтовых и CFA).


Тип сваи Кол-во прогнозов (кН) мин. значение (кН) макс. значение Макс. / мин

Привод 3 1748 2262 1,3
Расточка 10 989 3026 3,1
Винт 8351 1500 4.3
CFA 11 1290 5093 4.0

Аналогичные результаты были получены в случае события международного прогнозирования, стимулированного ISSMGE TC212, результаты которого были обнародованы во время 3 rd Боливийской международной конференции по глубоким фондам, проходившей в Санта-Крус-де-ла-Сьерра (Боливия). В данном случае на участке Б. были установлены 3 разные сваи (буронабивная, винтовая и CFA).СТАНДАРТНОЕ ВОСТОЧНОЕ ВРЕМЯ. (Боливийский экспериментальный сайт для тестирования), а затем загружается в случае отказа. Анализ прогнозов [2] показывает, что соотношение между прогнозируемыми максимальными и минимальными значениями (72 прогноза, выполненных 121 человеком) было даже больше, чем указано в таблице 1.

Способ повышения надежности и точности Проектирование свай в местном масштабе — это разработка местных методов проектирования свай (LPDM), которые могут использоваться либо на предварительной стадии, либо на заключительной стадии проектирования, в зависимости от данных (качества и количества), на основе которых они были разработаны. .

Целью данной работы является (1) предложить LPDM, основанный на интерпретации результатов испытаний свайной нагрузки для эталонного участка, (2) описать некоторые истории болезни, расположенные на эталонном участке, и сообщить наиболее актуальные экспериментальные данные, и (3) применить предложенный LPDM к выбранным историям болезни. Будет показано, что LPDM может быть очень полезным для предварительного проектирования фундамента, будучи довольно точным с инженерной точки зрения, несмотря на то, что требует небольшого количества ручных расчетов.

2.Метод локального проектирования свай

Так как прогноз реакции сваи на нагрузку зависит от нескольких неопределенностей, программу испытаний свайной нагрузки следует рассматривать как важную часть процесса проектирования и строительства. Испытания свай могут относиться к одной из двух категорий: испытания на разрушение пробных свай, чтобы доказать пригодность системы свай и подтвердить проектные параметры, выведенные из исследования площадки, и испытания, проводимые на эксплуатационных сваях, для проверки конструкции. техника и качество изготовления и подтвердить эффективность сваи как элемента фундамента [4].

Испытания на нагрузку на сваи в основном используются для определения предельной несущей способности свай непосредственно по полученной кривой «нагрузка-оседание» или путем ее экстраполяции, а также жесткости системы сваи-грунт при определенной нагрузке. Нагрузочные тесты также предоставляют значительный объем дополнительных данных, которые часто остаются неиспользованными. Тем не менее, такие данные могут быть лучше использованы, как демонстрирует LPDM, предложенный в следующих разделах.

2.1. Коэффициент пропускной способности

Mandolini et al. [5] ввел коэффициент несущей способности,, безразмерный параметр, определяемый следующим образом: где предельная осевая несущая способность сваи, полученная по результатам испытаний сваи на нагрузку, делится на вес сваи,.

Предельная нагрузка сваи обычно не определяется должным образом, исходя из наблюдения кривой нагрузки-осадки сваи. Простой критерий, который можно использовать для преодоления этой проблемы, — условно определить как нагрузку, вызывающую смещение головки сваи, равную 10% диаметра основания сваи (как, например, предлагается в Еврокоде 7). Если испытание под нагрузкой было остановлено до того, как головка сваи могла испытать такое смещение, можно получить экстраполяцию кривой нагрузки-осадки; например, может быть применен эмпирический метод Чина [6], который предполагает, что форма кривой нагрузка-оседание является гиперболической.Чтобы получить надежное значение путем экстраполяции, во время испытания на нагрузку необходимо измерить осадку головки сваи не менее 5% от диаметра основания сваи.

Коэффициент вместимости CR позволяет сравнивать данные от разных свай (типа и геометрии), принадлежащих одной и той же территории, с точки зрения геологических и геотехнических условий недр. Для данного установленного объема сваи коэффициент вместимости, как и, зависит от типа сваи и типа почвы. Поскольку состояние грунта фиксированное, ожидается, что на CR сильно повлияет метод установки свай.На предварительном этапе проектирования, среднее значение коэффициентов пропускной способности, полученное для эталонного участка, позволяет прогнозировать ожидаемое значение. Ясно, что необходимо адекватное количество значений CR, чтобы обеспечить надежную оценку. Поэтому предлагается вычислить коэффициент вариации (CV) популяции CR, чтобы выразить точность.

2.2. Коэффициент жесткости

Mandolini et al. [5] ввел коэффициент жесткости, выраженный следующим образом: где — начальная осевая жесткость грунта-сваи (наклон начальной касательной экспериментальной кривой нагрузки-осадки; для объективной и повторяемой обработки данных можно можно получить как начальную касательную гиперболы, аппроксимированной к первым трем точкам экспериментальной кривой нагрузки-осадки).Его знание важно для прогнозирования значения ожидаемой осадки одиночной сваи под рабочей нагрузкой на предварительной стадии проектирования.

— осевая жесткость колонны, имеющей длину, равную критическому значению,. Он представляет собой ту длину, при превышении которой любое увеличение длины сваи приводит к небольшому увеличению жесткости сваи или совсем без нее. Fleming et al. [4] определяется следующим образом: где — модуль Юнга материала сваи; представляет собой значение модуля сдвига грунта на глубине от поверхности земли, и его можно итеративно оценивать с использованием результатов сейсмических испытаний (в скважине, поперечной скважине и т.) через скорость поперечной волны.

Критическая длина вместо полной длины сваи была введена в определение SR, потому что на реакцию сваи при рабочих нагрузках (следовательно, далеко от разрушения) влияют, тогда как обычно она фиксируется требованиями к вместимости сваи.

Ожидается, что для данной геометрии сваи в эталонной площадке на значения SR не так сильно повлияет метод установки сваи, как CR, поскольку конкретная установка сваи должна влиять на начальную осевую жесткость грунта-сваи, менее чем ± 20%, как видно из работы Мандолини [7], сбора имеющихся экспериментальных данных [8–10] и простого метода, предложенного Рэндольфом [11] для моделирования влияния установки на начальную осевую жесткость сваи.На предварительном этапе проектирования вводится среднее значение коэффициентов жесткости, полученных для эталонного участка, для прогнозирования ожидаемого значения. Еще раз, предлагается вычислить коэффициент вариации (CV) популяции SR, чтобы выразить точность.

3. Приложение LPDM
3.1. Проект на основе емкости (CBD) свайного фундамента

Свайный фундамент должен быть предварительно спроектирован в соответствии с подходом, основанным на мощности, на участке, для которого необходим набор данных для оценки и который доступен благодаря предыдущим исследованиям.

Общая вертикальная нагрузка, которая должна быть передана группе свай, получается из структурного анализа. Предполагая номер сваи, средняя нагрузка, передаваемая на каждую сваю, может быть получена как. Для любого заданного диаметра сваи, который должен быть достаточно большим, чтобы гарантировать приемлемый уровень напряжения в головной части сваи, после выбора технологии сваи и оценки в разы FS (коэффициент безопасности, определенный в нормативных документах), вес сваи может быть равен оценивается по уравнению (5) с использованием, с точки зрения безопасности, следующего уменьшенного значения:

Из, длина сваи может быть получена.После оценки, таким образом, начальная осевая жесткость грунта-сваи, может быть получена из уравнения (6) с учетом, опять же, следующего приведенного значения:

Соответствующая упругая составляющая смещения одиночной сваи при среднем значении вертикальную нагрузку можно оценить как. В более широком смысле, это сумма двух вкладов: (упругая составляющая) и (нелинейная составляющая) =, как показано на Рисунке 1.

.

Различные виды нагрузок на свайные основания и их расчет

Свайный фундамент — это наиболее распространенный тип глубокого фундамента, используемый для передачи структурных нагрузок, а именно осевой нагрузки и боковой нагрузки, на более глубокие слои твердого грунта. Чтобы выбрать и спроектировать подходящий тип сваи, необходимо понимать типы нагрузок на сваи и механизм их передачи.

Осевые нагрузки создают сжимающие или растягивающие силы, действующие параллельно оси фундамента.Если свая вертикальная, то осевая нагрузка равна приложенной вертикально. Боковые нагрузки создают моменты, сдвиг и последующий боковой прогиб в свайном фундаменте. Боковое отклонение активирует боковое сопротивление в прилегающем грунте.

1. Осевые нагрузки

Осевая нагрузка может быть сжимающей (направленной вниз) или растягивающей (подъем). Когда он сжимается, глубокие фундаменты противостоят нагрузке за счет сопротивления трения и сопротивления опоры носка, как показано на рис.1.

Однако, когда нагрузка является растягивающей, сопротивление вызывается боковым трением и весом фундамента, как показано на рис. 1. В глубоких фундаментах с увеличенным основанием подъемным нагрузкам также противодействуют опоры вдоль потолка увеличенного основание. Осевые нагрузки включают в себя постоянные нагрузки, временные нагрузки, снеговые и ледовые нагрузки, которые передаются от надстройки на свайный фундамент.

Рис.1: Осевые нагрузки на сваи

Постоянные и живые нагрузки

Статические нагрузки можно рассчитать после того, как проектировщик конструкции предоставит все подробности о конструкции надстройки.Что касается временных нагрузок, применяемые коды используются для расчета временной нагрузки на основе типа и функции каждого помещения в здании.

Если вам не предоставлена ​​такая информация, можно определить начальную оценку нагрузки для каждого этажа в случае высотных зданий, которая колеблется от 10 до 15 кПа / этаж. Собственная масса свайного фундамента зависит от толщины основания, размера и количества свай, а также от удельного веса бетона.

2. Боковые нагрузки

Боковые нагрузки вызывают сдвиг и момент в глубоком фундаменте, как показано на рис.2. Эти сдвиги и моменты вызывают боковые прогибы фундамента, которые, в свою очередь, вызывают боковое сопротивление в прилегающем грунте.

Величины этих боковых прогибов и сопротивлений, а также соответствующая несущая способность фундамента зависят от жесткости грунта и фундамента.

Свайные фундаменты обычно обнаруживают сопротивление боковым нагрузкам от пассивного сопротивления грунта на поверхности крышки, сдвигу на основании крышки и пассивному сопротивлению грунта валам свай.Последний источник обычно является единственным надежным.

Рис.2: Боковые нагрузки на сваи

Ветровые нагрузки

Ветровые нагрузки создают значительную эксцентричную нагрузку на плане фундамента, как показано на рис. 3. Как показывает практика, ветровая нагрузка на конструкцию может рассматриваться как 1,5% от статической нагрузки или давление 2 кПа для высоких конструкций высотой до 200 м. Если высота конструкции превышает 200 м, то для расчета давления ветра используется испытание в аэродинамической трубе. В различных стандартах предусмотрены процедуры оценки ветровых нагрузок, такие как ASCE7 и AS1170.2–2011.

Рис. 3: Ветровая нагрузка на здания, перенесшие на свайный фундамент

Землетрясения

Подобно ветровым нагрузкам, землетрясения создают большую эксцентрическую нагрузку на план фундамента. Этот тип нагрузки в основном горизонтальный, и его необходимо учитывать при проектировании свай.

Конструктор должен учитывать инерционные эффекты, обусловленные нагрузок, приложенных к свае опорной конструкцией, как кинематические эффекты, связанные с наземными течениям, порожденным землетрясением, действующей на кучу, возможные потери поддержки грунта во время землетрясения из-за сжижения или частичной потери прочность почвы.Нагрузки от землетрясений рассчитываются с использованием спектров реакции и динамического структурного анализа.

Рис.4: Землетрясения на свайный фундамент

Нагрузки от давления земли

Нагрузки от давления грунта особенно связаны со стенами подвала и системой подконструкции. С самого начала проектирования теорию давления грунта можно использовать для расчета нагрузок от давления грунта. Однако взаимодействие грунта и конструкции используется для детального и окончательного проектирования.

Нагрузки от наземных движений

Движение грунта — еще одна причина боковых нагрузок, действующих на свайный фундамент.Желательно учитывать взаимодействие между системой фундамента и источником движения грунта через величину движения грунта, а не пытаться напрямую преобразовать движение грунта в эквивалентную силу.

3. Прочие грузы

Другое
источники нагрузки, которые, возможно, необходимо учитывать, включают снег, лед, термический
эффекты, сильные удары и взрывы. Требования к учету таких нагрузок:
изложены в соответствующих стандартах, регулирующих конструктивное проектирование зданий.

.

Способы установки свайных фундаментов

Процесс и методы установки свайных фундаментов являются такими же важными факторами, как и при проектировании. Способы установки свайного фундамента — свайным молотком и бурением механическим шнеком.

Во избежание повреждения свай при проектировании, установке следует тщательно выбирать методы и оборудование для установки.

Если установка будет выполняться с помощью свайного молотка, следует учитывать следующие факторы:

  • Размер и вес сваи
  • Сопротивление движению, которое необходимо преодолеть для достижения проектного проникновения
  • Свободное место и запас на площадке
  • Наличие кранов и
  • Ограничения по шуму, которые могут действовать в данной местности.

Способы забивки свай (вытесняющие сваи)

Методы забивки свай можно разделить на следующие категории:

  1. Падение веса
  2. Взрыв
  3. Вибрация
  4. Домкрат (ограничен микровалкой)
  5. Струя

Метод забивки сваи ударным молотком

Молоток, примерно равный весу сваи, поднимается на подходящую высоту в направляющей и отпускается, чтобы ударить по головке сваи.Это простая форма молота, используемая в сочетании с легкими рамами и испытательными сваями, где может быть неэкономично доставить паровой котел или компрессор на площадку для забивания очень ограниченного количества свай.

Есть два основных типа отбойных молотков:

  • Паровые или пневматические молоты одностороннего действия
  • Молоты свайные двустороннего действия

Пар или сжатый воздух одностороннего действия представляют собой массивный груз в форме цилиндра. Пар или сжатый воздух, поступающие в цилиндр, поднимают его вверх по неподвижному штоку поршня.В верхней части хода или на меньшей высоте, которой может управлять оператор, пар отсекается, и цилиндр свободно падает на свайный шлем.

Свайные молоты двустороннего действия могут приводиться в действие паром или сжатым воздухом. Для этого типа молота не требуется сваебойная рама, которую можно прикрепить к верхней части сваи с помощью направляющих для ног, при этом свая направляется деревянным каркасом.

При использовании с свайной рамой задние направляющие прикрепляются к молотку болтами для зацепления с направляющими, и используются только короткие направляющие для ног, чтобы предотвратить перемещение молота относительно верхней части сваи.Молоты двустороннего действия используются в основном для забивки шпунтовых свай.

Рисунок 1: Забивка сваи молотком

Забивка сваи вибрацией

Вибромолоты обычно имеют электрический или гидравлический привод и состоят из вращающихся в противоположных направлениях эксцентриковых масс внутри корпуса, прикрепленного к головке сваи.

Амплитуда вибрации достаточна, чтобы сломать поверхностное трение по бокам сваи. Вибрационные методы лучше всего подходят для песчаных или гравийных почв.

Гидравлическая очистка : для облегчения проникновения сваи в песок или песчаный гравий можно использовать водоструйную очистку. Однако этот метод имеет очень ограниченный эффект от твердых глин или любых почв, содержащих большое количество крупного гравия, булыжников или валунов.

Способы бурения (несмещающие сваи)

Шнек непрерывного действия (CFA)

Оборудование состоит из мобильного базового шасси, оснащенного лопаточным шнеком с полым штоком, который вращается в земле на необходимую глубину пиллинга.Чтобы сформировать сваю, бетон помещается через шнек, когда он извлекается из земли.

Шнек снабжен защитным колпачком на выпускном отверстии в основании центральной трубы и вращается в землю с помощью верхнего поворотного гидравлического двигателя, который движется на держателе, прикрепленном к мачте.

По достижении необходимой глубины через полую штангу шнека перекачивается высокопрочный бетон, и под давлением бетона защитный колпак снимается.

При вращении шнека в том же направлении, что и на этапе бурения, грунт выталкивается вертикально, когда шнек извлекается, и сваи формируются путем заполнения бетоном.

В этом процессе важно, чтобы вращение шнека и поток бетона согласовывались, чтобы избежать обрушения сторон отверстия над бетоном на нижнем витке шнека. Это может привести к образованию пустот в бетоне, заполненном грунтом.

Метод особенно эффективен на мягком грунте и позволяет устанавливать множество буронабивных свай различного диаметра, способных проникать в самые разные грунтовые условия.Тем не менее, для успешной работы роторного шнека почва должна быть достаточно свободной от корней деревьев, булыжников и валунов, и она должна быть самонесущей.

Во время работы шнек поднимает немного почвы вверх, что позволяет поддерживать в ней поперечные напряжения и сводить к минимуму образование пустот или чрезмерное рыхление почвы. Однако, если вращение шнека и продвижение шнека не совпадают, это приводит к удалению почвы во время бурения, что может привести к обрушению боковой части отверстия.

Рисунок 2: Процесс непрерывного полета шнека

Недостаточно

Особенность буронабивных свай, которая иногда используется, чтобы использовать несущую способность подходящих пластов, обеспечивая увеличенное основание. Для использования этого метода почва должна быть способной к открытию без опоры.

Идеально подходят жесткие и твердые глины, такие как лондонская глина. В закрытом положении инструмент для подпотока устанавливается внутри прямой секции ствола сваи, а затем расширяется в нижней части сваи для создания подпотока, показанного на рис.3.

Обычно, после установки и перед заливкой бетона, опускают клетку, несущую человека, и осматривают шахту и нижнюю часть сваи.

Рисунок 3: a) Гидравлическое оборудование для роторного бурения b) Шнек непрерывного действия, c) Открытое положение инструмента для бурения

.

Расчет осадки свайного основания | Анализы от CPT | GEO5

Ссылка была отправлена ​​на вашу электронную почту.

Нам не удалось отправить ссылку на вашу электронную почту. Пожалуйста, проверьте свою электронную почту.

Отсутствует код капчи. Пожалуйста, проверьте, не блокирует ли ваш браузер reCAPTCHA.

Неверный код капчи. Пожалуйста, попробуйте еще раз.

Товар:

GEO5
FIN EC
База знаний

Программа:

Все программы
Абатмент
Антискользящий ворс
Луч
Консольная стена
Земное давление
МКЭ
Габион
Гравитационная стена
Потеря земли
Кладка стены
Микросваи
MSE Wall
Прибитый склон
Ворс
Свая CPT
Группа свай
Сборная стена
Redi-Rock Wall
Стабильность породы
Поселок
Вал
Проверка листов
Дизайн листов
Плита
Устойчивость склона
Раздвинутая опора
Раздвинутая опора CPT
Стратиграфия
Местность

Язык:

Чешский
Немецкий
английский
испанский язык
французский язык
Польский
португальский
Русские

Расчет осадки свайного основания | Анализы от CPT | GEO5 | Онлайн помощь

Расчет осадки свайного основания

class = «h2″>

Величина осадки головки сваи w 1, d определяется следующим образом:

где:

w основание, d

Осадка основания сваи из-за действующей силы

w base, d, 1

Осадка основания сваи из-за силы, действующей основание

w основание, d, 2

Осадка основания сваи из-за силы, действующей на вал

w el, d

Осадка сваи за счет упругого сжатия

Величины осадки w баз. е ,.d, 1 и w base, d21 определяются из встроенных графиков согласно стандарту NEN6743. Значение w el, d определяется по формуле:

где:

L

длина сваи

F mean, d

Среднее значение силы, действующей на сваю

A plast

Площадь поперечного сечения стержня сваи

E p, mat, d

Модуль упругости материала сваи

Дополнительные учебные материалы БЕСПЛАТНО

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*

*

*