Сечения перемычек пб: ГОСТ 948-2016 Перемычки железобетонные для зданий с кирпичными стенами. Технические условия

Содержание

Железобетонные перемычки для оконных и дверных проемов — размеры

Одна из наиболее распространенных в строительстве готовых конструкций – железобетонные перемычки. Это стандартные изделия, залитые на заводах из тяжелого бетона, укрепленного армирующим каркасом. Они хорошо выдерживают изгибающую нагрузку, поэтому укладываются в дверные и оконные проемы. Все нормативы по изготовлению и эксплуатационным требованиям для железобетонных перемычек изложены в ГОСТ 948-2016.

Железобетонные перемычки

Что это такое?

Бетонные перемычки согласно нормативным требованиям состоят из нескольких элементов:

  • арматурного каркаса, повышающего прочностные характеристики, предотвращающего растрескивание при нагрузке;
  • прочного бетонного монолита, размеры которого определены ГОСТом;
  • элементов для строповки, необходимых для погрузо-разгрузочных работ, быстрого и безопасного монтажа.

В местностях с холодным климатом для производства применяются морозостойкие бетоны. Прочность армирующей части рассчитывается в зависимости от изгибающих нагрузок, под которыми будут эксплуатироваться конструкции.

Этот тип железобетонных изделий используется при строительстве, и выполняет такие задачи:

  • дверные и оконные перемычки увеличивают нагрузку, которую выдерживают проемы;
  • являются компенсаторами при действии разных типов нагрузок, например, над дверными проемами;
  • помогают создать силовой контур, увеличивающих несущую способность конструктивных элементов;
  • являются надежным контуром, на котором монтируется кровля.

В зависимости от размеров и прочностных характеристик изделий, они могут использоваться при монтаже эстакад, путей для подъемных кранов или городских трамваев.

В строительстве железобетонные перемычки над окнами или дверными поемами могут устанавливаться в кирпичных, блочных (в том числе из пено- и газобетона), каменных или монолитных зданиях.

Применение ж/б перемычек

Виды и маркировка перемычек

Согласно нормативам ГОСТ 948-2016, промышленностью предлагается несколько основных видов ж/б перемычек:

  • Брусковые (ПБ) со стороной сечения не более 25 см. В зависимости от марки изделия, его длина может быть от 1030 до 5960 мм. Стандартизированная брусковая перемычка может иметь 10 разных длин, каждая из которых имеет два подвида с разной массой и системой армирования.
  • Плитные (ПП) составляются из нескольких брусковых и имеют ширину более 250 мм, имеют прямоугольное сечение.
  • Перемычки Г-образного типа (ПГ) делаются с выемкой в четверть по всей длине, что позволяет использовать их в местах примыкания плит перекрытий.
  • Фасадные (ПФ) закрывают проемы снаружи зданий за счет четвертного уступа.

Типы ж/б перемычек

В особых случаях нормативы допускают использование наклонных граней и торцов, но при этом площадь опорной плоскости может незначительно снижаться. Для заливки бетонных перемычек применяются бетоны марки М250 (В20) и выше.

Как и для любых других железобетонных изделий, для перемычек разработаны маркировки, согласно действующим ГОСТам. Эти обозначения представляют собой буквенно-цифровой набор, и наносятся на одну из сторон каждого изделия:

  • цифра вначале показывает порядковый номер поперечного сечения;
  • сочетание букв ПП или ПБ указывает не тип сечения элемента;
  • число после буквенного обозначения указывает на длину в дециметрах;
  • следующая цифра указывает на нагрузку, которую выдерживает элемент в кН/м;
  • индекс, отвечающий за материал применяемого арматурного каркаса;
  • индекс «п» говорит о наличии петель для монтажа, выступающая арматура для крепления выступов и балконов обозначается «а», такелажные проушины или закладные элементы обозначаются буковой «б».

Маркировка перемычек

Любая железобетонная перемычка, брусковая или плитная укрепляется арматурным каркасом. В этих конструкциях используются несколько типов продольной и поперечной арматуры, качество материалов регулируются ГОСТами.

Плитные и брусковые виды имеют свои стандартные типоразмеры, указанные в нормативной документации. При подборе можно использовать такую схему:

Типоразмеры железобетонных перемычек

Например, в технической документации указывается, что в оконных проемах используются железобетонные балочные несущие перемычки 3ПБ-25-8Aт800п. Это означает, что нужно устанавливать элементы с поперечным сечением 12 на 22 см, длиной 246 см, расчетная нагрузка 8 кН/м, металлический каркас сделан из стали Aт800, с монтажными петлями.

Варианты для перегородок имеют меньшую прочность, а для арочных дверей и окон этот конструктивный элемент рассчитывается отдельно, в зависимости от радиуса кривизны и других особенностей.

Размеры

Перемычки ЖБИ имеют стандартные размеры, утвержденные ГОСТом. Сечение определяется соответствующим индексом маркировки, например 2ПБ-13-1п. При этом размеры перемычек этого типа составляют 1290х120х140 мм. В зависимости от типа и марки этого конструктивного элемента его геометрические размеры могут изменяться. Для ПБ:

  • длина от 1 до 6 м;
  • ширина от 120 до 250 мм;
  • высота от 65 до 585 мм.

Для плитных перемычек ПП размеры составляют:

  • длина от 1,1 до 3 м;
  • ширина от 380 до 510 мм;
  • высота от 65 до 220 мм.

Элементы, маркированные ПГ, имеют такие габариты:

  • длина от 1,5 до 6 м;
  • ширина от 250 до 510 мм;
  • высота от 290 до 585 мм.

Фасадные железобетонные конструкции ПФ имеют стандартную ширину 250 мм и такие размеры:

  • длина от 0,8 до 4,3 м;
  • высота от 140 до 290 мм.

Сведения о стандартных маркировках перемычек, включая размеры, массу и затраты бетона, с разными типоразмерами, сведены в таблице:

Наименование Объем, м³ Вес, кг Размеры, мм
1ПБ-10-1п 0,008 20 1030х120х65
1ПБ-13-1п 0,01 25 1290х120х65
1ПБ-16-1п 0,012 30 1550х120х65
1ПП-12-3 0,028 72 1160х380х65
2ПБ-16-2п 0,026 65 1550х120х140
2ПБ-10-1п 0,017 43 1030х120х140
2ПБ-13-1п 0,022 54 1290х120х140
2ПБ-16-2п 0,026 65 1550х120х140
2ПБ-17-2п 0,028 71 1680х120х140
2ПБ-19-3п 0,033 81 1940х120х140
2ПБ-22-3п 0,037 92 2200х120х140
2ПБ-25-3п 0,041 103 2460х120х140
2ПБ-26-4п 0,044 109 2590х120х140
2ПБ-27-4п 0,045 110 2690х120х140
2ПБ-29-4п 0,048 120 2850х120х140
2ПБ-30-4п 0,05 125 2980х120х140
2ПГ-39-31 0,317 792 3890х250х440
2ПГ-44-31 0,359 897 4410х250х440
2ПГ-48-31 0,391 977 4800х250х440
2ПГ-50-31 0,693 1733 5000х380х440
2ПП-14-4 0,076 190 1420х380х140
2ПП-17-5 0,089 223 1680х380х140
2ПП-18-5 0,096 241 1810х380х140
2ПП-21-6 0,11 280 2070х380х140
2ПП-23-7 0,124 310 2330х380х140
2ПП-25-8 0,131 327 2460х380х140
3ПБ-13-37п 0,034 85 1290х120х220
3ПБ-16-37п 0,041 102 1550х120х220
3ПБ-18-37п 0,048 119 1810х120х220
3ПБ-18-8п 0,048 119 1810х120х220
3ПБ-21-8п 0,055 137 2070х120х220
3ПБ-25-8п 0,065 162 2460х120х220
3ПБ-27-8п 0,072 180 2720х120х220
3ПБ-30-8п 0,079 197 2980х120х220
3ПБ-34-4п 0,089 222 3370х120х220
3ПБ-36-4п 0,096 240 3630х120х220
3ПБ-39-8п 0,103 257 3890х120х220
3ПП-14-71 0,117 293 1400х380х220
3ПП-16-71 0,13 325 1550х380х220
3ПП-18-71 0,151 378 1810х380х220
3ПП-21-71 0,173 433 2070х380х220
3ПП-27-71 0,227 568 2720х380х220
ЗПП-30-10 0,249 623 2980х380х220
4ПБ-30-4п 0,104 259 2980х120х290
4ПБ-44-8п 0,154 384 4410х120х290
4ПБ-48-8п 0,167 418 4800х120х290
4ПБ-60-8п 0,207 519 5960х120х290
4ПГ-30-40 0,301 753 2980х380х290
4ПП-12-4 0,038 95 1160х510х65
5ПБ-18-27п 0,1 250 1810х250х220
5ПБ-21-27п 0,114 285 2070х250х220
5ПБ-25-27п 0,135 338 2460х250х220
5ПБ-25-37п 0,135 338 2460х250х220
5ПБ-27-27п 0,15 375 2720х250х220
5ПБ-27-37п 0,15 375 2720х250х220
5ПБ-30-27п 0,164 410 2980х250х220
5ПБ-30-37п 0,164 410 2980х250х220
5ПБ-31-27п 0,171 428 3130х250х220
5ПБ-32-20п 0,176 440 3200х250х220
5ПБ-34-20п 0,185 469 3370х250х220
5ПБ-36-20п 0,2 500 3630х250х220
5ПП-17-6 0,12 300 1650х510х140
5ПП-23-10 0,166 416 2330х510х140
6ПБ 35-37п 0,254 630 3500х250х290
6ПГ-60-31 0,826 2065 5960х380х440
6ПП-30-13 0,334 830 2980х510х220
7ПП-12-3 0,04 100 1160х380х90
8ПБ-10-1п 0,011 28 1030х120х90
8ПБ-13-1п 0,014 35 1290х120х90
8ПБ-16-1п 0,017 42 1550х120х90
8ПБ-17-2п 0,018 45 1680х120х90
8ПБ-19-3п 0,021 52 1940х120х90
8ПП-18-71 0,131 327 1810х380х190
8ПП-21-71п 0,149 374 2070х380х190
8ПП-23-7 0,168 421 2330х380х190
8ПП-27-71п 0,196 491 2720х380х190
9ПБ-13-37п 0,029 74 1290х120х190
9ПБ-16-37п 0,035 88 1550х120х190
9ПБ-18-37п 0,041 103 1810х120х190
9ПБ-18-8п 0,041 103 1810х120х190
9ПБ-21-8п 0,047 118 2070х120х190
9ПБ-22-3п 0,05 125 2200х120х190
9ПБ-25-3п 0,056 140 2460х120х190
9ПБ-25-8п 0,056 140 2460х120х190
9ПБ-26-4п 0,059 148 2590х120х190
9ПБ-27-8п 0,062 155 2720х120х190
9ПБ-29-4п 0,065 162 2850х120х190
9ПБ-30-4п 0,068 170 2980х120х190
9ПП-17-6 0,077 193 1680х510х90
10ПБ 21-27п 0,098 246 2070х250х190
10ПБ-25-37п 0,117 292 2460х250х190
10ПБ-27-37п 0,129 323 2720х250х190

Армирование ЖБП

Выбор типа армирования и диаметр прута зависит от вида перемычки. Согласно ГОСТ для ж/б перемычек, применяемых в частном строительстве, используется напрягаемая арматура диаметром от 6 до 8 мм. Для перекрытий, рассчитанных на большие нагрузки, применяется арматура большего диаметра.

Для продольного армирования применяется:

  • в качестве напрягаемой арматуры могут использоваться стали термически упрочненные типа Aт800 или Aт600C, горячекатаный стальной прут класса A800 или А600;
  • ненапрягаемая арматура изготавливается из стали A400 или А500, термоупрочненной стали Aт-IIIC, проволоки В500 или Вр500.

Для изготовления поперечных частей каркаса для железобетона применяются горячекатаные стали A240, A400, А500, арматурные проволоки В-500, Вр500. Изготавливая брусковый или плитные элементы стандартных типоразмеров, необходимо учитывать, что при толщине 12 см делается плоский стальной каркас, а при 25 см — пространственный.

При напряжении арматуры, необходимо, чтобы фактические отклонения в железобетоне не превышали значений, указанных в таблице:

Наименование Геометрический параметр Предельное отклонение, мм
Отклонение от линейного размера Длина:
до 2500 включительно
свыше 2500 до 4000 включительно
свыше 4000

Ширина и высота:

Размер, определяющий положение:
выступов, выемок и отверстий
закладных изделий:
в плоскости перемычки
из плоскости перемычки

±6
±8
±10

±5

5
3

Отклонение от прямолинейности Прямолинейность профиля лицевой поверхности:
длиной до 2500 на заданной длине 1000
длиной свыше 2500 до 4000 на всей длине
длиной свыше 4000 на всей длине
3
±3
±4

Стальные пруты армирования перед заливкой укладываются вдоль опалубки и закрепляются проволокой, чтобы получилась прочная армирующая сетка. Ячейки получившегося каркаса должны быть 20-50 мм, это оптимальный показатель для обеспечения нужной прочности.

Армирование перемычек

Монтаж

Для установки перемычек над проемами требуется соблюдать определенные правила, чтобы избежать перекоса и растрескивания. В частном строительстве, элементы длиной менее 2 м, можно устанавливать вручную, для больших проемов потребуется автокран. Монтаж зависит от типа перемычек:

  • ПБ – применяется в проемах несущих стен, поскольку они обладают повышенной прочностью на изгиб и берут на себя нагрузку верхних перекрытий.
  • ПП – менее прочны, поэтому ставятся на самонесущей стене, принимая нагрузку только той стены, в которую упираются.

Установка производится после завершения кладки, на утвержденных в проекте отметках. Перед этим проверяется надежность поверхности и уровень выведенной кладки.

Важно при монтаже правильно определить глубину, на которую происходит опирание перемычки. Этот показатель для несущей стены должен быть не менее 250 мм с каждой сторон, а для самонесущих стен достаточно 120 мм. Чтобы закрыть всю ширину кладки, укладывается несколько железобетонных брусков, но они не должны выходить за плоскость стены.

Правила

При укладке железобетонных перемычек нужно учесть несколько важных моментов, которые помогут избежать проблем в дальнейшем:

  • высота балочной перемычки должна быть не меньше 5% от высоты перекрываемого проема;
  • ширина конструкции из этих элементов должна соответствовать ширине кладки проема;
  • можно использовать перемычки, залитые не менее чем за месяц до установки, чтобы бетон набрал расчетную прочность;
  • перед монтажом бетонную смесь нужно тщательно утрамбовать, чтобы избавиться от воздушных пазух;
  • после установки ее правильность проверяется уровнем, поскольку конструкция должна быть строго горизонтальна.

Правильно установленные в проемы перемычки обеспечат нужную прочность конструкции здания и его долговечность. Эти элементы должны быть изготовлены из бетона высоких марок с надежным армированием, поскольку к их прочности предъявляются повышенные требования. При выборе типа необходимо учитывать величину нагрузки, на которую она рассчитана. Самый популярный тип – брусковые перемычки, недорогие, простые в изготовлении, выдерживающие высокие нагрузки. Но для экономии материалов, в проемах самонесущих стен используют и другие типы этих конструкций.

Перемычки брусковые (ПБ), плитные (ПП), балочные(ПГ)

Брусковые железобетонные перемычки (ПБ) изготавливаются в соответствии с серией 1.038.1-1 вып.1.

Предназначены для перекрытий проемов в стенах из кирпича толщиной 65 мм. Перемычки рассчитаны на нагрузки от собственного веса, веса кирпичной кладки над ними и перекрытий.

На железобетонные перемычки, расчетная нагрузка для которых составляет до 800кгс/м, опирание перекрытий недопустимо, вес кирпичной кладки на них рассчитаны как кратковременная нагрузка.

Перемычки брусковые изготавливаются из тяжелого бетона марки М-200 на сжатие. Перемычки шириной 120 мм армируются плоскими каркасами, а шириной 250 мм – пространственными каркасами.
Маркировка расшифровывается следующим образом:

Например- 5ПБ 25-37п.

5 – типоразмер перемычки (250х220 мм.), ПБ – перемычка брусковая, 25 – длина перемычки (2460 мм.), округленная до 1дм., 37 – расчетная нагрузка 37,3 кН/м с учетом собственного веса, округленная до целого числа, П – изготовлены со строповочными петлями.


Перемычки железобетонные плитные (ПП)

Перемычки железобетонные плитные (ПП) – перемычки, используемые для перекрытия дверных, оконных проемов зданий, как административных, так и жилых.
Плитные перемычки являются разновидностью железобетонных перемычек, наряду с брусковыми, балочными перемычками.

Плитные перемычки, так же, как и брусковые, относятся к стандартным железобетонным перемычкам и тоже имеют прямоугольное сечение. Различие между ними состоит лишь в ширине. Брусковые перемычки изготавливаются шириной до 250 мм включительно, а плоские перемычки – шириной свыше 250 мм.
Перемычки железобетонные плитные (ПП), независимо от вида имеют одну сферу применения – они предназначены для перекрытия дверных и оконных проемов стен различных зданий – производственных, административных, жилых домов и прочих сооружений. Плитные железобетонные перемычки широко используются в индивидуальном жилищном строительстве.

Маркировка расшифровывается следующим образом:

пример- 8ПП 21-71п
8 — размер сечения (380х190), ПП — перемычка плитная, 21 — длина в дициметрах, 71 — нагрузка в кН/см, п — мантажные петли.


Перемычки балочные (ПГ)

Перемычки балочные (ПГ) – вид железобетонных перемычек, используемых для перекрытия проемов в строительстве.

Так же, как и другие железобетонные перемычки, перемычки балочные изготавливаются по техническим условиям ГОСТ 948-84. Обозначаются маркой ПГ.

Обозначение балочных перемычек ничем не отличается от обозначения других стандартных железобетонных перемычек. 1ПГ44-8 – балочная перемычка длиной 44 дм, с допустимой нагрузкой 800 кгс/м. Дополнительные буквы в обозначении, как и для других перемычек, может означать: п – наличие монтажных петель, а – наличие анкерных выпусков, которые служат для крепления плит балкона.
Назначение:
Один из типов железобетонных перемычек для перекрытия различных проемов при возведении стен – перемычки балочные, или перемычки с четвертью (выборкой). Такие перемычки монтируются выборкой вверх и вовнутрь, т.к. выборка предназначена для опирания плит перекрытий.
Балочные перемычки (ПГ) получили широкое применение в различных областях строительства, в том числе, в строительстве административных, производственных и жилых зданий. Они используются в строительстве всех типов зданий, обеспечивая опору плит перекрытия. Именно для этого железобетонные балочные перемычки имеют четверть для опирания и примыкания.

Перемычки железобетонные в Липецке

Железобетонные изделия (ЖБИ) находят широкое применение в строительной индустрии и занимают довольно высокое место среди современных строительных материалов благодаря своей надежности, долговечности и весьма обширному ассортименту. Такие позиции ЖБИ занимают благодаря технологии их изготовления, которая при всей кажущейся простоте даёт высокоэффективные результаты. Все дело в том, что при производстве железобетонных изделий бетонную смесь заливают в формы, в которые заранее уложена стальная арматура, сваренная в каркасы. В результате, металлическая арматура, являясь как бы «скелетом» железобетонных изделий, принимает нагрузку на растяжение и изгиб, а бетон — на сжатие. Сочетание бетона и стали позволяет объединить лучшие качества обоих материалов, компенсируя при этом недостатки друг друга.

Несмотря на свои малые габариты и относительно небольшой вес (некоторые перемычки можно монтировать «голыми» руками, без применения строительной техники), железобетонные перемычки занимают достойное место среди прочих ЖБИ, так как без них невозможно построить ни одно здание с кладкой из кирпича, камней бетонных, пенобетонных и других строительных материалов, так как при кирпичной кладке следующий ряд без дополнительной опоры выполнить невозможно.

Именно для опоры той части кладки, которая проходит над проемом и нужны армированные железобетонные перемычки.

ГОСТ 948-84 определяет типы, основные параметры и размеры перемычек железобетонных для зданий с кирпичными стенами:

Типы перемычек:

  • ПБ — брусковые, шириной до 250 мм включительно;
  • ПП — плитные, шириной более 250 мм;
  • ПГ — балочные, с четвертью для опирания или примыкания плит перекрытий;
  • ПФ — фасадные, выходящие на фасад здания и предназначенные для перекрытия проемов с четвертями при толщине выступающей части кладки в проеме 250 мм и более.

Форма, размеры и показатели материалоемкости перемычек









































































































Марка перемычки Основные размеры перемычки, мм Расчетная нагрузка, кН/м
(кгс/м)
Расход материалов Масса перемычки, кг Обозначение выпуска типовой проектной документации серии 1.038.1-1 Минимальная глубина опирания перемычки, мм
Длина l Ширина b Высота h Бетон, м3 Сталь, кг
Перемычки брусковые
1ПБ10-1 1030 120 65 0,98 (100) 0,008 0,31 20 Выпуск 1 100
1ПБ13-1 1290 0,010 0,41 25
1ПБ16-1 1550 0,012 0,48 30
2ПБ10-1-п 1030 120 140 0,017 0,50 43
2ПБ13-1-п 1290 0,022 0,57 54
2ПБ16-2-п 1550 1,96 (200) 0,026 0,79 65
2ПБ17-2-п 1680 0,028 0,83 71
2ПБ19-3-п 1940 2,94 (300) 0,033 1,11 81
2ПБ22-3-п 2200 0,037 1,44 92
2ПБ25-3-п 2460 0,041 2,11 103
2ПБ26-4-п 2590 3,92 (400) 0,044 2,66 109
2ПБ29-4-п 2850 0,048 3,32 120
2ПБ30-4-п 2980 0,050 3,45 125 150
3ПБ13-37-п 1290 120 220 37,27 (3800) 0,034 2,06 85 170
3ПБ16-37-п 1550 0,041 3,26 102
3ПБ18-37-п 1810 0,048 4,20 119 200
3ПБ18-8-п 1810 7,85 (800) 0,048 1,50 119 170
3ПБ21-8-п 2070 0,055 1,73 137
3ПБ25-8-п 2460 0,065 2,42 162
3ПБ27-8-п 2720 0,072 3,54 180
3ПБ30-8-п 2980 0,079 3,86 197 210
3ПБ34-4-п 3370 3,92 (400) 0,089 3,31 222 100
3ПБ36-4-п 3630 0,096 4,68 240
3ПБ39-8-п 3890 7,85 (800) 0,103 10,71 257 210
4ПБ30-4-п 2980 120 290 3,92 (400) 0,104 2,49 259 Выпуск 1 100
4ПБ44-8-п 4410 7,85 (800) 0,154 12,52 385 210
4ПБ48-8-п 4800 0,167 15,76 418
4ПБ60-8-п 5960 0,207 29,84 519 250
5ПБ18-27-п 1810 250 220 27,46 (2800) 0,100 4,34 250 170
5ПБ21-27-п 2070 0,114 6,06 285
5ПБ25-27-п 2460 0,135 9,06 338 230
5ПБ27-27-п 2720 0,150 12,49 375
5ПБ30-27-п 2980 0,164 20,02 410
5ПБ31-27-п 3110 0,171 23,42 428
5ПБ25-37-п 2460 37,28 (3800) 0,135 11,62 338
5ПБ27-37-п 2720 0,150 20,92 375
5ПБ30-37-п 2980 0,164 28,08 410
5ПБ34-20-п 3370 19,61 (2000) 0,185 22,86 463
5ПБ36-20-п 3630 0,200 28,89 500
6ПБ35-37-п 3500 250 290 37,27 (3800) 0,254 43,70 634 Выпуск 12 200
7ПБ60-52-п 5950 250 585 51,58 (5260) 0,870 103,80 2175 650
8ПБ10-1-п 1030 120 90 0,98 (100) 0,011 0,35 28 Выпуск 4 100
8ПБ13-1-п 1290 0,014 0,46 35
8ПБ16-1-п 1550 0,017 0,54 42
8ПБ17-2-п 1680 1,96 (200) 0,018 0,75 45
8ПБ19-3-п 1940 2,94 (300) 0,021 1,16 52
9ПБ13-37-п 1290 120 190 37,27 (3800) 0,029 2,24 74 170
9ПБ16-37-п 1550 0,035 3,32 88
9ПБ18-37-п 1810 0,041 5,64 103 200
9ПБ18-8-п 1810 7,85 (800) 0,041 1,50 103 170
9ПБ21-8-п 2070 0,047 2,13 118
9ПБ22-3-п 2200 2,94 (300) 0,050 1,66 125 100
9ПБ25-3-п 2460 0,056 1,82 140
9ПБ25-8-п 2460 7,85 (800) 0,056 3,25 140
9ПБ26-4-п 2590 3,92 (400) 0,059 1,89 148
9ПБ27-8-п 2720 7,85 (800) 0,062 3,77 155 170
9ПБ29-4-п 2850 3,92 (400) 0,065 2,68 162 100
9ПБ30-4-п 2980 0,068 2,77 170 150
10ПБ18-27-п 1810 250 190 27,46 (2800) 0,086 4,56 215 170
10ПБ21-27-п 2070 0,098 6,36 246
10ПБ25-27-п 2460 0,117 11,54 292 230
10ПБ25-37-п 2460 37,27 (3800) 0,117 17,67 292
10ПБ27-37-п 2720 0,129 41,39 323
10ПБ27-27-п 2720 27,46 (2800) 0,129 17,77 323
Перемычки плитные
1ПП12-3 1160 380 65 2,94 (300) 0,029 0,71 72 Выпуск 2 100
2ПП14-4 1420 380 140 3,92 (400) 0,076 1,43 189
2ПП17-5 1680 4,90 (500) 0,089 1,80 223
2ПП18-5 1810 0,096 2,23 241
2ПП21-6 2070 5,88 (600) 0,110 2,91 275
2ПП23-7 2330 6,86 (700) 0,124 3,90 310
2ПП25-8 2460 7,85 (800) 0,131 4,63 327
3ПП14-71 1420 380 220 70,61 (7200) 0,119 4,96 297 170
3ПП16-71 1550 0,130 5,16 325
3ПП18-71 1810 0,151 9,56 378
3ПП21-71 2070 0,173 13,82 433
3ПП27-71 2720 0,227 35,82 568 230
3ПП30-10 2980 9,81 (1000) 0,249 7,29 623 100
4ПП12-4 1160 510 65 3,92 (400) 0,038 0,98 95 Выпуск 2 100
5ПП14-5 1420 510 140 4,90 (500) 0,101 2,08 253
5ПП17-6 1680 5,88 (600) 0,120 2,26 300
5ПП23-10 2330 9,81 (1000) 0,166 5,68 416
6ПП30-13 2980 510 220 12,75 (1300) 0,334 9,66 835
7ПП12-3 1160 380 90 2,94 (300) 0,040 1,08 100 Выпуск 5
7ПП14-4 1420 3,92 (400) 0,049 1,27 121
8ПП17-5 1680 380 190 4,90 (500) 0,121 3,14 303
8ПП18-5 1810 0,131 3,44 327
8ПП21-6 2070 5,88 (600) 0,149 4,04 374
8ПП23-7 2330 6,86 (700) 0,168 5,12 421
8ПП25-8 2460 7,85 (800) 0,178 6,74 444
8ПП30-10 2980 9,81 (1000) 0,215 9,83 538
8ПП14-71 1420 70,61 (7200) 0,103 6,32 256 170
8ПП16-71 1550 0,112 6,82 280
8ПП18-71 1810 0,131 12,59 327
8ПП21-71 2070 0,149 19,99 374
8ПП27-71 2720 0,196 61,82 491 230
9ПП12-4 1160 510 90 3,92 (400) 0,053 1,34 133 100
9ПП14-5 1420 4,90 (500) 0,065 1,57 163
9ПП17-6 1680 5,88 (600) 0,077 2,71 193
10ПП23-10 2330 510 190 9,81 (1000) 0,226 6,76 564
10ПП30-13 2980 12,75 (1300) 0,289 13,40 722

Подбираем перемычки в несущих кирпичных стенах

Исходные данные для расчета можно посмотреть в статье «Как подобрать перемычки в частном доме — примеры расчета».

Проем №7.

Подбираем перемычку для проема шириной 1,0 м в несущей стене толщиной 380 мм с опиранием перекрытия с одной стороны.

Здесь нужно обратить внимание на то, что пакет будет состоять из разных перемычек. Со стороны опирания перекрытия устанавливается несущая перемычка (несущая способность – не менее 800 кг/м, согласно общей части пояснительной записки серии 1.038.1-1). С той стороны, где плита не опирается можно установить перемычку, которая просто выдержит вес кладки.

Еще нужно знать, в каких случаях вообще нужно учитывать нагрузку от перекрытия, покрытия, балок и прочих несущих элементов. Согласно СНиП «Каменные и армокаменные конструкции»:

Получается, чтобы определить, нужна ли несущая перемычка, надо подсчитать высоту кладки над ней и сравнить эту высоту кладки с расчетным пролетом перемычки. Если высота кладки больше расчетного пролета (при строительстве в летних условиях), то несущая перемычка не нужна. Объяснить это просто: при определенной высоте стене над проемом достаточно собственной несущей способности, помощь перемычки ей тогда не нужна.

Если несущая перемычка нужна, то подсчет нагрузки на нее отличается от подсчета нагрузки на ненесущие перемычки.

Из текста пояснительной записки видно, что помимо собственного веса перемычки нужно учитывать нагрузку от всей высоты кладки (постоянная), от веса перекрытия (постоянная), а также временную нагрузку на перекрытие.























Ширина проема

1,0 м

Толщина стены

0,38 м

Определяем, нужна ли несущая перемычка

Высота кладки над пермычкой (предполагаем высоту несущей перемычки 0,22 м)

3,3-2,1-0,22=0,98 м

Предварительно подбираем несущую перемычку (таблицы 1 и 5 серии 1.038.1-1, вып. 1), исходя из размеров проема и минимальной глубины опирания (предполагая ее для начала равной 0,17 м)

1,0+2*0,17=1,34 м – минимальная длина перемычки (предварительно), т.е. нам подходит перемычка 3ПБ18-8 (сечение 0,12х0,22 м, масса 119 кг, минимальная глубина опирания 0,17 м, длина 1,81 м, допустимая расчетная полная нагрузка 800 кг/м, расчетный пролет 1,64 м)

Сравниваем расчетный пролет перемычки с высотой кладки над перемычкой

1,64 м > 0,98 м – несущая перемычка нужна

Подбираем несущую перемычку

Расчетная постоянная нагрузка на погонный метр несущей перемычки от кладки с учетом собственного веса перемычки (здесь 1,1 – коэффициент надежности по нагрузке;  1800 кг/м3 – объемный вес кладки)

1,1*0,12*0,98*1800 + 1,1*119/1,81 = 305 кг/м

Половина пролета перекрытия, с которого приходится нагрузка на перемычку

6/2=3 м

Расчетная постоянная нагрузка на погонный метр несущей перемычки от собственного веса перекрытия (300 кг/м2), веса полов и перегородок (150 кг/м2) – определяются для каждого случая отдельно, см. статью «Собираем нагрузки на ленточный фундамент дома.»

Здесь 1,1 и 1,3 – коэффициенты надежности по нагрузке

1,1*3*300+1,3*3*150=1575 кг/м

Расчетная временная нагрузка на перекрытие 150 кг/м2 (назначение помещения – жилое) согласно таблице 5 ДБН «Нагрузки и воздействия».

Здесь 1,3 – коэффициент надежности по нагрузке.

1,3*3*150=585 кг/м2

 

Итого расчетная полная нагрузка на перемычку

305+1575+585=2465 кг/м > 800 кг/м

Полученная нагрузка значительно больше несущей способности перемычки 3ПБ18-8.

Принимаем следующую по несущей способности перемычку 3ПБ16-37 (сечение 0,12х0,22 м, масса 102 кг, минимальная глубина опирания 0,17 м, длина 1,55 м, допустимая расчетная полная нагрузка 3800 кг/м, расчетный пролет 1,38 м).

Расчетная постоянная нагрузка на погонный метр несущей перемычки от кладки с учетом собственного веса перемычки (здесь 1,1 – коэффициент надежности по нагрузке;  1800 кг/м3 – объемный вес кладки)

1,1*0,12*0,98*1800 + 1,1*102/1,55 = 305 кг/м

Итого расчетная полная нагрузка на перемычку

305+1575+585=2465 кг/м < 3800 кг/м

Полученная нагрузка меньше несущей способности перемычки 3ПБ16-37, условие соблюдается.

Уточним необходимую длину перемычки, исходя из минимальной глубины опирания

1,0+2*0,17=1,34 м < 1,55 м

Подбираем ненесущую перемычку

Оставшаяся толщина стены, для которой необходима ненесущая перемычка

0,38-0,12=0,26 мм – нам необходимо две брусковые перемычки шириной 0,12 м

Предварительно подбираем перемычку (таблицы 1 и 5 серии 1.038.1-1, вып. 1), исходя из размеров проема и минимальной глубины опирания (предполагая ее для начала равной 0,1 м)

1,0+2*0,1=1,2 м – минимальная длина перемычки (предварительно), т.е. нам подходит перемычка 2ПБ13-1 (сечение 0,12х0,14 м, масса 54 кг, минимальная глубина опирания 0,1 м, длина 1,29 м, допустимая расчетная нагрузка 150 кг/м, расчетный пролет 1,19 м)

Высота кладки над пермычкой

3,3-2,1-0,14=1,06 м

Высота кладки, нагрузка от которой учитывается (равна 1/3 пролета – при кладке в летних условиях, согласно п. 6.47 СНиП «Каменные и армокаменные конструкции»)

1,19/3=0,4 м

Расчетная нагрузка на погонный метр одной перемычки с учетом ее собственного веса (здесь 1,1 – коэффициент надежности по нагрузке; 1800 кг/м3 – объемный вес кладки)

1,1*0,12*0,4*1800 + 1,1*54/1,29 = 141 кг/м

Окончательно принимаем

Пакет из одной несущей перемычки 3ПБ16-37 и двух перемычек 2ПБ13-1. Несущую перемычку необходимо установить со стороны опирания плит перекрытия.

Проем №8.

Подбираем перемычку для проема шириной 2,0 м в несущей стене толщиной 380 мм с опиранием перекрытия с одной стороны.




















Ширина проема

2,0 м

Толщина стены

0,38 м

Определяем, нужна ли несущая перемычка

Высота кладки над пермычкой (предполагаем высоту несущей перемычки 0,22 м)

3,3-2,1-0,22=0,98 м

Предварительно подбираем несущую перемычку (таблицы 1 и 5 серии 1.038.1-1, вып. 1), исходя из размеров проема и минимальной глубины опирания (предполагая ее для начала равной 0,23 м)

2,0+2*0,23=2,46 м – минимальная длина перемычки (предварительно), т.е. нам подходит перемычка 5ПБ25-27 (сечение 0,25х0,22 м, масса 338 кг, минимальная глубина опирания 0,23 м, длина 2,46 м, допустимая расчетная полная нагрузка 2800 кг/м, расчетный пролет 2,23 м)

Сравниваем расчетный пролет перемычки с высотой кладки над перемычкой

2,23 м > 0,98 м – несущая перемычка нужна

Подбираем несущую перемычку

Расчетная постоянная нагрузка на погонный метр несущей перемычки от кладки с учетом собственного веса перемычки (здесь 1,1 – коэффициент надежности по нагрузке;  1800 кг/м3 – объемный вес кладки)

1,1*0,25*0,98*1800 + 1,1*338/2,46 = 636 кг/м

Половина пролета перекрытия, с которого приходится нагрузка на перемычку

6/2=3 м

Расчетная постоянная нагрузка на погонный метр несущей перемычки от собственного веса перекрытия (300 кг/м2), веса полов и перегородок (150 кг/м2) – определяются для каждого случая отдельно, см. статью «Собираем нагрузки на ленточный фундамент дома.»

Здесь 1,1 и 1,3 – коэффициенты надежности по нагрузке

1,1*3*300+1,3*3*150=1575 кг/м

Расчетная временная нагрузка на перекрытие 150 кг/м2 (назначение помещения – жилое) согласно таблице 5 ДБН «Нагрузки и воздействия».

Здесь 1,3 – коэффициент надежности по нагрузке.

1,3*3*150=585 кг/м2

 

Итого расчетная полная нагрузка на перемычку

636+1575+585=2796 кг/м < 2800 кг/м

(Настоятельно советую: когда неравенство близко к равенству и нет запаса хотя бы в 5%, лучше взять следующую по несущей способности перемычку 5ПБ25-37)

Подбираем ненесущую перемычку

Оставшаяся толщина стены, для которой необходима ненесущая перемычка

0,38-0,25=0,13 мм – нам необходима одна брусковая перемычка шириной 0,12 м

Предварительно подбираем перемычку (таблицы 1 и 5 серии 1.038.1-1, вып. 1), исходя из размеров проема и минимальной глубины опирания (предполагая ее для начала равной 0,1 м)

2,0+2*0,1=2,2 м – минимальная длина перемычки (предварительно), т.е. нам подходит перемычка 2ПБ22-3 (сечение 0,12х0,14 м, масса 92 кг, минимальная глубина опирания 0,1 м, длина 2,2 м, допустимая расчетная нагрузка 350 кг/м, расчетный пролет 2,1 м)

Высота кладки над пермычкой

3,3-2,1-0,14=1,06 м

Высота кладки, нагрузка от которой учитывается (равна 1/3 пролета – при кладке в летних условиях, согласно п. 6.47 СНиП «Каменные и армокаменные конструкции»)

2,1/3=0,7 м

Расчетная нагрузка на погонный метр одной перемычки с учетом ее собственного веса (здесь 1,1 – коэффициент надежности по нагрузке; 1800 кг/м3 – объемный вес кладки)

1,1*0,12*0,7*1800 + 1,1*92/2,2 = 212 кг/м < 350 кг/м

Окончательно принимаем

Пакет из одной несущей перемычки 3ПБ25-37 и одной перемычки 2ПБ22-3. Несущую перемычку необходимо установить со стороны опирания плит перекрытия.

Проем №9.

Подбираем перемычку для проема шириной 0,9 м в несущей стене толщиной 250 мм с опиранием перекрытия с одной стороны.





















Ширина проема

0,9 м

Толщина стены

0,25 м

Определяем, нужна ли несущая перемычка

Высота кладки над пермычкой (предполагаем высоту несущей перемычки 0,22 м)

3,3-2,1-0,22=0,98 м

Предварительно подбираем несущую перемычку (таблицы 1 и 5 серии 1.038.1-1, вып. 1), исходя из размеров проема и минимальной глубины опирания (предполагая ее для начала равной 0,17 м)

0,9+2*0,17=1,24 м – минимальная длина перемычки (предварительно), т.е. нам подходит перемычка 3ПБ18-8. Но для проема №7 такая перемычка не прошла по несущей способности, а у нас пролет перекрытия такой же. Поэтому сразу выбираем следующую по несущей споосбности перемычку 3ПБ18-37 (сечение 0,12х0,22 м, масса 119 кг, минимальная глубина опирания 0,2 м, длина 1,81 м, допустимая расчетная полная нагрузка 3800 кг/м, расчетный пролет 1,61 м).

Сравниваем расчетный пролет перемычки с высотой кладки над перемычкой

1,61 м > 0,98 м – несущая перемычка нужна

Уточним необходимую длину перемычки, исходя из минимальной глубины опирания

0,9+2*0,2=1,3 м < 1,81 м

Подбираем несущую перемычку

Расчетная постоянная нагрузка на погонный метр несущей перемычки от кладки с учетом собственного веса перемычки (здесь 1,1 – коэффициент надежности по нагрузке;  1800 кг/м3 – объемный вес кладки)

1,1*0,12*0,98*1800 + 1,1*119/1,81 = 305 кг/м

Половина пролета перекрытия, с которого приходится нагрузка на перемычку

6/2=3 м

Расчетная постоянная нагрузка на погонный метр несущей перемычки от собственного веса перекрытия (300 кг/м2), веса полов и перегородок (150 кг/м2) – определяются для каждого случая отдельно, см. статью «Собираем нагрузки на ленточный фундамент дома.»

Здесь 1,1 и 1,3 – коэффициенты надежности по нагрузке

1,1*3*300+1,3*3*150=1575 кг/м

Расчетная временная нагрузка на перекрытие 150 кг/м2 (назначение помещения – жилое) согласно таблице 5 ДБН «Нагрузки и воздействия».

Здесь 1,3 – коэффициент надежности по нагрузке.

1,3*3*150=585 кг/м2

 

Итого расчетная полная нагрузка на перемычку

305+1575+585=2465 кг/м < 3800 кг/м

 

Подбираем ненесущую перемычку

Оставшаяся толщина стены, для которой необходима ненесущая перемычка

0,25-0,12=0,13 мм – нам необходима одна брусковая перемычка шириной 0,12 м

Предварительно подбираем перемычку (таблицы 1 и 5 серии 1.038.1-1, вып. 1), исходя из размеров проема и минимальной глубины опирания (предполагая ее для начала равной 0,1 м)

0,9+2*0,1=1,1 м – минимальная длина перемычки (предварительно), т.е. нам подходит перемычка 2ПБ13-1 (сечение 0,12х0,14 м, масса 54 кг, минимальная глубина опирания 0,1 м, длина 1,29 м, допустимая расчетная нагрузка 150 кг/м, расчетный пролет 1,19 м)

Высота кладки над пермычкой

3,3-2,1-0,14=1,06 м

Высота кладки, нагрузка от которой учитывается (равна 1/3 пролета – при кладке в летних условиях, согласно п. 6.47 СНиП «Каменные и армокаменные конструкции»)

1,19/3=0,4 м

Расчетная нагрузка на погонный метр одной перемычки с учетом ее собственного веса (здесь 1,1 – коэффициент надежности по нагрузке; 1800 кг/м3 – объемный вес кладки)

1,1*0,12*0,4*1800 + 1,1*54/1,29 = 141 кг/м < 150 кг/м

Окончательно принимаем

Пакет из одной несущей перемычки 3ПБ18-37 и одной перемычки 2ПБ13-1. Несущую перемычку необходимо установить со стороны опирания плит перекрытия.

Проем №10.

Подбираем перемычку для проема шириной 1,2 м в несущей стене толщиной 250 мм с опиранием перекрытия с двух сторон.














Ширина проема

1,2 м

Толщина стены

0,25 м

Определяем, нужна ли несущая перемычка

Высота кладки над пермычкой (предполагаем высоту несущей перемычки 0,22 м)

3,3-2,1-0,22=0,98 м

Предварительно подбираем несущую перемычку (таблицы 1 и 5 серии 1.038.1-1, вып. 1), исходя из размеров проема и минимальной глубины опирания (предполагая ее для начала равной 0,17 м)

1,2+2*0,17=1,54 м – минимальная длина перемычки (предварительно), т.е. нам подходит перемычка 3ПБ16-37 (сечение 0,12х0,22 м, масса 102 кг, минимальная глубина опирания 0,17 м, длина 1,55 м, допустимая расчетная полная нагрузка 3800 кг/м, расчетный пролет 1,38 м)

Сравниваем расчетный пролет перемычки с высотой кладки над перемычкой

1,38 м > 0,98 м – несущая перемычка нужна

Подбираем несущую перемычку

Расчетная постоянная нагрузка на погонный метр несущей перемычки от кладки с учетом собственного веса перемычки (здесь 1,1 – коэффициент надежности по нагрузке;  1800 кг/м3 – объемный вес кладки)

1,1*0,12*0,98*1800 + 1,1*102/1,55 = 305 кг/м

Половина пролета перекрытия, с которого приходится нагрузка на перемычку (т.к. толщина одной перемычки 0,12 м, т.е. их будет в пакете две, то на каждую из них будет приходиться нагрузка от одного перекрытия. В нашем случае пролеты равны – перемычки находятся в одинаковых условиях. В другой ситуации проверять нужно по большему пролету.

6/2=3 м

Расчетная постоянная нагрузка на погонный метр несущей перемычки от собственного веса перекрытия (300 кг/м2), веса полов и перегородок (150 кг/м2) – определяются для каждого случая отдельно, см. статью «Собираем нагрузки на ленточный фундамент дома.»

Здесь 1,1 и 1,3 – коэффициенты надежности по нагрузке

1,1*3*300+1,3*3*150=1575 кг/м

Расчетная временная нагрузка на перекрытие 150 кг/м2 (назначение помещения – жилое) согласно таблице 5 ДБН «Нагрузки и воздействия».

Здесь 1,3 – коэффициент надежности по нагрузке.

1,3*3*150=585 кг/м2

 

Итого расчетная полная нагрузка на перемычку

305+1575+585=2465 кг/м < 3800 кг/м

Окончательно принимаем

Пакет из двух несущих перемычек 3ПБ16-37

Проем №11.

Подбираем перемычку для проема шириной 0,9 м в несущей стене толщиной 380 мм с опиранием перекрытия с двух сторон.

В данном случае есть немаловажный нюанс. Этого примера он не коснется, т.к. проем не велик, и можно подобрать две несущие перемычки толщиной 120 мм под каждое перекрытие, но для больших пролетов может возникнуть трудность: когда перемычек толщиной 120 мм просто нет, а есть только 250 мм (250+250 – это уже 500 мм – больше, чем мы можем себе позволить в стене толщиной 380 мм). В такой ситуации можно попытаться подобрать либо плитную перемычку ПП толщиной 380 мм (из выпуска 2 серии 1.038.1-1) или прогоны ПРГ (выпуски 11 и 12 серии 1.225-2).

В этом примере получится пакет из двух несущих перемычек, расположенных по краям стены, и одной ненесущей – посередине.




















Ширина проема

0,9 м

Толщина стены

0,38 м

Определяем, нужна ли несущая перемычка

Высота кладки над пермычкой (предполагаем высоту несущей перемычки 0,22 м)

3,3-2,1-0,22=0,98 м

Предварительно подбираем несущую перемычку (таблицы 1 и 5 серии 1.038.1-1, вып. 1), исходя из размеров проема и минимальной глубины опирания (предполагая ее для начала равной 0,17 м)

0,9+2*0,17=1,24 м – минимальная длина перемычки (предварительно), т.е. нам подходит перемычка 3ПБ13-37 (сечение 0,12х0,22 м, масса 85 кг, минимальная глубина опирания 0,17 м, длина 1,29 м, допустимая расчетная полная нагрузка 3800 кг/м, расчетный пролет 1,12 м)

Сравниваем расчетный пролет перемычки с высотой кладки над перемычкой

1,12 м > 0,98 м – несущая перемычка нужна

Подбираем несущую перемычку

Расчетная постоянная нагрузка на погонный метр несущей перемычки от кладки с учетом собственного веса перемычки (здесь 1,1 – коэффициент надежности по нагрузке;  1800 кг/м3 – объемный вес кладки)

1,1*0,12*0,98*1800 + 1,1*85/1,29 = 305 кг/м

Половина пролета перекрытия, с которого приходится нагрузка на перемычку (т.к. толщина одной перемычки 0,12 м, т.е. их будет в пакете две, то на каждую из них будет приходиться нагрузка от одного перекрытия. Проверку будем проводить по большему пролету.

Первый пролет: 6/2=3 м.

Второй пролет: 4,2/2=2,1 м.

Расчет будем вести по максимальной величине 3 м.

Расчетная постоянная нагрузка на погонный метр несущей перемычки от собственного веса перекрытия (300 кг/м2), веса полов и перегородок (150 кг/м2) – определяются для каждого случая отдельно, см. статью «Собираем нагрузки на ленточный фундамент дома.»

Здесь 1,1 и 1,3 – коэффициенты надежности по нагрузке

1,1*3*300+1,3*3*150=1575 кг/м

Расчетная временная нагрузка на перекрытие 150 кг/м2 (назначение помещения – жилое) согласно таблице 5 ДБН «Нагрузки и воздействия».

Здесь 1,3 – коэффициент надежности по нагрузке.

1,3*3*150=585 кг/м2

 

Итого расчетная полная нагрузка на перемычку

305+1575+585=2465 кг/м < 3800 кг/м

Подбираем ненесущую перемычку

Оставшаяся толщина стены, для которой необходима ненесущая перемычка

0,38-2*0,12=0,14 мм – нам необходима одна брусковая перемычка шириной 0,12 м

Предварительно подбираем перемычку (таблицы 1 и 5 серии 1.038.1-1, вып. 1), исходя из размеров проема и минимальной глубины опирания (предполагая ее для начала равной 0,1 м)

0,9+2*0,1=1,1 м – минимальная длина перемычки (предварительно), т.е. нам подходит перемычка 2ПБ13-1 (сечение 0,12х0,14 м, масса 54 кг, минимальная глубина опирания 0,1 м, длина 1,29 м, допустимая расчетная нагрузка 150 кг/м, расчетный пролет 1,19 м)

Высота кладки над пермычкой

3,3-2,1-0,14=1,06 м

Высота кладки, нагрузка от которой учитывается (равна 1/3 пролета – при кладке в летних условиях, согласно п. 6.47 СНиП «Каменные и армокаменные конструкции»)

1,19/3=0,4 м

Расчетная нагрузка на погонный метр одной перемычки с учетом ее собственного веса (здесь 1,1 – коэффициент надежности по нагрузке; 1800 кг/м3 – объемный вес кладки)

1,1*0,12*0,4*1800 + 1,1*54/1,29 = 141 кг/м

Окончательно принимаем

Пакет из двух несущих перемычек 3ПБ13-37 и одной перемычки 2ПБ13-1. Несущие перемычки установить по краям стены.

Итак, все перемычки подобраны. Как свести полученные данные в чертеж формата А3 с удобной для заказа спецификацией, можно узнать в статье Как выполнить чертеж перемычек — схему перекрытия оконных и дверных проемов

 

Еще статьи на тему перемычек:

Как подобрать перемычки в кирпичных стенах

Подбираем перемычки в самонесущих кирпичных стенах — примеры расчета.

«Подбираем перемычки в кирпичных перегородках – примеры расчета. Проемы №1-3.»

Устройство металлической перемычки

 

Еще полезные статьи:

«Выбор материала для стен»

«Расчет кладки из газобетона на смятие под действием нагрузки от перекрытия.»

«Как рассчитать стены из кладки на устойчивость.»

«Как пробить проем в существующей стене.»

 

Внимание! Для удобства ответов на ваши вопросы создан новый раздел «БЕСПЛАТНАЯ КОНСУЛЬТАЦИЯ».

В этом разделе Вы можете задать вопросы и получить на них ответы. В комментариях к этой статье просьба писать вопросы и замечания только по тексту статьи.

class=»eliadunit»>

Добавить комментарий

ГОСТ 948-84, классификация, размеры, масса и нагрузки

Предприятия ЖБИ выпускают продукцию для строительной отрасли. В процессе постройки жилых зданий и объектов производственного назначения используются различные виды стандартных изделий, включая железобетонные перемычки. Они обладают высокой прочностью и способны воспринимать изгибающие нагрузки, благодаря арматурному каркасу, залитому тяжелым бетоном. Изготавливаются балки согласно требованиям нормативного документа 948 84. ГОСТ классифицирует продукцию по видам, и содержит комплекс требований технического характера.

Перемычки бетонные – устройство и назначение

Как устроены, согласно требованиям ГОСТ, перемычки? Они состоят из следующих частей:

  • арматурной решетки, предотвращающей образование трещин и повышающей прочностные свойства;
  • тяжелого бетона, габариты и форма которого после застывания соответствуют положениям стандарта;
  • строповочных элементов, предназначенных для удобства транспортировки и облегчения монтажных работ.

Применение морозостойкого бетона позволяет эксплуатировать продукцию в северных районах при температуре до минус 40 градусов. Усиленные стальной арматурой, ригели из армированного бетона характеризуются повышенным запасом прочности и не растрескиваются в результате приложения изгибающих нагрузок.

Железобетонные ригели устанавливаются в проемах строений, построенных из различных материалов:

  • всех видов кирпича;
  • газобетонных блоков;
  • пеноблочных стройматериалов;
  • природного камня;
  • монолитного бетона.

Трудно представить себе дом, в котором нет ни окон, ни дверей

Армированные перемычки выполняют ряд серьезных задач:

  • повышают нагрузочную способность проемов;
  • формируют ровную поверхность при возведении стен;
  • компенсируют различные виды действующих нагрузок;
  • замыкают силовой контур над оконными и дверными проемами;
  • позволяют создать опорный контур для установки кровли.

Регламентирует строительные области, в которых могут использоваться железобетонные перемычки, ГОСТ. Размеры и конструкция изделий позволяют использовать их также в транспортной сфере для обустройства подкрановых путей, постройки эстакад и прокладывания трамвайных магистралей.

Основные разновидности

Согласно 948 ГОСТ, балки отличаются маркировкой и делятся на следующие виды:

  • перемычки ПБ. ГОСТ классифицирует их как брусковые перегородки, имеющие конфигурацию правильного параллелепипеда с шириной 0,25 м;
  • продукция с индексом ПП. По внешнему виду они похожи на плиту, с минимальной шириной поперечного сечения, превышающей 0,25 м;
  • изделия г-образной конфигурации, обозначаемые буквами ПГ. Имеют продольно расположенный уступ, улучшающий стыковку с элементами перекрытия;
  • фасадные ригели с маркировкой ПФ. В конструкции предусмотрен четвертной уступ для улучшенного перекрытия проемов с уличной стороны здания.

В зависимости от величины рабочей нагрузки все сборные перемычки делятся на несущие и ненесущие

Действующий ГОСТ на перемычки брусковые предусматривает варианты исполнения с наклонными торцевыми поверхностями и боковыми гранями. При этом незначительно снижаются размеры опорной плоскости, что не оказывает существенного влияния на прочностные характеристики.

Маркировка железобетонных перемычек

Предприятие-изготовитель железобетонных балок в торце каждого изделия наносит маркировку, соответствующую требованиям нормативного документа. Она представляет собой специальное обозначение, в виде буквенно-цифрового набора.

Маркировка содержит следующие данные:

  • типоразмер профиля, соответствующий определенным габаритам;
  • обозначение железобетонной продукции, соответствующее классификации;
  • длину, округленную до целого количества дециметров;
  • значение расчетной величины усилия, которое указано в кН/м;
  • вид арматурных стержней, применяемых для напряженных ригелей;
  • информация об элементах крепления и такелажных проушинах;
  • возможности применения балок конструкций в специальных условиях.

Буквенный индекс в обозначении содержит дополнительную информацию о наличии выпусков для анкерного крепления и строповочных проушин:

  • наличие выступающей арматуры, предназначенной для крепления балконных плит, обозначается буквой «а»;
  • предусмотренные конструкцией балки закладные элементы или такелажные проушины обозначаются буквой «б».

Маркировку и габаритные размеры железобетонных конструкций оговаривает ГОСТ 948-84

Маркировка предусматривает специальное обозначение прописными буквами возможность продолжительного использования железобетонных ригелей в особых условиях эксплуатации:

  • продукция для сейсмоопасных зон содержит индекс «C»;
  • балки для агрессивных сред обозначаются буквой «П».

Рассмотрим, как расшифровывается маркировка одного из вариантов железобетонного ригеля 5ПБ30-27 АтIVС-а:

  • 5 – тип железобетонного профиля с габаритами 22х25 см;
  • ПБ – обозначение балки брусковой конструкции;
  • 30 – длина изделия в дециметрах, реальный габарит равен 2980 мм;
  • 27 – значение расчетного усилия, указанное в кН/м, с округлением до целого числа;
  • АтIVС – аббревиатура арматурных стержней, бетонируемых в напряженном состоянии;
  • а – индекс, свидетельствующий о наличии выступающих стержней для фиксации балки.

Принимая решение о возможности применения железобетонных балок для решения конкретных задач необходимо уметь расшифровать маркировку. В ней содержится полная информация об эксплуатационных характеристиках и конструктивных особенностях изделия.

Перемычки бетонные – размеры и вес изделий

Размеры перемычек железобетонных для окон и дверей, а также других типов балок, регламентирует стандарт. Округленные габариты продукции с маркировкой ПБ составляют:

  • длина 1–6 м;
  • ширина – 1,2–2,5 дм;
  • высота – 0,65–5,85 дм.

Ассортимент настолько многообразен, что нет смысла перечислять все типовые габариты

Балки с обозначением ПП имеют следующие параметры:

  • длину – 1,1–3 м;
  • ширину – 3,8–5,1 дм;
  • высоту – 0,65–2,2 дм.

Продукция марки ПГ характеризуется следующими размерами:

  • длиной, составляющей 1,5–6 м;
  • шириной, равной 2,5–5,1 дм;
  • высотой – 2,9–5,85 дм.

Размеры ригелей ПФ, отличающихся стандартной шириной 2,5 дм, составляют:

  • длина – 0,8–4,3 м;
  • высота – 1,4–2,9 дм.

Масса балок зависит от габаритов и составляет от 20 кг до 2,5 т.

Таблица размеров по 948 ГОСТ

Размеры бетонных перемычек для всех вариантов исполнений содержатся в таблицах нормативного документа. Табличные значения используют профессиональные строители и специалисты-проектировщики, подбирая изделия для выполнения определенных строительных задач.

Диameтp иcпoльзyemoй apmaтypы нaпpяmyю зaвиcит oт тoгo, kakoгo видa жeлeзoбeтoннaя пepemычka бyдeт изгoтaвливaтcя — бpyckoвaя или плитнaя

Наряду с размерами балок, в таблицах стандарта содержатся следующие сведения:

  • код и маркировка изделия;
  • расчетные нагрузки;
  • справочная масса;
  • необходимое количество материалов для изготовления продукции.

Табличная информация позволяет подобрать ригели с учетом необходимого запаса прочности.

Как изготавливают ЖБ перемычки ГОСТ 948

Процесс изготовления может осуществляться в производственных условиях или самостоятельно. Для изготовления своими силами следует подготовить:

  • древесину или влагостойкую фанеру для изготовления опалубки;
  • стальные прутки, предназначенные для арматурного каркаса;
  • вязальную проволоку, позволяющую надежно зафиксировать стальную арматуру;
  • бетонную смесь, подготовленную в необходимом для заливки объеме.

Алгоритм самостоятельного изготовления ригелей следующий:

  • Выберите вид ригеля, соответствующего по габаритам требованиям стандарта.
  • Разработайте чертеж опалубки с учетом конфигурации формуемого элемента.
  • Изготовьте опалубочную форму, обеспечив ее герметичность и прочность.

Железобетонные брусковые перемычки – наиболее распространенный тип изделий, применяемый для оформления проемов жилых, промышленных и общегражданских сооружений

  • Уложите полиэтилен, облегчающий извлечение готовой продукции.
  • Нарежьте стальные прутки диаметром 10–12 мм на заготовки.
  • Свяжите из 4 продольных стержней решетку с помощью вязальной проволоки.
  • Уложите каркас в форму на специальные подкладки (с равным зазором до поверхности).
  • Подготовьте бетонную смесь необходимой марки и залейте в опалубочную форму.
  • Спланируйте верхнюю плоскость бетонного массива и уложите на нее полиэтилен.
  • Заформованное изделие для поддержания влажности периодически увлажняйте.
  • Извлеките ригель из формы через месяц после бетонирования.

Приведенная технология позволяет самостоятельно изготавливать продукцию с небольшими габаритами, которую затем монтируют в зоне проема. Крупногабаритные и массивные конструкции, которые воспринимают значительные усилия, изготавливают на специализированных предприятиях.

Опалубка и ее укрепление

Технология обеспечивает также возможность заливки балок непосредственно над проемом.

Для обеспечения прочности бетонных конструкций, усиленных стальной арматурой, в зоне проема собирается опалубка из следующих материалов:

  • металлических листов;
  • деревянных досок;
  • влагостойкой фанеры;
  • стружечных плит.

Высота перемычки подбирается, исходя из расчетной нагрузки на проем

Из заготовок собирается форма, которая фиксируется проволокой или брусками от возможных деформаций при бетонировании. Важно продумать, как будет разбираться опалубочная конструкция после твердения ригеля. Для этого используется полиэтиленовая пленка, которая укладывается внутри формы или производится смазка маслом металлической поверхности. Внутри опалубки размещается арматурный каркас, который обеспечивает целостность конструкции и не допускает смещения. Следует также предусмотреть вертикальные подпорки, для дополнительного крепления формы.

Как утеплить перемычки железобетонные ГОСТ

Для уменьшения тепловых потерь в зоне проемов, перекрытых ригелями, укладывается теплоизолирующий слой из различных материалов:

  • минеральной ваты;
  • экструдированного пенополистирола;
  • обычного пенопласта.

Герметизация зазоров между оконной рамой или дверной коробкой и утеплителем производится с помощью монтажной пены.

ГОСТ 948 84 «Перемычки» – основные положения

В нормативном документе представлена расширенная информация для строителей и проектировщиков:

  • область применения;

В ненесущей стене брусковые перемычки имеют один размер

  • разновидности продукции;
  • габариты различных видов изделий;
  • технические параметры;
  • особенности маркировки;
  • правила приемки продукции;
  • методы контроля качества;
  • правила транспортировки;
  • специфика хранения.

Соблюдение положений стандарта гарантирует качество производимой продукции.

Как рассчитать размер перемычек из железобетона

Для подбора ригелей, с учетом прочностных характеристик и действующих нагрузок, необходимо правильно выполнить расчет. Он включает следующие стадии:

  • вычисление нагрузки, действующей на конструкцию;
  • определение величины предельно допустимого изгибающего момента;
  • подбор оптимального сечения.

Целесообразно доверить выполнение расчетов профессионалам, владеющим методикой вычислений и учитывающим в полном объеме все факторы.

Как устанавливают перемычки брусковые (ГОСТ 948)

Монтаж брусковых ригелей производится различными методами:

  • вручную – при небольшой массе изделий;
  • грузоподъемным приспособлением – для массивных конструкций.

Независимо от метода установки важно контролировать горизонтальность расположения и плотный контакт с поверхностью стены.

Полезные рекомендации

При выполнении работ обратите внимание на следующие моменты:

  • высоту балки, которая должна составлять не менее 5% высоты проема;
  • ширину конструкции, которая должна полностью опираться на поверхность;
  • диаметр стержней арматурного каркаса, составляющий от 10 до 14 мм;
  • неподвижность конструкции, которую можно нагружать через месяц после заливки;
  • качество изготовления и надежность установки, гарантирующие отсутствие трещин;
  • тщательное уплотнение бетонной смеси для удаления воздушных полостей.

В процессе изготовления и монтажа бетонных ригелей, усиленных арматурной решеткой, следует руководствоваться положениями нормативного документа. Продукция востребована в строительной сфере и обеспечивает повышенный запас прочности, а также долговечность строительных конструкций. При проектировании необходимо ориентироваться на положения ГОСТ 948 84. Это позволит избежать проблемных ситуаций, связанных с образованием трещин и нарушением целостности строительных конструкций.

ГОСТ 948-84 Перемычки железобетонные для зданий с кирпичными стенами. Технические условия

Искать все виды документовДокументы неопределённого видаISOАвиационные правилаАльбомАпелляционное определениеАТКАТК-РЭАТПЭАТРВИВМРВМУВНВНиРВНКРВНМДВНПВНПБВНТМ/МЧМ СССРВНТПВНТП/МПСВНЭВОМВПНРМВППБВРДВРДСВременное положениеВременное руководствоВременные методические рекомендацииВременные нормативыВременные рекомендацииВременные указанияВременный порядокВрТЕРВрТЕРрВрТЭСНВрТЭСНрВСНВСН АСВСН ВКВСН-АПКВСПВСТПВТУВТУ МММПВТУ НКММПВУП СНЭВУППВУТПВыпускГКИНПГКИНП (ОНТА)ГНГОСТГОСТ CEN/TRГОСТ CISPRГОСТ ENГОСТ EN ISOГОСТ EN/TSГОСТ IECГОСТ IEC/PASГОСТ IEC/TRГОСТ IEC/TSГОСТ ISOГОСТ ISO GuideГОСТ ISO/DISГОСТ ISO/HL7ГОСТ ISO/IECГОСТ ISO/IEC GuideГОСТ ISO/TRГОСТ ISO/TSГОСТ OIML RГОСТ ЕНГОСТ ИСОГОСТ ИСО/МЭКГОСТ ИСО/ТОГОСТ ИСО/ТСГОСТ МЭКГОСТ РГОСТ Р ЕНГОСТ Р ЕН ИСОГОСТ Р ИСОГОСТ Р ИСО/HL7ГОСТ Р ИСО/АСТМГОСТ Р ИСО/МЭКГОСТ Р ИСО/МЭК МФСГОСТ Р ИСО/МЭК ТОГОСТ Р ИСО/ТОГОСТ Р ИСО/ТСГОСТ Р ИСО/ТУГОСТ Р МЭКГОСТ Р МЭК/ТОГОСТ Р МЭК/ТСГОСТ ЭД1ГСНГСНрГСССДГЭСНГЭСНмГЭСНмрГЭСНмтГЭСНпГЭСНПиТЕРГЭСНПиТЕРрГЭСНрГЭСНсДИДиОРДирективное письмоДоговорДополнение к ВСНДополнение к РНиПДСЕКЕНВиРЕНВиР-ПЕНиРЕСДЗемЕТКСЖНМЗаключениеЗаконЗаконопроектЗональный типовой проектИИБТВИДИКИМИНИнструктивное письмоИнструкцияИнструкция НСАМИнформационно-методическое письмоИнформационно-технический сборникИнформационное письмоИнформацияИОТИРИСОИСО/TRИТНИТОсИТПИТСИЭСНИЭСНиЕР Республика КарелияККарта трудового процессаКарта-нарядКаталогКаталог-справочникККТКОКодексКОТКПОКСИКТКТПММ-МВИМВИМВНМВРМГСНМДМДКМДСМеждународные стандартыМетодикаМетодика НСАММетодические рекомендацииМетодические рекомендации к СПМетодические указанияМетодический документМетодическое пособиеМетодическое руководствоМИМИ БГЕИМИ УЯВИМИГКМММНМОДНМонтажные чертежиМос МУМосМРМосСанПинМППБМРМРДСМРОМРРМРТУМСанПиНМСНМСПМТМУМУ ОТ РММУКМЭКННАС ГАНБ ЖТНВННГЭАНДНДПНиТУНКНормыНормы времениНПНПБНПРМНРНРБНСПНТПНТП АПКНТП ЭППНТПДНТПСНТСНЦКРНЦСОДМОДНОЕРЖОЕРЖкрОЕРЖмОЕРЖмрОЕРЖпОЕРЖрОКОМТРМОНОНДОНКОНТПОПВОПКП АЭСОПНРМСОРДОСГиСППиНОСНОСН-АПКОСПОССПЖОССЦЖОСТОСТ 1ОСТ 2ОСТ 34ОСТ 4ОСТ 5ОСТ ВКСОСТ КЗ СНКОСТ НКЗагОСТ НКЛесОСТ НКМОСТ НКММПОСТ НКППОСТ НКПП и НКВТОСТ НКСМОСТ НКТПОСТ5ОСТНОСЭМЖОТРОТТПП ССФЖТПБПБПРВПБЭ НППБЯПВ НППВКМПВСРПГВУПереченьПиН АЭПисьмоПМГПНАЭПНД ФПНД Ф СБПНД Ф ТПНСТПОПоложениеПорядокПособиеПособие в развитие СНиППособие к ВНТППособие к ВСНПособие к МГСНПособие к МРПособие к РДПособие к РТМПособие к СНПособие к СНиППособие к СППособие к СТОПособие по применению СППостановлениеПОТ РПОЭСНрППБППБ-АСППБ-СППБВППБОППРПРПР РСКПР СМНПравилаПрактическое пособие к СППРБ АСПрейскурантПриказПротоколПСРр Калининградской областиПТБПТЭПУГПУЭПЦСНПЭУРР ГазпромР НОПРИЗР НОСТРОЙР НОСТРОЙ/НОПР РСКР СМНР-НП СРО ССКРазъяснениеРаспоряжениеРАФРБРГРДРД БГЕИРД БТРД ГМРД НИИКраностроенияРД РОСЭКРД РСКРД РТМРД СМАРД СМНРД ЭОРД-АПКРДИРДМРДМУРДПРДСРДТПРегламентРекомендацииРекомендацияРешениеРешение коллегииРКРМРМГРМДРМКРНДРНиПРПРРТОП ТЭРС ГАРСНРСТ РСФСРРСТ РСФСР ЭД1РТРТМРТПРУРуководствоРУЭСТОП ГАРЭГА РФРЭСНрСАСанитарные нормыСанитарные правилаСанПиНСборникСборник НТД к СНиПСборники ПВРСборники РСН МОСборники РСН ПНРСборники РСН ССРСборники ценСБЦПСДАСДАЭСДОССерияСЗКСНСН-РФСНиПСНиРСНККСНОРСНПСОСоглашениеСПСП АССП АЭССправочникСправочное пособие к ВСНСправочное пособие к СНиПСправочное пособие к СПСправочное пособие к ТЕРСправочное пособие к ТЕРрСРПССНССЦСТ ССФЖТСТ СЭВСТ ЦКБАСТ-НП СРОСТАСТКСТМСТНСТН ЦЭСТОСТО 030 НОСТРОЙСТО АСЧМСТО БДПСТО ВНИИСТСТО ГазпромСТО Газпром РДСТО ГГИСТО ГУ ГГИСТО ДД ХМАОСТО ДОКТОР БЕТОНСТО МАДИСТО МВИСТО МИСТО НААГСТО НАКССТО НКССТО НОПСТО НОСТРОЙСТО НОСТРОЙ/НОПСТО РЖДСТО РосГеоСТО РОСТЕХЭКСПЕРТИЗАСТО САСТО СМКСТО ФЦССТО ЦКТИСТО-ГК «Трансстрой»СТО-НСОПБСТПСТП ВНИИГСТП НИИЭССтП РМПСУПСССУРСУСНСЦНПРТВТЕТелеграммаТелетайпограммаТематическая подборкаТЕРТЕР Алтайский крайТЕР Белгородская областьТЕР Калининградской областиТЕР Карачаево-Черкесская РеспубликаТЕР Краснодарского краяТЕР Мурманская областьТЕР Новосибирской областиТЕР Орловской областиТЕР Республика ДагестанТЕР Республика КарелияТЕР Ростовской областиТЕР Самарской областиТЕР Смоленской обл.ТЕР Ямало-Ненецкий автономный округТЕР Ярославской областиТЕРмТЕРм Алтайский крайТЕРм Белгородская областьТЕРм Воронежской областиТЕРм Калининградской областиТЕРм Карачаево-Черкесская РеспубликаТЕРм Мурманская областьТЕРм Республика ДагестанТЕРм Республика КарелияТЕРм Ямало-Ненецкий автономный округТЕРмрТЕРмр Алтайский крайТЕРмр Белгородская областьТЕРмр Карачаево-Черкесская РеспубликаТЕРмр Краснодарского краяТЕРмр Республика ДагестанТЕРмр Республика КарелияТЕРмр Ямало-Ненецкий автономный округТЕРпТЕРп Алтайский крайТЕРп Белгородская областьТЕРп Калининградской областиТЕРп Карачаево-Черкесская РеспубликаТЕРп Краснодарского краяТЕРп Республика КарелияТЕРп Ямало-Ненецкий автономный округТЕРп Ярославской областиТЕРрТЕРр Алтайский крайТЕРр Белгородская областьТЕРр Калининградской областиТЕРр Карачаево-Черкесская РеспубликаТЕРр Краснодарского краяТЕРр Новосибирской областиТЕРр Омской областиТЕРр Орловской областиТЕРр Республика ДагестанТЕРр Республика КарелияТЕРр Ростовской областиТЕРр Рязанской областиТЕРр Самарской областиТЕРр Смоленской областиТЕРр Удмуртской РеспубликиТЕРр Ульяновской областиТЕРр Ямало-Ненецкий автономный округТЕРррТЕРрр Ямало-Ненецкий автономный округТЕРс Ямало-Ненецкий автономный округТЕРтр Ямало-Ненецкий автономный округТехнический каталогТехнический регламентТехнический регламент Таможенного союзаТехнический циркулярТехнологическая инструкцияТехнологическая картаТехнологические картыТехнологический регламентТИТИ РТИ РОТиповая инструкцияТиповая технологическая инструкцияТиповое положениеТиповой проектТиповые конструкцииТиповые материалы для проектированияТиповые проектные решенияТКТКБЯТМД Санкт-ПетербургТНПБТОИТОИ-РДТПТПРТРТР АВОКТР ЕАЭСТР ТСТРДТСНТСН МУТСН ПМСТСН РКТСН ЭКТСН ЭОТСНэ и ТЕРэТССЦТССЦ Алтайский крайТССЦ Белгородская областьТССЦ Воронежской областиТССЦ Карачаево-Черкесская РеспубликаТССЦ Ямало-Ненецкий автономный округТССЦпгТССЦпг Белгородская областьТСЦТСЦ Белгородская областьТСЦ Краснодарского краяТСЦ Орловской областиТСЦ Республика ДагестанТСЦ Республика КарелияТСЦ Ростовской областиТСЦ Ульяновской областиТСЦмТСЦО Ямало-Ненецкий автономный округТСЦп Калининградской областиТСЦПГ Ямало-Ненецкий автономный округТСЦэ Калининградской областиТСЭМТСЭМ Алтайский крайТСЭМ Белгородская областьТСЭМ Карачаево-Черкесская РеспубликаТСЭМ Ямало-Ненецкий автономный округТТТТКТТПТУТУ-газТУКТЭСНиЕР Воронежской областиТЭСНиЕРм Воронежской областиТЭСНиЕРрТЭСНиТЕРэУУ-СТУказУказаниеУказанияУКН

Как подобрать перемычки в кирпичных стенах

В кирпичной кладке над оконными и дверными проемами необходимо укладывать перемычки — обычно это железобетонные элементы заводского изготовления по типовой серии 1.038.1-1 или в случае больших пролетов — по серии 1.225-2. Также, если нет возможности купить готовые перемычки, можно в условиях стройки выполнить армированные монолитные железобетонные перемычки или балки из металлических элементов — все зависит от размеров проема и нагрузки на стену.

Железобетонные перемычки по серии 1.038.1-1

. Подобрать перемычки по данной серии просто. Нужно знать:

— ширину проема,

— нагрузку на перемычку от собственного веса, веса стены и перекрытия (обычно для жилых домов, в которых нет больших нагрузок, можно выделить три типа: 1 — случай, когда на стену опирается перекрытие; 2 — когда стена самонесущая и перекрытие не опирается; 3 — когда перемычка укладывается в кирпичной перегородке толщиной 120 мм).

Все перемычки в серии имеют обозначение, например 2ПБ18-8 и приведены в виде таблицы, в которой указаны необходимые характеристики — размеры, вес и допустимая нагрузка на перемычку.

Что зашифровано в названии перемычки 2ПБ18-8?

ПБ — это марка. Есть марка ПБ — перемычки брусковые шириной 120 или 250 мм, которые нужно набирать по несколько штук в зависимости от ширины стены и толщины перемычки (для перегородки толщиной 120 мм укладывается одна перемычка, для стены толщиной 380 мм — уже две или три перемычки). А есть марка ПП — это перемычки плитные шириной 380 или 510 мм, рассчитанные на то, чтобы перекрыть сразу всю стену по ширине.

2 — это шифр, скрывающий в себе размеры сечения перемычки. Так перемычка с шифром 1ПБ имеет сечение 120х65 мм, где 120 мм — это ширина перемычки; шифр 2ПБ — 120х140 мм; шифр 3ПБ — 120х220 мм; шифр 4ПБ — 120х290 мм; шифр 5ПБ — 250х220 мм (250 мм — ширина). Для плитных перемычек свои значения. Все это можно посмотреть в таблицах серии 1.038.1-1.

18 — в этом шифре заложена длина перемычки 1810 мм. Если вычесть глубину опирания на стену с двух сторон по 100 мм, получим максимальную ширину проема для данной перемычки 1610 мм.

8 — это нагрузка, которую перемычка выдерживает (в данном случае 800 кг/м). Например, если это 8, то перемычка отлично справится с самонесущей стеной, если 1 — это только для перегородок, а начиная с 27 и выше можно применять для стен, на которые опирается перекрытие.

Как просто подобрать перемычку по серии 1.038.1-1? Разберем на примерах:

Пример 1. Проем в кирпичной перегородке толщиной 120 мм размером 900 мм. Кладка в летних условиях.

Нагрузка на такую перемычку небольшая, для перегородок подходят три типа перемычек:

1ПБ10-1 (длиной 1030 мм), 1ПБ13-1 (длиной 1290 мм) и 1ПБ16-1 (длиной 1550 мм). Минимальная глубина опирания перемычки на стену 100 мм.

Определим длину перемычки: 900 + 100 + 100 = 1100. Таким образом, нам подходит перемычка длиной 1290 мм марки 1ПБ13-1.

Другие примеры подбора перемычке в перегородках здесь.

Пример 2. Самонесущая стена (перекрытие на нее не опирается) толщиной 250 мм, над проемом высота стены 900 мм, проем размером 1400 мм. Кладка в зимних условиях.

Так как ширина стены 250 мм, перемычек нужно две по ширине стены.

В зимних условиях на самонесущую перемычку берется нагрузка от высоты стены, равной расчетному пролету перемычки. Предварительно принимаем расчетный пролет равным 1400 + 2*100/3 = 1470 мм (здесь 100 мм — глубина опирания перемычки). Т.к. 1470 мм > 900 мм (высоты кладки над перемычкой), то в расчете будет участвовать величина 900мм.

Определим нагрузку на 1 погонный метр перемычки:

0,25*0,9*1,8*1,1/2 = 0,23 т/м = 230 кг/м (здесь 1,8 т/м3 — вес кирпича, 1,1 — коэффициент надежности, 2 – количество перемычек), при этом собственный вес перемычки еще не был добавлен. С учетом того, что нужно будет учесть собственный вес перемычки, выберем нагрузку в таблице серии 300 кг/м. Выбираем перемычку с индексом 3. Для этих перемычек минимальная глубина опирания 100 мм.

Определим наименьшую возможную длину перемычки: 1400 + 100 + 100 = 1600 мм.

Подбираем перемычку длиной 1940 мм 2ПБ19-3.

Нагрузка от собственного веса этой перемычки равна 81/1,94 = 42 кг/м, таким образом, несущей способности 300 кг/м достаточно, чтобы выдержать нагрузку, равную 230 + 42 = 272 кг/м.

Еще примеры подбора перемычек в самонесущих стенах здесь.

Пример 3. Несущая стена толщиной 380 мм с опиранием перекрытия пролетом 3 м с одной стороны, над проемом высота стены 900 мм, проем размером 1350 мм. Кладка в летних условиях.

Для этого варианта нужно подобрать две разные перемычки — несущую со стороны опирания перекрытия и менее мощную с другой стороны. Чем больше несущая способность перемычки, тем она дороже.

При кладке в летних условиях нагрузка от перемычки берется от 1/3 расчетного пролета перемычки. Но для несущей перемычки берется вся высота кладки — от верха перемычки до низа перекрытия, т.е. нагрузку будем рассчитывать от высоты 900 мм. А вот для ненесущей перемычки предварительно примем расчетный пролет равным 1350 + 2*100/3 = 1420 мм, тогда 1420/3 = 470 мм — высота кладки, от которой определим нагрузку для ненесущей перемычки.

Определим нагрузку на 1 погонный метр стены со стороны опирания перекрытия:

1,1*0,3*0,5*3 + 1,2*0,15*0,5*3 + 0,66*1,1*1,8*0,38*0,9 = 1,21 т/м = 1210 кг/м (здесь 1,1 и 1,2 — коэффициенты, 0,3 — нагрузка от 1 кв. м перекрытия, 0,5*3 — половина пролета перекрытия, 0,15 — временная нагрузка, 0,66*1,1*1,8*0,38*0,9 — две трети нагрузки от веса стен, определяется как в примере 2). Ближайшая большая нагрузка в таблицах серии 2800 кг/м. Выбираем перемычку с индексом 27. Для этих перемычек минимальная глубина опирания 230 мм, ширина перемычки 250 мм.

Определим наименьшую возможную длину перемычки: 1350 + 230 + 230 = 1810 мм.

Подбираем перемычку длиной 1810 мм 5ПБ18-27. Нагрузка от веса этой перемычки равна 250/1,81 = 138 кг/м, итого нагрузка на перемычку 1210 + 138 = 1348 кг/м, что значительно меньше допустимой нагрузки 2800 кг/м – прочность обеспечена.

Нагрузка на 1 погонный метр стены со стороны, на которую перекрытие не опирается равна:

0,33*1,1*1,8*0,38*0,47 = 0,117 т/м = 117 кг/м (здесь 0,33 — 1/3 ширины стены). Ближайшая большая нагрузка 250 кг/м.

Выбираем перемычку с индексом 2, для нее глубина опирания 100 мм.

Определим наименьшую возможную длину перемычки: 1350 + 100 + 100 = 1550 мм.

Максимальная длина перемычек с индексом 2 равна 1480 мм, что меньше требуемой. Подбираем наиболее подходящую перемычку 2ПБ19-3 (длиной 1940 мм) или 3ПБ18-8 (длиной 1810 мм). Если добавить к полученной нагрузке 223 кг/м собственный вес любой из выбранных перемычек, мы убедимся, что их несущей способности достаточно.

Другие примеры подбора перемычек в несущих стенах можно найти здесь.

Пример 4. Несущая стена толщиной 380 мм с опиранием перекрытия пролетом 6 м с одной стороны и 4,2 м с другой, над проемом высота стены 900 мм, проем размером 1200 мм. Кладка в зимних условиях.

В зимних условиях нагрузка берется от части стены, высота которой равна расчетному пролету перемычки. Т.к. ширина проема 1200 мм больше высоты стены над проемом 900 мм, то в расчете будет участвовать величина 900 мм.

Определим нагрузку на 1 погонный метр:

1,1*0,3*5,1 + 1,2*0,15*5,1 + 0,68 = 3,3 т/м = 3300 кг/м (здесь 1,1 и 1,2 — коэффициенты, 0,3 — нагрузка от 1 кв. м перекрытия, 5,1 = (6+4,2)/2 м — длина сбора нагрузки от перекрытия, 0,15 — временная нагрузка, 0,68 = 0,38*0,9*1,8*1,1 т/м — нагрузки от веса стены).

Подберем плитную перемычку. Нагрузка на нее без учета собственного веса 3300 кг/м.

Ближайшая большая нагрузка 7200 кг/м. Выбираем перемычку с индексом 71. Минимальная глубина опирания для таких перемычек 170 мм.

Определим длину перемычки: 1200 + 170 + 170 = 1540 мм. Подбираем плитную перемычку 3ПП16-71 длиной 1550 мм.

 

Скачать серии железобетонных перемычек можно здесь:

 

Серия 1.038.1-1, выпуск 1 «Перемычки брусковые для жилых и общественных зданий»

Серия 1.038.1-1, выпуск 2 «Перемычки плитные для жилых и общественных зданий. Рабочие чертежи»

Серия 1.038.1-1 Перемычки железобетонные вып.4

Серия 1.038.1-1 Перемычки железобетонные для зданий с кирпичными стенами Выпуски 3,5-13

 

И напоследок, цитата из СНиП «Каменные и армокаменные конструкции» (для тех, кто подходит к вопросу подбора перемычек более тщательно:

Еще статьи на тему перемычек:

Как подобрать перемычки в частном доме — примеры расчета.

«Подбираем перемычки в кирпичных перегородках – примеры расчета. Проемы №1-3.»

Подбираем перемычки в самонесущих кирпичных стенах — примеры расчета. Проемы №4-6.

Подбираем перемычки в несущих кирпичных стенах — примеры расчета. Проемы №7-11.

Как выполнить чертеж перемычек — схему перекрытия оконных и дверных проемов

Устройство металлической перемычки

 

Еще полезные статьи:

«Выбор материала для стен»

«Расчет кладки из газобетона на смятие под действием нагрузки от перекрытия.»

«Как рассчитать стены из кладки на устойчивость.»

«Как пробить проем в существующей стене.»

 

Внимание! Для удобства ответов на ваши вопросы создан новый раздел «БЕСПЛАТНАЯ КОНСУЛЬТАЦИЯ».

class=»eliadunit»>

Добавить комментарий

Значение поперечного сечения — определение, типы, площадь и примеры

    • БЕСПЛАТНАЯ ЗАПИСЬ КЛАСС
    • КОНКУРСНЫЕ ЭКЗАМЕНА
      • BNAT
      • Классы
        • Класс 1-3
        • Класс 4-5
        • Класс 6-10
        • Класс 110003 CBSE
          • Книги NCERT
            • Книги NCERT для класса 5
            • Книги NCERT, класс 6
            • Книги NCERT для класса 7
            • Книги NCERT для класса 8
            • Книги NCERT для класса 9
            • Книги NCERT для класса 10
            • NCERT Книги для класса 11
            • NCERT Книги для класса 12
          • NCERT Exemplar
            • NCERT Exemplar Class 8
            • NCERT Exemplar Class 9
            • NCERT Exemplar Class 10
            • NCERT Exemplar Class 11
            • 9plar

            • RS Aggarwal
              • Решения RS Aggarwal Class 12
              • RS Aggarwal Class 11 Solutions
              • RS Aggarwal Решения класса 10
              • Решения RS Aggarwal класса 9
              • Решения RS Aggarwal класса 8
              • Решения RS Aggarwal класса 7
              • Решения RS Aggarwal класса 6
            • RD Sharma
              • RD Sharma Class 6 Решения
              • RD Sharma Class 7 Решения
              • Решения RD Sharma класса 8
              • Решения RD Sharma класса 9
              • Решения RD Sharma класса 10
              • Решения RD Sharma класса 11
              • Решения RD Sharma Class 12
            • PHYSICS
              • Механика
              • Оптика
              • Термодинамика
              • Электромагнетизм
            • ХИМИЯ
              • Органическая химия
              • Неорганическая химия
              • Периодическая таблица
            • MATHS
              • Статистика
              • 9000 Pro Числа
              • Числа
              • Числа
              • Число чисел Тр Игонометрические функции
              • Взаимосвязи и функции
              • Последовательности и серии
              • Таблицы умножения
              • Детерминанты и матрицы
              • Прибыль и убытки
              • Полиномиальные уравнения
              • Деление фракций
            • Microology
                0003000
            • FORMULAS
              • Математические формулы
              • Алгебраные формулы
              • Тригонометрические формулы
              • Геометрические формулы
            • КАЛЬКУЛЯТОРЫ
              • Математические калькуляторы
              • 0003000

              • 000 CALCULATORS
              • 000
              • 000 Калькуляторы по химии Образцы документов для класса 6
              • Образцы документов CBSE для класса 7
              • Образцы документов CBSE для класса 8
              • Образцы документов CBSE для класса 9
              • Образцы документов CBSE для класса 10
              • Образцы документов CBSE для класса 1 1

      .

      PPT — Анализ поперечного сечения 206 Pb (n, g) Презентация PowerPoint

    • Анализ поперечного сечения 206Pb (n, g) M1 E2 + 10% -10% • Эффекты углового распределения в выходе захвата 3 / 2-

    • Анализ поперечного сечения 206Pb (n, g) M1 E2 + 10% -10% • Эффекты углового распределения в выходе захвата 3 / 2-

    • с (MACS) = 3-4% 206Pb (n, g) Максвелловская средняя CS (MACS) • Резонансы 1/2 не показывают эффекта углового распределения • Резонансы 5/2 действительно проявляются, но их вклад в общую CS незначителен.

    • -20% -9% 206Pb (n, g) Среднее Максвелловское CS (MACS) s (MACS) = 3-4% • Bao et al. основано на ORNL Exp, Mizumoto 1979, который использовал два C6F6 под углом 90o • Важно для количественной оценки эффекта углового распределения

    • 206Pb (n, g) Максвелловская средняя CS (MACS) • Mughabghab 2006 на основе A. Borella’s частный ком. от Geel Exp. • Настройка Geel также 125 аналогична настройке n_TOF

    • Все n_TOF Pb / Bi Maxwellian Average CS (MACS) • R.Галлино • С. Бистерцо

    • Некоторые предварительные астрофизические выводы 238U T1 / 2 = 4,5x109y N8 (206Pb) = 0,6009 (8%) (Lodders 2003) Ns (206Pb) = 0,4206 (9%) (This Work + Расчет модели AGB) Nr (206Pb) = Nr (209Bi) x8 / 12 = 0,075 (9%) (209Bi MACS + AGB + прибл.) Nrad (206Pb) = N8 (206Pb) — Ns (206Pb) — Nr ( 206Pb) = 0,105 (15%) N8 (238U) = 0,0187 (8%) (Lodders 2003)

    • Некоторые предварительные астрофизические выводы Экспоненциальная модель Фаулера D = 6.7 (1,0) Гр D время длительности r-нуклеосинтеза l скорость распада 238U lr скорость сверхновой (-1,5 до -2×10-10 лет) T = D + 4,6 + 0,5 = 12 (1) Гр N8 (206Pb) = 0,6009 ( 8%) (Lodders 2003) Ns (206Pb) = 0,4206 (9%) (This Work + AGB-Model Calc.) Nr (206Pb) = Nr (209Bi) x8 / 12 = 0,075 (9%) (209Bi MACS + AGB + Прибл.) Nрад (206Pb) = N8 (206Pb) — Ns (206Pb) — Nr (206Pb) = 0,105 (15%) N8 (238U) = 0,0187 (8%) (Lodders 2003)

    • Бумага

    • 125o Задача углового распределения с C6D6

    • 125o Задача углового распределения с C6D6

    • 125o Проблема углового распределения

      с

    • .

      Страница не найдена | Конный спорт США

      Страница не найдена
      | Конный спорт США

      Становиться участником

      ×

      Дополнительные поиски

      • Поисковые формы и пабы
      • Поисковые лошади
      • Поиск людей
      • Поиск в календаре
      • Поисковые сотрудники
      • Секретари и менеджеры по поиску
      • Поисковые фермы
      • Поисковые приостановки

      Поиск

      • Войти
      • Конкурировать

      • Безопасный спорт

      • Центр обучения

      • Новости и СМИ

      • Сеть USEF

      • Магазин

      • Членство

      • Рейтинги и результаты

      • Породы и дисциплины

      • Межшкольные программы

      • Правила, положения и претензии

        Вернуться к Конкурировать

        • Свод правил

        • Лекарства и лекарства

        • Постановления и выводы

        • Список дисквалификации

      • Спортсменов

        Вернуться к Конкурировать

        • Услуги для спортсменов

        • Спортивное образование и наука

        • Чистый спорт

      .

      Поперечные сечения крыла сваливания

      Поперечные сечения крыла сваливания

      Белорусский
      перевод Анны Литвинки.
      Хорватский
      перевод Милицы Новак.

      Финский
      перевод любезно предоставлен Карлой Валенсуэла.
      Грузинский перевод любезно предоставлен Аной Мирилашвили.
      Ирландский
      перевод создан Патрисией Мотосан.
      литовский
      перевод любезно предоставлен Гедриусом
      Садаускас.
      Польский перевод
      Создано Марией Стефановой.
      Шведский
      перевод любезно предоставлен Вероникой Павляк.
      Турецкий
      перевод Мерта Сахиноглу
      Украинский перевод
      Создано Олегом Сегалом.

      Работа, выполненная с Су-Чуан Ван.
      Эта работа стала возможной благодаря поддержке
      Управление научных исследований ВВС.


      Крыло стойло

      Сваливание — нежелательное явление, при котором крылья самолета
      испытывают повышенное сопротивление воздуха и уменьшенную подъемную силу.
      Это может вызвать крушение самолета.

      Сваливание происходит, когда самолет находится под слишком большим углом атаки
      (угол атаки — это угол между плоскостью и
      направление полета).
      Это может произойти
      при взлете или посадке, когда скорость полета относительно низкая:
      на малой скорости аэродинамические силы соответственно меньше, и
      единственный способ получить достаточную подъемную силу, чтобы выдержать вес самолета, — это
      управлять самолетом под большим углом атаки.Если невнимательный пилот позволит снизить скорость, самолет
      превысит критический угол атаки и произойдет срыв.

      Из-за сваливания крыло создает меньшую подъемную силу и большее сопротивление;
      повышенное сопротивление приводит к дальнейшему снижению скорости, так что крыло
      производит еще меньше подъемной силы. Фактически самолет падает из воздуха.
      Земля ждет внизу.

      Почему происходит срыв

      Почему крылья глохнут? Это связано с процессами внутри границы
      слой, слой запаздывающего воздуха у поверхности крыла.Чтобы крыло было эффективным, воздух должен течь.
      полностью вокруг передней (передней) кромки крыла.
      При слишком большом угле атаки воздух в пограничном слое
      возле передней кромки не удается и отделяется от
      поверхность крыла.

      Ниже приведено численное моделирование, в котором остановка
      крыло видно в разрезе. Передняя кромка слева,
      задний край правый. При моделировании пограничный слой
      представлены в виде вихрей (миниатюрных торнадо), которые отображаются как
      черные или белые точки, в зависимости от направления вращения.Крыло наклоняется под углом атаки до 30 градусов, в результате чего сваливание:

      t = 1 (начинается качка)
      На первом снимке крыло движется под малым углом атаки
      (здесь принято за ноль). Обратите внимание, что вихри пограничного слоя остаются
      близко к крылу, пока они не смываются вниз по потоку.
      При нулевом угле атаки нет подъемной силы и небольшое сопротивление.

      t = 2

      t = 3
      Крыло начало раскачиваться, но в пограничном слое образовались вихри.
      держитесь ближе к крылу.Крыло теперь производит значительную подъемную силу.
      сила, и еще небольшое сопротивление.

      t = 3,5

      t = 4,25

      t = 5 (концы качки)
      Угол атаки стал слишком большим. Вихри пограничного слоя имеют
      отделяется от верхней поверхности крыла, и набегающий поток
      больше не огибайте переднюю кромку полностью. Крыло заглохло,
      вызывая значительное сопротивление.
      Однако большая часть подъемника остается, так как
      разделенные вихри все еще находятся над крылом.

      t = 6
      Когда разделенные вихри выдуваются за заднюю кромку,
      лифт начинает опускаться.
      t = 7
      Крыло теперь создает небольшую подъемную силу и большое сопротивление. Однако,
      воздуху легче обтекать переднюю кромку
      крыло без подъемной силы, и поток начинает снова присоединяться.

      t = 7,5

      t = 7,75

      t = 8
      Поток в значительной степени восстановился, и коэффициент подъемной силы
      (грузоподъемность крыла)
      временно восстановлен. К сожалению, это установит новый цикл
      разделения; кроме того, повышенное сопротивление слишком сильно снижает скорость полета.
      для получения большой подъемной силы даже при хорошем коэффициенте подъемной силы.
      t = 8,5

      t = 8,75

      t = 9

      Вот эволюция коэффициентов подъемной силы, сопротивления и момента:

      Как восстановить

      Чтобы выйти из сваливания, пилот должен уменьшить угол атаки назад.
      до достаточно низкого значения. Хотя самолет уже
      при падении на землю под крутым углом пилот должен нажать на ручку
      вперед, чтобы опустить нос еще ниже.
      Это уменьшает угол атаки и, следовательно, сопротивление.

      Самолет стартует
      набирает скорость, снижается еще быстрее. Но как только самолет
      набрал достаточную скорость, чтобы крыло снова могло поддерживать
      вес самолета, пилот тянет на ручку
      снова увеличить угол атаки
      (на этот раз оставаясь в допустимом диапазоне), и восстанавливает подъемную силу крыла.

      Очевидно, что выход из стойла требует некоторой потери высоты. Киоски
      наиболее опасны на малых высотах. Мощность двигателя может помочь снизить потери
      высоты за счет более быстрого увеличения скорости, а также за счет
      снова прикрепите поток к крылу.

      Насколько сложно выйти из сваливания, зависит от самолета.
      Некоторые самолеты, которые трудно восстановить, имеют шейкеры:
      встряхивание палки предупреждает пилота о неизбежном сваливании. В
      характеристики сваливания зависят также от того, насколько загружен самолет;
      центр тяжести самолета должен быть достаточно далеко вперед.

      Спины

      Худший вариант сваливания — это штопор, при котором самолет скручивается вниз.
      Срыв может перерасти в вращение из-за усилия
      момент в неподходящее время.

      Механика вращения сложна. В зависимости от самолета,
      (и в пути грузится!)
      может быть труднее или невозможно оправиться от
      спина. Восстановление требует хорошей эффективности от поверхностей хвоста
      самолета; обычно восстановление включает использование руля направления
      остановить вращательное движение, помимо лифта сломать
      стойло.
      Однако крылья могут блокировать поток воздуха к хвосту.
      Если центр тяжести самолета находится слишком далеко назад, он стремится
      сделать восстановление более трудным.Пилота могут дезориентировать головокружительные эффекты штопора,
      и применить неправильные исправления.

      Даже если самолет хорошо спроектирован, загружен в допустимом диапазоне
      и восстановление выполнено безупречно, потеря высоты при вращении может быть
      очень большой. Поскольку при взлете наиболее вероятны срывы и повороты.
      и приземления, может просто не хватить такой большой высоты.
      Согласно правилам FAA для частных пилотов, требуется обучение сваливанию, но
      восстановления отжима нет. Обучение сваливанию позволяет пилоту распознавать
      надвигающегося сваливания, и примите меры по исправлению до настоящего сваливания и
      может произойти вращение.


      Ши, К., Лоренко, Л., Ван Доммелен, Л., и Кротапалли, А. (1992)
      Неустойчивое обтекание аэродинамического профиля с постоянной скоростью качания.
      Журнал AIAA 30 1153-1161.


      Возврат
      на мою домашнюю страницу.
      Комментарии: [email protected]

      .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*

*

*