Стены монолитные: Страница не найдена — Бетон

Содержание

Устройство монолитных стен. Технология, ее плюсы и минусы, технологическая карта

Технология устройства монолитных стен при возведении зданий, построек и конструкций относится к категории наиболее распространенных способов современного строительства. Это обусловлено прочностью, надежностью и долговечностью сооружений, невысокой сметной стоимостью и возможностью быстрого выполнения работ.

Описание технологии монолита

Последовательность рабочих операций по установке опалубки, сборке армирующего каркаса, заливке бетонной смеси и последующему разопалубливанию, делают производственный процесс непрерывным, с отсутствием вынужденных технологических простоев. Монтаж бетонных стеновых конструкций допускается производить в любое время года, и даже при отрицательной температуре наружного воздуха.

Все эти важные факторы привели к тому, что устройство монолитных железобетонных стен стало все чаще применяться при возведении жилых домов на объектах индивидуальной застройки.

При этом практикуются три различных способа:

  • монтаж бетонного каркаса с наружными стенами из штучных каменных материалов или сборных панелей;
  • возведение несущих ограждающих конструкций из монолитного железобетона без вертикальных опорных колонн;
  • совмещение двух вышеперечисленных вариантов.

В каждом случае изготовление элементов зданий производится непосредственно на строительной площадке по месту его установки. Бетонные стены, выполненные по монолитной технологии, достаточно прочны и долговечны, но имеют малопривлекательный внешний вид и требуют обязательного выполнения отделочных работ.

Преимущества и недостатки

ПлюсыМинусы
Высокая скорость возведения зданийТрудоемкость процесса
Прочность конструкцииНизкая энергоеффективность здания
Высокая этажность (не относится к технологии несъемной опалубки)Необходимость финишной отделки
Низкая стоимость 

Принципы возведения монолитных стен, перегородок и ограждений

Основными этапами строительства, которые предусматривает технологическая карта на устройство монолитных стен, являются:

  • монтаж щитовой опалубки;
  • сборка и установка арматурного каркаса;
  • заливка бетонной смеси с виброуплотнением;
  • снятие опалубки с готовой конструкции.

При наличии несущего каркаса с вертикальными колоннами для изготовления его элементов применяют бетон марок М300 и М400. Наружные стены в этом случае весовых нагрузок не несут и заливаются более дешевым материалом марок М200 и М250, с возможным добавлением легких наполнителей для улучшения теплоизоляционных свойств. Если бетонная стена используется в конструкции здания, как несущий элемент, то марка бетонной смеси должна быть не менее М350.

Определение толщины стен

Размер поперечного сечения бетонной монолитной стены зависит от ее конструкционного назначения, расчетной температуры наружного воздуха, наличия вида утеплителя. Устройство монолитных стен для внутренних перегородок определяется наличием плоской арматурной сетки и обязательного бетонного покрытия по 50 мм с каждой стороны. Соответственно минимальная толщина таких элементов равна 100 мм.

Наружные ограждающие стены в зависимости от расчетной температуры наружного воздуха имеют минимальную толщину:

  • при -20°C – 250 мм;
  • -30°C – 350 мм;
  • -40°C – 450 мм.

Это обеспечит величину нормативного коэффициента теплопроводности материала и сохранение тепла в доме, что является важным аспектом в его энергоэффективности.

Сравнение теплопроводности бетона и других материалов.

Толщина бетонных стен, выполняющих роль несущей конструкции не должна быть менее 450 мм для одноэтажных домов с добавлением 100 мм при возведении каждого верхнего этажа. Например, для 3-х этажного дома минимальная толщина стен первого этажа составит 650 мм, для второго – 550 мм, а третьего 450 мм.

Выбор и монтаж опалубки

Опалубка представляет собой систему ограждающих конструкций из листовых материалов, предназначенную для формирования бетонного монолита в соответствии с проектными размерами. Средний вес 1м3 бетона около 180 кг. Поэтому устройство опалубки монолитных стен и перекрытий должно быть прочным настолько, чтобы выдерживать создаваемые весовые нагрузки при заливке смеси. Кроме этого установленная форма должна обеспечить полную герметичность рабочего шва. Утечка жидкости и уменьшение влагосодержания бетона увеличат время гидратации цемента и приведут к снижению качества материала.

Лучший вариант комплекта для опалубки монолитных стен состоит из штатных щитов заводского изготовления и набора элементов фиксирующего инвентаря. Стоит такая опалубка очень дорого, но строительные компании очень часто предлагают свой инвентарь на прокат. Воспользоваться такой услугой будет вполне оправдано и более дешево, чем покупать доски или фанеру, которые к окончанию работ полностью придут в негодность.

Монтаж штатной опалубки довольно прост и может выполняться рабочим звеном из 3-4 человека. Щиты соединяются в единую поверхность при помощи зажимных или клиновых замков, гарантируя плотное соединение стыков и герметичность конструкции. Устойчивая фиксация опалубки обеспечивается путем установки наклонных откосов и стоек. Точность геометрических размеров и прочность при установке достигается с помощью стяжных винтов.

Несъемная опалубка

При возведении наружных стен зданий, ленточных и плитных фундаментов применяют технологию установки несъемной опалубки. В этом случае в качестве наружной палубы для заливки бетона с одной стороны стены устанавливают листы пенополистирола. После твердения смеси утеплитель не убирают и он остается в качестве эффективной тепловой и гидроизоляции.

Этот способ позволяет хорошо утеплить здание и снизить расход бетона за счет уменьшения толщины стен. При большой высоте конструкции и одновременной заливке большой массы бетона потребуется принятие дополнительных мер для обеспечения прочности пенополистирольного ограждения.

В качестве другого варианта несъемных формирующих ограждений при устройстве железобетонных стен ленточных фундаментов и подвала может выступать каменная кладка из полнотелого или клинкерного кирпича. Однако такие виды опалубки из новых материалов обходится значительно дороже и его применяют в тех случаях, когда в наличии есть утилизированный кирпич вторичного применения.

Армирование конструкции

Для повешения прочности монолитной конструкции применяется специальная система армирования бетона путем установки конструкций из металлических или полимерных прутов специального назначения. В зависимости от толщины стены армирующий каркас может быть выполнен в виде плоской сетки или пространственной конструкции с расположением арматурных струн в несколько рядов.

Минимально допустимый диаметр продольных арматурных прутов из стали составляет 10 мм, поперечная перевязка не менее 8 мм. Полимерная стеклопластиковая арматура может применяться на один стандартный размер меньше, чем металл. Шаг поперечных вставок не более 250 мм. Это обеспечит нормальную фиксацию продольных прутов и неподвижную форму всей конструкции.

Соединение всех армирующих элементов между собой производится при помощи вязальной проволоки. Применение электросварки допускается только в крайних случаях, так как при сильном нагреве и последующем остывании физико-механические свойства арматурной стали могут ухудшиться.

Заливка бетона

После установки опалубки и сборки армирующего каркаса приступаю к заливке бетонной смеси внутрь подготовленной формы. Технологическая карта устройства монолитных стен предусматривает выполнение этой работы за один раз и поэтому лучше воспользоваться услугами централизованных поставок бетона с завода строительных материалов. Наличие бетононасоса на автомобильном миксере значительно облегчит подачу бетонной смеси через верх опалубочной конструкции.

Заливка производится слоями по 50-70 см с обязательным уплотнением смеси при помощи вибрационного инструмента. Остановка работ, приводящая даже к частичному высыханию верхнего слоя, не допускается, так как это приводит к нарушению прочности стены. Снятие опалубки после заливки бетона производится не ранее чем через 72 часа в летнее время и 96 часов зимой. Более подробно о том как правильно заливать бетон можно почитать здесь.

Видео обзор технологии

В заключение

Применение монолитного железобетона в строительстве имеет существенные преимущества в сравнении с другими материалами и технологиями. Это, прежде всего, скорость выполнения работ и прочность изготовленных конструкций. Довольно простая технология производства работ позволяет выполнять монтаж без привлечения профессиональных бригад и строительных компаний. Все это привлекает внимание индивидуальных застройщиков и служит дальнейшей популяризации данной технологии.

Конструкции зданий монолитной и сборно-монолитной строительных систем


Очевидна тесная взаимосвязь объемно-планировочных решений, избранной технологии возведения и конструкций зданий в монолитном домостроении.

Существует несколько вариантов решений строительных систем, однако их можно разделить на две группы: стены полностью монолитные, содержащие монолитный бетонный слой (либо пояс), и стены, не содержащие монолитных бетонных включений.

Монолитные наружные стены проектируют однослойными из легких бетонов (плотностью 1200-1450 кг/м3).

Толщина стен в соответствии с теплотехническими требованиями принимается   от 300 до 500 мм.

Сборно — монолитные стены обычно включают монолитный слой   толщиной 120 мм из тяжелого    или конструктивного легкого бетона.

Сборный элемент стены — скорлупа — несет утепляющие и   защитно-отделочные функции и располагается снаружи от монолитного слоя в качестве оставляемой опалубки.

Скорлупа может быть — как легкобетонная однослойная панель (плотность до 900 кг/м3) с наружным защитно-отделочным слоем, или панель из конструктивного легкого бетона плотностью до 1800 кг/м3 с утепляющими вкладышами, или железобетонная скорлупа толщиной 80мм с контурными ребрами и утеплителем из плитного или заливочного пенопласта.

Конструкции скорлуп крепятся к монолитному слою на гибких стальных связях.

Сборные наружные стены выполняются преимущественно из легкобетонных навесных панелей. Наряду с ними возможно применение навесных панелей из не бетонных материалов в качестве межоконных вставок.

Перекрытия в домах унифицированной конструктивно-технологической системы проектируют монолитными, сборно-монолитными или сборными.

 

Здания из монолитного железобетона

Архитектурно-планировочные возможности домов из монолитного железобетона весьма разнообразны.

Использование зданий этой системы дает возможность архитектору решать задачи, которые не под силу решить из стандартных сборных изделий (блочных, панельных и др. ).

Эти здания обладают большей прочностью и жесткостью по сравнению с панельными, поскольку в них отсутствуют стыки.

Дома из монолитного железобетона можно возводить в районах, не имеющих индустриальной базы.

Перенесение технологических процессов на строительную площадку имеет следующие недостатки:

— зависимость строительства от климатических условий;

— необходимость выполнения отделочных и санитарно-технических работ на площадке;

— невозможность получения высокого качества отделочных работ.

При возведении зданий из монолитного железобетона используют различные типы опалубки.

При объемно-переставной опалубке монолитными выполняют стены и перекрытия, а опалубку после твердения бетона передвигают в направлении продольных или поперечных стен.

Иной вид опалубки с движением вверх — скользящая щитовая. В этом случае наиболее эффективен технологический процесс, при котором первоначально выполняют вертикальные элементы здания — наружные и внутренние стены.

При строительстве в стенах оставляют отверстия участков для плит перекрытий.

При этом перекрытия, плиты балконов и лоджий могут выполняться: монолитными, тогда устанавливают щитовую опалубку с заведением арматуры в опорные пазы; сборными, тогда плиты выполняют специальной формы и заводят в опорные отверстия.

В домах из монолитного железобетона применяют одно-, двух, и трехслойные наружные стеновые панели.

Перекрытия могут быть монолитными, сборными и комбинированными. Монолитные перекрытия наиболее рациональны, так как технология их изготовления непрерывна.

Элементы зданий из монолитного железобетона находятся постоянно (с момента изготовления) в рабочем положении, т.е. не испытывают транспортных, монтажных и иных побочных нагрузок. Это снижает расход стали по сравнению с расходом стали в полносборных домах.

Трудоемкость строительства зданий из монолитного железобетона выше на 40-50% трудоемкости строительства крупнопанельных зданий.

Монолитные перекрытия выполняют толщиной 160мм в виде   неразрезных многопролетных плит сплошного сечения с опиранием на несущие стены по контуру, или по трем сторонам.

Сборно-монолитные перекрытия состоят по высоте из дух элементов: нижней железобетонной плиты толщиной 4 — 6см, выполняющей функции несъемной опалубки и верхнего монолитного слоя толщиной 10-12см.

Для сборных перекрытий используют типовые панели сплошного сечения или многопустотные плиты со специальной модификацией торцов. Она заключается в увеличении скосов торцов, увеличении раскрытия пустот настила и устройства арматурных выпусков для петлевых или сварных связей между элемента.


Смотри также: Технология строительных процессов → Монолитное домостроение


Особенности монолитных домов iHouse TermoPlus

Класс энергоэфективности наших домов А

Предложений постройки домов высоких классов (А , А+) единичны.

Присвоение классов энергоэффективности началось не так давно: в августе 2016 года, был подписан Приказ Минстроя, утвердивший порядок присвоения и подтверждения этих самых классов. Энергоэффективность жилого комплекса, частного дома закладывается при проектировании объекта, при этом проектирование зданий, класс энергоэффективности которых D и E, сейчас недопустимо для новостроек .

На энергоэфективность зданий влияет не только внешнее теплосопротивление стен , а также конструкция здания . А также материалы с более высокой инерционностью .

«Мероприятия по энергоэффективности предполагают инвестиции со стороны застройщика, поэтому, чем выше класс жилья, тем, как правило, выше и категория энергоэффективности.

Так, классы от А до А+ – это дома, принадлежащие, в основном, к категории «элит» и «премиум»

«Энергосбережение – это сокращение потребления электроэнергии, в то время как энергоэффективность – рациональное потребление тепловой и электроэнергии.

Выше класс энергоэффективности здания, тем меньше в перспективе стоимость коммунальных услуг для его жителей.

Со слов экпертов , разница в оплате коммунальных услуг между жильцами тех или иных зданий может быть очень значительной и доходить до 50% и более: дома с высоким классом энергоэффективности «А» потребляют минимум энергии на отопление.

Так, по словам Волкова, в здании А+ отопительный сезон без потери комфорта для жильцов может начинаться на две недели позже: благодаря более высокой энергоэффективности здания, внутренних источников тепла будет достаточно для комфортных параметров климата внутри. Однако пока здания высоких классов (А и А+) единичны.

В скором времени более высокий класс энергоэффективности здания может стать еще одним конкурентным преимуществом для девелоперов и критерием выбора для клиентов. Покупатели постепенно становятся все более разборчивыми, учатся считать свои деньги, и если пока класс энергоэффективности не является главным критерием при выборе при покупке дома , то в среднесрочной перспективе люди будут фиксировать этот параметр в качестве дополнительного плюса к выбранному объекту, считает Федор Ушаков из AFI Development.

Монолитные стены — Построй свой дом

 

Монолитные стены используются при возведении зданий, у которых основным материалом конструкции является монолитный железобетон. Основной особенностью монолитного строительства является то, что местом производства монолитных стен является строительная площадка. Применение монолитного железобетона позволяет реализовывать многообразие архитектурных форм, а также сократить расходы. Вот о том, какими бывают монолитные стены, мы и поговорим в этой статье.

 

Стены из шлакобетона

 

Стены из шлакобетона возводят в опалубке. Вяжущими материалами могут служить цемент, известь, гипс или глина. С целью сни­жения расхода цемента лучше применять смешанное вяжущее (цемент с известью или с глиной). Составы шлакобетонов приведены в табл. «Рекомендуемый состав шлакобетонной смеси».

 

 

Шлаки должны быть чистыми, не загрязненными посто­ронними примесями — тряпьем, щепой, металлическими вклю­чениями и пр. Количество заключенного в шлаках несгораемого угля не должно превышать 10-20 %.

 

Перед приготовлением бетона шлаки следует просеять, раз­делив их по крупности частиц. Сначала из- общей массы шлака отделяют куски крупнее 80 мм для последующего дробления, оставшиеся шлаки рассеивают на ситах с ячейками 40х40, 5х5 и 1х1 мм. Зерна шлака крупнее 1 мм следует смешать со шлаком, оставшимся на сите с ячейками 5х5 мм. Таким образом, получаются два сорта шлаков: крупные — 40 мм и мелкие — 1-5 мм. Смесь составляют из 60—70 % крупного и 30-40 % мелкого шлака.

 

Шлакобетонную смесь приготовляют при массовом строи­тельстве в бетоно- и растворосмесителях, при индивидуальном строительстве — ручным способом, путем перелопачивания мате­риалов на дощатом настиле (бойке) до получения однород­ного состава.

 

Для удобства укладки и для увеличения прочности шлако­бетона рекомендуется за несколько часов до приготовления бетонной смеси увлажнить шлак. Всего для приготовления 1 м3 шлакобетона требуется 250-350 л воды.

 

Укладка шлакобетонной смеси в опалубку производится немедленно после ее приготовления горизонтальными слоями толщиной не более 20 см с тщательным уплотнением, особенно в углах дома и в местах примыкания внутренних стен к наружным. Уплотняется смесь трамбованием или (в случае мас­сового строительства) специальными механизмами — вибрато­рами.

 

Стены из приготовленного на цементе шлакобетона во из­бежание пересушивания бетона рекомендуется в течение 10 дней поливать водой, укрывать мокрыми рогожами, соломенными матами и т. п. При использовании в качестве вяжущего гипса, извести или глины стены следует укрывать только в слу­чае сильного ветра (для замедления процесса сушки поверх­ностного слоя). Ускоренная сушка поверхности таких стен приводит к образованию трещин. Шлаконабивные стены возво­дят в переставной опалубке, состоящей из горизонтальных щитов и стоек (рис. «Конструкция опалубки для возведения монолитных стен» ).

 

 

 

 

Перед началом установки опалубки на наружных углах дома устанавливают на всю высоту будущей стены стойки из двух толстых досок, сбитых под прямым углом друг к другу. Стойки должны быть установлены строго по отвесу и надёж­но закреплены при помощи подкосов. Между стойками по периметру дома устанавливают щиты, размечая на обрезе фун­дамента их точное положение. Расстояние между торцами крайних щитов и углами будущих стен зашивают обрезками досок той же толщины, что и доски щитов. Чтобы не портить бруски щитов забивкой гвоздей и не затруднять отъемку щитов, рядом с торцом последних щитов устанавливают до­полнительные стойки, к которым и прибивают доски обшивки углов. С внутренней стороны в углах устанавливают стойки из четвертины, к ним прибивают обшивку, а наружные стойки стягивают проволочными стяжками.

 

Стойки и обшивку углов не снимают до окончания бетони­рования на всю высоту стены. Снимать и переставлять щиты можно только после выдержки уложенного шлако­бетона в опалубке в течение 2-3 дней. Для сокращения коли­чества щитов опалубки дом может быть разделен по горизон­тали на две захватки, бетонируемые последовательно. Верти­кальная грань стены в месте соединения захваток должна быть выполнена в виде уступов.

 

Дверные коробки ставят до установки щитов опалубки; оконные — по мере возведения стен, но не ранее 3-4 ч после укладки последнего слоя бетона, служащего основанием коробок.

 

При строительстве индивидуального дома щиты, как правило, используют 2-3 раза. В этом случае их следует изготовлять из досок толщиной 1,9 см. При строительстве поселка из од­нотипных домов бетонирование стен может быть организовано последовательно, с тем чтобы использовать одни и те же щиты на нескольких домах. В этом случае для изготовления щитов следует брать доски толщиной 2,5-4 см. При бережном обращении такие щиты могут быть использованы более 5 раз, что существенно снизит стоимость опалубки. Возможно также использование известково-песчаного бетона, который состоит из смеси извести, заполнителя и воды. В качестве мелкого за­полнителя служит речной, горный или овражный песок; круп­ным заполнителем являются гравий, щебень, кирпичный бой. Стены из известково-песчаного бетона можно не штукатурить снаружи. Изнутри осуществляют затирку под покраску или оклейку обоями.

 

Стены из крупнопористого бетона

 

В районах, где местным материалом является гравий, каменный или кирпичный щебень и другие, для возведения монолитных или блочных стен может применяться крупнопористый беспесчаный бетон. Такой бетон приготовляется обычным способом, но без песка, с небольшим расходом цемента, не более 130 кг на 1м3. Желательно иметь портландцемент марок 300-400. Запол­нители (гравий или щебень) рекомендуется применять круп­ностью 10-20 мм, однако допускается 5-50 мм.

 

Крупнопористый бетон по структуре отличается от обыч­ного тем, что в нем образуются незаполненные небольшие воздушные пустоты. Благодаря этим пустотам бетон имеет мень­шие массу и теплопроводность. Классы крупнопористого бето­на: для монолитных стен одноэтажных зданий В1, для двух­этажных — В2, для блоков — не ниже В2,5.

 

Массовые характеристики крупнопористого бетона в зависи­мости от вида заполнителя приведены в табл. «Массовые характеристики крупнопористого бетона», а рекомен­дуемые составы — в табл. «Рекомендуемые составы крупнопористого бетона».

 

 

 

Стены из крупнопористого бетона возводят в переставной щитовой опалубке (конструкция описана выше). После схваты­вания бетона наружную и внутреннюю поверхности стен следует оштукатуривать.

 

Стены из опилкобетона

 

Монолитные стены при на­личии отходов могут быть изготовлены из опилкобетона, пред­ставляющего собой смесь вяжущих, крупного песка, опилок и воды. В качестве вяжущего используется смесь цемента с из­вестью.

 

Опилкобетон обладает достаточной прочностью, надежны­ми теплоизоляционными свойствами и сравнительно малой массой. Стена из опилкобетона толщиной 35 см по теплозащит­ным качествам не уступает кирпичной стене толщиной 51 см.

 

Рекомендуемые составы опилкобетона приведены в таблице.

 

 

Толщина наружных стен рекомендуется: 30 см — для рай­онов с расчетной зимней температурой до —20 °С; 35 см — до —30 °С, 40 см — до —35°С и 45 см — до —40 °С.

 

Опилкобетон — влагоемкий материал, поэтому после полной усадки стен (через 3-8 месяцев) их необходимо оштукатури­вать снаружи. Необходимо также устраивать цоколь из водостойких материалов (кирпича, шлакобетона и т. п.), тщательно выполнять водоизоляционный слой по фундаментам.

 

Набивные стены из опилкобетона возводят в опалубке. Хоро­шо перемешанную смесь укладывают слоями 10-15 см и тщательно трамбуют. Распалубливать стены можно через 2-4 дня.

 

Для распределения нагрузки от перекрытия по верху стен укладывают обвязки из досок толщиной 5 см и шириной 15-20 см. Углы и места сопряжения внутренних стен с на­ружными следует армировать деревянными рейками или хво­ростом через каждые 30-40 см по высоте.

 

Возможно также применение сборно-монолитных бетонных индустриальных конструкций усадебных домов, монтируемых при помощи строительных механизмов. Пример такого дома при­веден на рис. «Конструкция усадебного жилого дома со сборно-монолитными стенами».

 

 

Если в районе строительства имеются предприятия, выпуска­ющие крупные блоки, а также при возможности аренды соот­ветствующих транспортных и подъемных. механизмов (в част­ности, автомобильных кранов) целесообразно возводить стены домов из крупных блоков.

 

Крупные блоки изготовляются из кирпича, силикатных мате­риалов, пиленого камня, шлакобетона, крупнопористого бетона и других легких бетонов.

 

Этаж дома по высоте стены разделяет на 2,3 или 4 ряда блоков; при двухрядной разрезке стен и плотности бетона 1400-1600 кг/м3 масса блоков достигает 1,8-2 т, при четырех­рядной — 0,6 т.

 

Толщина стен из крупных блоков зависит от материалов, из которых изготовлены блоки, и обычно может быть 40, 50 и 60 см. Блоки, служащие перемычками над окнами и дверями, обязательно армируют.

 

В следующей статье я расскажу о перегородках.

 

РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:

Устройство монолитной стены

Устройство монолитных стен. Технология, ее плюсы и минусы, технологическая карта

Технология устройства монолитных стен при возведении зданий, построек и конструкций относится к категории наиболее распространенных способов современного строительства. Это обусловлено прочностью, надежностью и долговечностью сооружений, невысокой сметной стоимостью и возможностью быстрого выполнения работ.

Описание технологии монолита

Последовательность рабочих операций по установке опалубки, сборке армирующего каркаса, заливке бетонной смеси и последующему разопалубливанию, делают производственный процесс непрерывным, с отсутствием вынужденных технологических простоев. Монтаж бетонных стеновых конструкций допускается производить в любое время года, и даже при отрицательной температуре наружного воздуха.

Все эти важные факторы привели к тому, что устройство монолитных железобетонных стен стало все чаще применяться при возведении жилых домов на объектах индивидуальной застройки.

При этом практикуются три различных способа:

  • монтаж бетонного каркаса с наружными стенами из штучных каменных материалов или сборных панелей;
  • возведение несущих ограждающих конструкций из монолитного железобетона без вертикальных опорных колонн;
  • совмещение двух вышеперечисленных вариантов.

В каждом случае изготовление элементов зданий производится непосредственно на строительной площадке по месту его установки. Бетонные стены, выполненные по монолитной технологии, достаточно прочны и долговечны, но имеют малопривлекательный внешний вид и требуют обязательного выполнения отделочных работ.

Преимущества и недостатки

ПлюсыМинусы
Высокая скорость возведения зданийТрудоемкость процесса
Прочность конструкцииНизкая энергоеффективность здания
Высокая этажность (не относится к технологии несъемной опалубки)Необходимость финишной отделки
Низкая стоимость 
Принципы возведения монолитных стен, перегородок и ограждений

Основными этапами строительства, которые предусматривает технологическая карта на устройство монолитных стен, являются:

  • монтаж щитовой опалубки;
  • сборка и установка арматурного каркаса;
  • заливка бетонной смеси с виброуплотнением;
  • снятие опалубки с готовой конструкции.

При наличии несущего каркаса с вертикальными колоннами для изготовления его элементов применяют бетон марок М300 и М400. Наружные стены в этом случае весовых нагрузок не несут и заливаются более дешевым материалом марок М200 и М250, с возможным добавлением легких наполнителей для улучшения теплоизоляционных свойств. Если бетонная стена используется в конструкции здания, как несущий элемент, то марка бетонной смеси должна быть не менее М350.

Определение толщины стен

Размер поперечного сечения бетонной монолитной стены зависит от ее конструкционного назначения, расчетной температуры наружного воздуха, наличия вида утеплителя. Устройство монолитных стен для внутренних перегородок определяется наличием плоской арматурной сетки и обязательного бетонного покрытия по 50 мм с каждой стороны. Соответственно минимальная толщина таких элементов равна 100 мм.

Наружные ограждающие стены в зависимости от расчетной температуры наружного воздуха имеют минимальную толщину:

  • при -20°C – 250 мм;
  • -30°C – 350 мм;
  • -40°C – 450 мм.

Это обеспечит величину нормативного коэффициента теплопроводности материала и сохранение тепла в доме, что является важным аспектом в его энергоэффективности.

Сравнение теплопроводности бетона и других материалов.

Толщина бетонных стен, выполняющих роль несущей конструкции не должна быть менее 450 мм для одноэтажных домов с добавлением 100 мм при возведении каждого верхнего этажа. Например, для 3-х этажного дома минимальная толщина стен первого этажа составит 650 мм, для второго – 550 мм, а третьего 450 мм.

Выбор и монтаж опалубки

Опалубка представляет собой систему ограждающих конструкций из листовых материалов, предназначенную для формирования бетонного монолита в соответствии с проектными размерами. Средний вес 1м
3
бетона около 180 кг. Поэтому устройство опалубки монолитных стен и перекрытий должно быть прочным настолько, чтобы выдерживать создаваемые весовые нагрузки при заливке смеси. Кроме этого установленная форма должна обеспечить полную герметичность рабочего шва. Утечка жидкости и уменьшение влагосодержания бетона увеличат время гидратации цемента и приведут к снижению качества материала.

Лучший вариант комплекта для опалубки монолитных стен состоит из штатных щитов заводского изготовления и набора элементов фиксирующего инвентаря. Стоит такая опалубка очень дорого, но строительные компании очень часто предлагают свой инвентарь на прокат. Воспользоваться такой услугой будет вполне оправдано и более дешево, чем покупать доски или фанеру, которые к окончанию работ полностью придут в негодность.

Монтаж штатной опалубки довольно прост и может выполняться рабочим звеном из 3-4 человека. Щиты соединяются в единую поверхность при помощи зажимных или клиновых замков, гарантируя плотное соединение стыков и герметичность конструкции. Устойчивая фиксация опалубки обеспечивается путем установки наклонных откосов и стоек. Точность геометрических размеров и прочность при установке достигается с помощью стяжных винтов.

Несъемная опалубка

При возведении наружных стен зданий, ленточных и плитных фундаментов применяют технологию установки несъемной опалубки. В этом случае в качестве наружной палубы для заливки бетона с одной стороны стены устанавливают листы пенополистирола. После твердения смеси утеплитель не убирают и он остается в качестве эффективной тепловой и гидроизоляции.


Этот способ позволяет хорошо утеплить здание и снизить расход бетона за счет уменьшения толщины стен. При большой высоте конструкции и одновременной заливке большой массы бетона потребуется принятие дополнительных мер для обеспечения прочности пенополистирольного ограждения.

В качестве другого варианта несъемных формирующих ограждений при устройстве железобетонных стен ленточных фундаментов и подвала может выступать каменная кладка из полнотелого или клинкерного кирпича. Однако такие виды опалубки из новых материалов обходится значительно дороже и его применяют в тех случаях, когда в наличии есть утилизированный кирпич вторичного применения.

Армирование конструкции

Для повешения прочности монолитной конструкции применяется специальная система армирования бетона путем установки конструкций из металлических или полимерных прутов специального назначения. В зависимости от толщины стены армирующий каркас может быть выполнен в виде плоской сетки или пространственной конструкции с расположением арматурных струн в несколько рядов.

Минимально допустимый диаметр продольных арматурных прутов из стали составляет 10 мм, поперечная перевязка не менее 8 мм. Полимерная стеклопластиковая арматура может применяться на один стандартный размер меньше, чем металл. Шаг поперечных вставок не более 250 мм. Это обеспечит нормальную фиксацию продольных прутов и неподвижную форму всей конструкции.

Соединение всех армирующих элементов между собой производится при помощи вязальной проволоки. Применение электросварки допускается только в крайних случаях, так как при сильном нагреве и последующем остывании физико-механические свойства арматурной стали могут ухудшиться.

Заливка бетона

После установки опалубки и сборки армирующего каркаса приступаю к заливке бетонной смеси внутрь подготовленной формы. Технологическая карта устройства монолитных стен предусматривает выполнение этой работы за один раз и поэтому лучше воспользоваться услугами централизованных поставок бетона с завода строительных материалов. Наличие бетононасоса на автомобильном миксере значительно облегчит подачу бетонной смеси через верх опалубочной конструкции.

Заливка производится слоями по 50-70 см с обязательным уплотнением смеси при помощи вибрационного инструмента. Остановка работ, приводящая даже к частичному высыханию верхнего слоя, не допускается, так как это приводит к нарушению прочности стены. Снятие опалубки после заливки бетона производится не ранее чем через 72 часа в летнее время и 96 часов зимой. Более подробно о том как правильно заливать бетон можно почитать здесь.

Видео обзор технологии

В заключение

Применение монолитного железобетона в строительстве имеет существенные преимущества в сравнении с другими материалами и технологиями. Это, прежде всего, скорость выполнения работ и прочность изготовленных конструкций. Довольно простая технология производства работ позволяет выполнять монтаж без привлечения профессиональных бригад и строительных компаний. Все это привлекает внимание индивидуальных застройщиков и служит дальнейшей популяризации данной технологии.

vremya-stroiki.net

Монолитные железобетонные стены — технология возведения

Монолитные железобетонные стены сегодня востребованы и широко используются для строительства самых разных объектов – как жилых, так и промышленных. Довольно часто по такой технологии возводят дорогостоящие проекты – многоэтажные здания, авторские дома, торговые центры и т.д. Связано это с тем, что сам тип конструкции дает возможность обеспечить максимальные показатели прочности и надежности, долговечности, при сравнительно высокой скорости строительстве и невысокой общей стоимости.

Железобетонные стены относят к типу монолитных, когда их заливка выполняется прямо на строительном объекте (в то время, как сборные конструкции монтируют из произведенных на заводе отдельных плит, колонн, перекрытий и т.д.). Монолитное домостроение отличается массой преимуществ и минимальным набором недостатков, может производится в любую пору года, существенно сокращает расходы и время на возведения больших проектов.

Стены из монолитного железобетона заливаются в съемную/несъемную опалубку, которая монтируется точно по контурам здания. В опалубке выполняется армирование для упрочнения конструкции, которое полностью заливается бетонным раствором. Процесс осуществляется поэтапно, но без схватывания бетона, что позволяет избежать наличия швов.

Преимущества и недостатки

Железобетонная стена – крепкая и долговечная конструкция, которая способна выдерживать немалые нагрузки и демонстрировать положительные свойства и характеристики. До реализации проекта необходимо тщательно изучить все особенности данного типа конструкций.

Основные достоинства монолитных железобетонных стен:

  • Небольшой вес – 1 квадратный метр весит около 340 килограммов, что позволяет выбирать облегченный фундамент (к примеру, квадратный метр кирпичной кладки весит до 960 килограммов)
  • Длительный срок эксплуатации – монолитный железобетон не боится внешних негативных факторов, служит минимум 100 лет
  • Прочность и надежность из-за отсутствия соединений в конструкции и риска расхождения швов, появления трещин
  • Высокий уровень пожаробезопасности, стойкости к воздействию ураганов, циклонов, сейсмической активности
  • Экономия на отделочных материалах и работах благодаря ровным и гладким стенам, позволяющим выбрать любой вариант интерьера и не тратить силы, время и средства на выравнивание стен, устранение дефектов и т. д.
  • Возможность выполнить все работы самостоятельно, без спецтранспорта и подъемников
  • Стойкость к окислению, коррозии
  • Простота и высокая скорость монтажа
  • Невысокая стоимость реализации проекта
  • Возможность воссоздать самую оригинальную дизайнерскую задумку – плита стеновая железобетонная размеры предполагает любые, залить можно конструкцию какой угодно конфигурации, с криволинейными, арочными элементами, реализовав оригинальный проект коттеджа или авторского дома
  • Хорошие теплоизоляционные характеристики за счет отсутствия мостиков холода

Главные недостатки монолитной железобетонной стены:

  • Необходимость обязательно проводить тепло/звукоизоляционные мероприятия
  • Сложность в разборке
  • Риск появления отслоек, трещин и других деформаций в случае неправильного замеса бетона, несоблюдения технологии заливки, ухода и т.д.
  • При строительстве в холодную пору появляется необходимость прогрева бетона
  • Важность дополнительного ухода в период набора прочности бетона и остановки работ на этот период

В целом, преимуществ монолитная железобетонная плита демонстрирует намного больше, чем минусов. Более того, многие недостатки можно нивелировать теми или иными решениями, остальные же больше относятся к ряду особенностей, чем явных и серьезных минусов.

Минимальная толщина

Толщина железобетонной стены высчитывается, исходя из того, что основной задачей материала является выполнение функции ограждающей конструкции и сохранение тепла. Толщина определяется в процессе выполнения теплотехнического расчета, в котором учитывают: расчетные показатели температур климатического региона, материалы для отделки и утепления.

Размер бетонных конструкций всегда четко определяется проектом и отступать от выбранных заранее значений нельзя. Обычно монолитные железобетонные стены делают толщиной в диапазоне 25-45 сантиметров при условии, что в климатическом регионе расчетная температура составляет от -20 до -40С. Все внутренние стены выполняют однослойными.

Железобетонные монолитные конструкции всегда имеют меньшую толщину в сравнении с кирпичной кладкой, это при прочих равных условиях и параметрах увеличивает площадь помещений.

Так, для двухэтажного дома будет вполне достаточно 12 сантиметров толщины монолитной железобетонной несущей стены. Такой показатель по уровню прочности равняется к: 25 сантиметрам кирпичной кладки, 63 сантиметрам пенобетона, 40 сантиметрам газобетона.

Устройство своими руками

Для устройства ЖБИ данного типа своими руками необходимо тщательно изучить всю технологию.

Основные этапы устройства монолитной железобетонной стены:

  • Выполнение расчетов
  • Подготовка площадки – удаление пыли и грязи, расчистка объекта
  • Заливка фундамента, выжидание положенного срока для продолжения работ
  • Установка съемной/несъемной опалубки по общему периметру строения и всех внутренних стен
  • Монтирование армирующего каркаса для усиления конструкции
  • Заливка бетоном опалубки
  • Правильный уход за бетоном в процессе его застывания и твердения

Все работы выполняются прямо на строительном объекте, в отличие от сборной технологии, когда плиты стеновые железобетонные производят в условиях завода, а потом доставляют на место.

Основное преимущество монолитной технологии в данном случае – отсутствие необходимости привлекать подъемные механизмы, спецтехнику, экономя время, силы и средства.

Опалубка

Для того, чтобы создать прочные и надежные монолитные стены, необходимо правильно собрать опалубку и сделать ее способной выдержать вес бетона, не дав ему протечь и испортить монолит.

Виды опалубки:

  • Разборная – монтируется из отдельных элементов, которые обеспечивают конструкции жесткость
  • Блочная – монтируется в случае реализации проекта без перекрытий
  • Пневматическая – с прочной воздухопроницаемой оболочкой
  • Скользящая – актуальна для возведения многоэтажных строений
  • Туннельная – используется в строительстве конструкций с перекрытием
  • Несъемная – потом выступает в роли декора в здании

Установка опалубки производится по инструкции и в соответствии с ее конструкционными особенностями, обычно трудностей не вызывает.

Самое главное – обеспечить максимальную прочность конструкции и следить за ровностью, чтобы избежать кривизны и деформаций под воздействием большого веса бетона.

Армирование

Для обеспечения прочности панелей необходимо обязательно армировать монолитные железобетонные стены. Армирование выполняется сразу после сборки переставной опалубки. Если же речь идет о несъемной опалубке, то там каркас уже установлен производителем и просчитан в соответствии с нагрузками и проектными показателями.

Особенности армирования стен:

  • Арматурный каркас выполняют двухслойным, чтобы не допустить изгиба стены из-за нагрузки в любом направлении.
  • Основной тип нагрузки на стены – сжимающий, поэтому минимальное сечение стержней продольных должно составлять 8 миллиметров. Малоэтажное строительство допускает сетки из проволоки 80-миллиметровой.
  • Величина максимального шага арматуры поперечной составляет 35 сантиметров, продольной – 20.
  • Поперечная арматура площадь сечения должна иметь минимум четверть от площади продольной.
  • Все концы прутьев анкерятся в бетоне обязательно без выхода за его пределы. Рифленые прутья сами хорошо сцепляются с монолитом бетона, пруты гладкие анкерят загибами на концах.
  • Стержни арматуры должны быть достаточно длинными для всей высоты здания. Если же их нужно состыковать, то только внахлест и без сварки.
Усиление проема

При возведении монолитных железобетонных стен стоит помнить о том, что все проемы ослабляют конструкцию и считаются ее наиболее уязвимым местом. Периметры дверных, оконных проемов обязательно упрочняют дополнительно.

Если армирование выполнено неправильно, это может стать причиной деформации монолитной конструкции, распространения по ней трещин, отслоений.

Число и толщина стержней арматуры напрямую зависят от приложенных нагрузок, ширины проема, принимаются по проекту. Армированию подлежат все вертикальные и горизонтальные плоскости.

Заливка

После установки арматурного каркаса в опалубку можно заливать бетон. В зависимости от типа опалубки, работы по заливке монолитных железобетонных стен могут осуществляться по-разному.

Несъемную опалубочную конструкцию заполняют, начиная от пространства под проемами окон в направлении к углам сооружения. Съемные формы заливают порядно, на высоту до 50 сантиметров за заход, чтобы обеспечить достаточное уплотнение бетонного раствора.

В переставной конструкции залитому бетону нельзя позволять схватываться полностью, продолжая работу, чтобы избежать появления швов в монолитной конструкции.

Углы нужно тщательно наполнять, затем вибрировать. В процессе подачи бетона механизированным методом скорость движения раствора понижается с целью обеспечения максимально качественной заливки, а сечение рукава уменьшается. Бетон обязательно уплотняют вибратором, правильно за ним ухаживают.

В зимнее время раствор нужно прогревать, летом – защитить от слишком быстрого испарения влаги (накрывать пленкой, проливать водой для замедления процесса гидратации). От возможных осадков бетон обязательно нужно защитить полиэтиленовой пленкой (все его открытые части).

Где применяются

Монолитный способ возведения стен применяется в самых разных сферах строительства – как в частном, так и в промышленном, коммерческом. С использованием данной технологии возводят общественные здания, строения в частном секторе, выполняют многоэтажную застройку. В Москве, к примеру, множество новостроек возводятся именно таким методом.

Когда технология особенно актуальна:

  • Точечная застройка внутри уже существующих кварталов
  • В случае недостатка места разработки почвы под котлован
  • Если подъезд строительной техники, кранов невозможен из-за особенностей расположения объекта
  • Когда нужно ускорить и упростить, удешевить процесс строительства
  • При реализации авторских проектов домов
  • В регионах с повышенной сейсмической опасностью

Монолитные железобетонные стены – прекрасный выбор для возведения любого здания, который обеспечит необходимые свойства и характеристики, сделает сооружение прочным и надежным, долговечным и крепким. При условии выполнения верных расчетов и соблюдения технологии гарантирован наилучший результат.

1beton.info

Монолитные железобетонные стены: технология производства

Монолитный железобетон является популярным строительным материалом, который используется при строительстве дорогостоящих объектов. Нашел свое применение при возведении торговых центров, зданий с большим количеством этажей и для сооружения авторских домов. Железобетонные конструкции называют монолитными, если их заливка осуществляется непосредственно на строительной площадке. Популярность монолитного домостроения обусловлена невысокой ценой, прочностью построек и способностью выдерживать большие нагрузки. Возведение монолитных железобетонных конструкций может осуществляться в любое время года, что значительно сокращает время на строительство зданий и сооружений.

Преимущества

Монолитные железобетоны имеют следующие преимущества:

  • стойкость к воздействию огня;
  • возможность собственноручного монтажа;
  • минимальные физические затраты при возведении железобетонной монолитной конструкции;
  • отсутствует необходимость в дополнительной технике и подъемных механизмах;
  • стойкие к образованию коррозии;
  • не поддаются окислению;
  • одинаковый технологический процесс для всех циклов;
  • скорость монтажа;
  • способность противостоять большим нагрузкам;
  • сравнительно низкая стоимость на монолитное домостроение;
  • сейсмоустойчивость сооружений;
  • спустя много лет эксплуатации, железобетонный материал способен увеличивать свои прочностные качества;
  • долговечность;
  • отсутствует потребность в большом количестве техники и оборудования;
  • небольшой вес элемента, при строительстве которого не требуется возведение тяжелого фундамента;
  • возможность применения любой планировки дома;
  • снижение затрат на отделочные работы за счет гладкой поверхности материала;
  • надежность и прочность.

Вернуться к оглавлению

Недостатки

Выделяют следующие недостатки:

  • необходимость в применении шумоизоляционного материала;
  • существуют сложности разборки;
  • вероятность появления трещин, отслоек и других подобных деформаций;
  • сложность монтажа опалубки;
  • необходимость нанимать квалифицированных рабочих;
  • потребность в прогревании бетона при возведении конструкции в холодное время года;
  • надобность в укладке теплоизолирующего материала;
  • обеспечение дополнительного ухода в период застывания раствора.

Вернуться к оглавлению

Какой толщины должна быть стена?

Толщина стен зависит от разновидности зданий. Для зданий с одним этажом выбирают стену толщиной не больше двадцати сантиметров, для сооружений с большим количеством этажей потребуются стены с толщиной не меньше 55 сантиметров. Таким образом, можно сделать вывод, что толщина железобетонных стен для разных построек колеблется от двадцати до 55 сантиметров.

Вернуться к оглавлению

Устройство монолитных стен

Плитный фундамент и монолитные стены.

Монтаж монолитных конструкций различной толщины осуществляется непосредственно на строительной площадке. Первым делом, устанавливают опалубку, которая подходит под размеры постройки. Далее монтируют армирующий слой и приступают к бетонированию. Конструкция монолитов напоминает строительство сборного железобетона, только в этом случае элементы изготавливают на заводе и доставляют на стройплощадку, где выполняют сборку.

Для монтажа сборной конструкции потребуется привлечение специальной техники и подъемных механизмов, а это дополнительные финансовые затраты и потребность в увеличенной рабочей силе. Однако при возведении монолита, не требуется транспортировка конструктивных элементов и применение спецтехники, что значительно сокращает расходы на строительство.

Вернуться к оглавлению

Опалубка

При возведении конструкций потребуется монтаж прочной опалубки, которая послужит защитой для вытекания раствора. Опалубка бывает таких видов:

  • блочная, которая используется при монолитной заливке объектов без перекрытий;
  • разборная, состоящая из отдельных частей обеспечивающие жесткость постройки;
  • скользящая, которая применяется в строительстве многоэтажных зданий;
  • пневматическая, имеет воздухопроницаемую прочную оболочку;
  • несъемная, используется в роли декора;
  • туннельная, необходима в постройках с перекрытием.

Процесс установки опалубки несложный и состоит из рытья котлована и монтажа щитов. Монтируя опалубку, важно следить за ровностью конструкции и избегать деформаций под воздействием больших масс бетонного раствора.

Вернуться к оглавлению

Армирование

Для армирования вбирают двухслойный каркас, который предотвратит прогиб стен в результате нагрузки. При укладке продольной арматуры соблюдают шаг в двадцать сантиметров, при горизонтальной арматуре – в тридцать пять сантиметров. Армирующая сетка прокладывается по всему периметру опалубки.

Вернуться к оглавлению

Заливка

После установки армирующего слоя приступают к заливке бетонным раствором, который укладывают толщиной слоя не больше чем на пятьдесят сантиметров. Заливку смеси осуществляют только после высыхания предыдущих слоев. В процессе бетонирования раствор уплотняют вибратором, который удалит пузырьки воздуха. После заливки бетонную смесь оставляют сохнуть до достижения ее максимальных прочностных характеристик, на это уйдет месяц. Спустя 30 дней приступают к утеплительным и финишным работам.

Вернуться к оглавлению

Где применяются?

Монолитный железобетон используется при строительстве жилых домов с несущими стенами, общественных и производственных сооружений, в зданиях с двумя этажами, а также при возведении каркасов с нетяжелыми ограждениями стен, перегородок из материалов высокого качества, которые способствуют уменьшению общей массы постройки. При строительстве промышленных конструкций, а именно в возведении стадионов, больших цехов, выставочных залов. Часто используются монолитные железобетоны при необходимости усилить фундамент, перекрытия, стены и колонны.

Вернуться к оглавлению

Заключение

Использование монолитных железобетонных конструкций имеют преимущественные аспекты относительно других строительных материалов. Его широкая область применения делает железобетонный монолит популярным элементом зданий и сооружений.

Однако выбирая материал, важно отталкиваться не только от его положительных качеств, но также и обращать внимание на недостатки, которые могут сыграть большую роль при возведении монолитных конструкций.

kladembeton.ru

как построить монолитный дом самому

Современные материалы, из которых можно построить жилье сегодня удивляют своим многообразием. Архитекторы предлагают уйму проектов, сочетающих в себе различные материалы. А производители предлагают купить готовые проекты, которые собираются прямо на стройплощадке из заранее промаркированных  деталей. Однако монолитные стены по технологии полностью производятся на стройплощадке, когда бетон заливают в заранее выставленную опалубку. О том, как построить монолитный дом своими руками мы постараемся разобраться в этой статье.

Достоинства и недостатки монолитного строительства

Преимущества

Монолитные стены полностью производятся на стройплощадке, когда бетон заливают в заранее выставленную опалубку

  • Прочность и устойчивость к разрушениям. Монолитная конструкция, благодаря своей целостности имеет высокую устойчивость к различным сдвигам грунта, землетрясениям и промоинам.
  • Криволинейное строительство. Благодаря тому, что опалубку можно устанавливать с любыми искривлениями линий. Построить дом из монолита с замысловатостью стен — задача вполне осуществимая.
  • Целостность стен. Отсутствие швов делает коробку здания более теплой.
  • Всепогодность строительства. Современные материалы позволяют проводить монолитные работы в любое время года и на любом грунте.
  • Быстрое строительство.
  • Относительно низкие затраты финансов.
  • Равномерность усадки. Построенный монолитный каркас здания не дает трещин, благодаря равномерности усадки.
  • Любой вариант междуэтажного перекрытия. Его можно сооружать из монолитного бетона, из плит или дерева.
  • Легкие бетонные растворы. Вы можете не сооружать тяжелый заглубленный фундамент, если в раствор бетона добавлены утепляющие добавки: шлак, керамзит, перлит, опилки и т.д.
  • Отделка и утепление различными материалами. Можете выбрать любой, подходящий для вас материал.
  • Теплая несъемная опалубка. Если вы строите стены при помощи несъемной опалубки, то дополнительное утепление не требуется, да и толщина стен значительно уменьшается. Кроме этого, создается хорошая звукоизоляция помещений.
Недостатки

При строительстве многоэтажного дома, вам потребуется растворонасос или бетононасос

  • При строительстве многоэтажного дома, вам потребуется растворонасос или бетононасос. Эта специализированная техника используется для заливки смеси бетона на высоте. Поэтому это становится накладно, если вы строите самостоятельно.
  • Заливка монолитных плит перекрытия требует установки специальных лесов.
  • При использовании несъемной опалубки потребуется обустройство приточно-вытяжной вентиляции из-за высокой влажности воздуха в доме. Так как несъемная конструкция – это теплоизоляция стен, которая обладает нулевой паропроницаемостью, а следовательно, постоянно образуется конденсат.
  • Эксклюзивные и сложные проекты могут потребовать изготовления особенной опалубки, а это дополнительные затраты времени.
  • Обязательное оштукатуривание стен из несъемной опалубки. Это связано с низкой экологичностью основного материала несъемной опалубки – пенополистеролом. Этот материал при сгорании выделяет очень токсичные для человека вещества, не смотря на то, что затухает через 2 минуты после воспламенения.
  • Железобетон имеет металлическое армирование и требует обязательного заземления всего дома.

Совет! Если возводить стены без использования несъемной опалубки, и производить монолитные работы из теплого бетона, а утепление сделать экологичными материалами, то можно получить свой комфортный, недорогой и теплый дом.

Виды опалубки при монолитном строительстве

Монолитное строительство всегда осуществляется при помощи опалубки

Монолитное строительство всегда осуществляется при помощи опалубки. В зависимости от области применения существуют такие виды опалубки:

  • Для фундамента. Устанавливается на горизонтальные подпорки и подкосы;
  • Для стен. Устанавливается с помощью кронштейнов, стоек и соединительных замков;
  • Для потолочных перекрытий. Настилается на подготовленную конструкцию из объемных подпорных или телескопических стоек;
  • Туннельная;
  • Для кольцевых стен с измененным радиусом.

Используя различные сочетания видов опалубки, монолитные работы можно проводить для любых элементов конструкции будущего здания.

Съемная опалубка

Съемный вид опалубки изготавливают из стали, пластика, древесины, алюминия и других материалов

Съемный вид изготавливают из стали, пластика, древесины, алюминия и др. Различный материал, из которого изготавливается опалубка, требует индивидуального подхода при эксплуатации. Например, фанерная — должна хранится в сухом месте. Для проделывания отверстий в фанере или распиле, чтобы не повредить ламинирование и шпон, необходимо использовать пилу с мелкими зубьями. Отверстия под кабели и трубы нужно проделывать с двух сторон.

Совет! Для того, чтобы съемная опалубка легко отставала от застывшего бетона, ее нужно обработать специальным раствором.

Несъемная опалубка

Данный вид опалубки состоит из пенополистерола, готов к применению и не требует дополнительной обработки. Производители выпускают в продажу всевозможные конфигурации: продольные, угловые, надоконные и подоконные и т.д. Сооружение съемной опалубки напоминает сборку конструктора, который потом заливается бетон.

Технология монолитного строительства

На сегодняшний день строителями используется две технологии возведения монолитных стен. Каждая обусловлена типом опалубки, который применяется:

Рекомендуем к прочтению:

  • съемная — конструкция разбирается после затвердения бетона;
  • несъемная — демонтаж которой не предусмотрен.
Монолитные стены со съемной опалубкой

Съемную опалубку можно использовать многократно

Съемную опалубку можно использовать многократно. Как правило, сборная опалубка изготавливается из металла или (и) древесины: металлические щиты крепятся на деревянный каркас.

Совет! Самый недорогой вариант —  опалубка, которая сколачивается прямо на стройплощадке из досок или фанеры.

Форма выставляется на ширину будущей стены и высоту слоя бетона (20-200 см), который заливается одномоментно, как в форму.

Строительство стен с помощью съемной опалубки:

  1. Сборка и установка опалубки. Для этого собираются щиты из брусков и досок толщиной до 50 мм. Панели опалубки выставляются противоположно друг другу щитом к щиту, и расстояние между ними фиксируется брусками-распорками. Противоположные панели скрепляются стяжными болтами или скруткой из проволоки. Далее, устанавливаются распорные откосные стойки с шагом 1 м.
  2. Армирование. Конструкцию стен для надежности армируют, путем установки в опалубку каркас из арматуры или армированную сетку (стальную или пластиковую).
  3. Заливка бетона. Опалубку заливают бетонной смесью послойно (не более 50 см за раз). Затем только что залитую смесь уплотняют глубинным вибратором. После того как слой бетона застыл, опалубку переставляют выше, для заливки следующего слоя. Так повторяют возведения необходимой высоты стены.

Опалубку заливают бетонной смесью послойно (не более 50 см за раз)

Бетон набирает достаточную прочность для выполнения последующих работ в течение пяти недель. Только по прошествии этого срока можно начинать утепление стен и фасадные отделочные работы.

Внимание! Строительство по технологии со съемной опалубкой требует обязательного дополнительно утепления стен. Это связано с тем, что каркас из металлической арматуры 8-18 мм создает так называемые «мостики холода». И, если вы хотите, чтобы в доме было тепло, то точка нуля должна как минимум находиться ближе к внешней поверхности стены, а лучше вообще за её пределами (в слое утеплителя).

Есть вариант создания более теплых стен с применением смесей с меньшей теплопроводностью (например, пенобетон, газобетон, керамзитобетон, шлакобетон или перлитобетон). Однако эти материалы менее устойчивы к нагрузкам и разрушению (подходят для зон с минимальной сейсмоактивностью).

Используя технологии мокрого или вентилируемого фасада, стены можно утеплять минеральной ватой, «теплой» штукатуркой, пенополистиролом, экструдированным пенополистиролом.

Рекомендуем к прочтению:

Кроме такого утепления, можно использовать метод колодцевого фасада. Заключается он в том, что с наружи бетонной стены с небольшим отступом от нее делается кладка из кирпича или плитки, а в образовавшийся зазор заполняется утеплителем: эковатой, керамзитом и др.

Монолитные стены с несъемной опалубкой

Несъемная опалубка – это блоки или панели выполненные из различных материалов, которые монтируются в конструкцию, армируются и затем заливаются бетоном

Несъемная опалубка – это блоки или панели выполненные из различных материалов, которые монтируются в конструкцию, армируются и затем заливаются бетоном. После того, как застывает бетонная смесь, конструкция не снимается, выполняя функцию утеплителя.

Термоблоки из вспененного полистирола – самый популярный вид несъемной опалубки на сегодняшний день.

Строительство стен с помощью несъемной опалубки:

  1. Установка опалубки. Блоки опалубки из пенополистирола выкладываются на поверхность фундамента, при этом их соединяют в замки «шип-паз», которые обеспечивают прочность конструкции и не дают бетону вытекать. Для одной заливки блоки выкладываются на высоту до 50 см (иначе раствор будет плохо застывать).
  2. Армирование конструкции. Внутри блоков предусмотрены специальные пазы для закладки горизонтальных армирующих стержней. После их установки, проводят армирование по вертикали. В местах соединения вертикальные и горизонтальные стержни между собой соединяют вязальной проволокой.
  3. Заливка в опалубку бетона. Бетонная смесь заливается одномоментно на высоту выстроенной опалубки и сразу уплотняется глубинным вибратором. Пока бетон застывает, можно начинать выкладывать следующий ряд опалубки. Как правило, время на выкладку следующего ряда опалубки равно времени застывания бетона в предыдущем ряду, поэтому процесс возведения стены практически проходит без остановок.
  4. Отделочные работы. Для отделки монолитных стен с несъемной опалубкой можно использовать практически любые материалы. Это необходимо для защиты пенополистирола от различных повреждений.

Внимание! Теплые смеси нельзя использовать в технологии с несъемной опалубкой из пенополистирола. Для этого годится только бетон. Это связано с тем, что пенополистерол – материал «не дышащий», а теплые смеси, напротив, обладают высокой паропроницаемостью, в результате между слоями будет скапливаться конденсат — хорошая среда для развития плесени и грибка.

Виды растворов бетона для монолитного строительства

В монолитном строительстве используются бетонные растворы с различной теплопроводностью и паропроницаемостью

В монолитном строительстве используются бетонные растворы с различной теплопроводностью и паропроницаемостью.

  • Бетон. Холодный и требует обязательного утепления.
  • Железобетон. Требует дополнительного утепления, поскольку армированный каркас «тянет» на себя холод.
  • Керамзитобетон. Теплый, а степень сохранения тепла и паропроницаемость висит от плотности раствора.
  • Шлакобетон. Менее прочный, чем керамзитобетон.
  • Опилкобетон. Представляет собой смесь: цемента, воды, песка и древесных опилок. Требует покрытия слоем гидроизоляции. Достаточно прочен, экологичен, сохраняет тепло.
  • Арболит. Похож на опилкобетон, только вместо опилок здесь древесная щепа.
  • Пенобетон – смесь цемента, воды, песка и образователя пены. Теплый и «дышащий» материал.

kakpostroitdomic.ru

Технология возведения монолитных стен

Существует две технологии возведения монолитных стен дома. Различие технологий заключается в использовании разных конструкций опалубки: съемная опалубка (конструкция снимается после твердения бетона) и несъемная опалубка (демонтаж не предусмотрен).

Возведение монолитных стен со съемной опалубкой

В основном, съемная опалубка изготавливается из древесины или металла, опалубка в данном случае сборная. При использовании металлической опалубки берутся щиты из металла. Более экономичной съемной опалубкой считается опалубка, выполненная из фанеры или досок, которая сколачивается прямо на строительной площадке. Съемную опалубку можно использовать неоднократно.

Во время монтажа опалубка выставляется на высоту слоя бетона, который заливается однократно. Примерно от 20 до 200 см. Ширина опалубки должна соответствовать толщине будущей стены.

Строительство монолитных стен при помощи съемной опалубки:

  1. Сборка и установка опалубки. Для этого из досок толщиной до 50 мм и брусков собираются щиты. Панели должны быть выставлены противоположно друг другу. Расстояние между щитами фиксируется брусками, которые выступают в роли распорок. Противоположные панели необходимо закрепить проволочной скруткой или стяжными болтами. После данных работ с шагом в 1 метр устанавливаются распорные откосные стойки.
  2. Армирование монолитных стен. Для надежности конструкции в опалубку устанавливают армированную сетку или каркас из арматуры. Армированная сетка бывает пластиковой и стальной.
  3. Заливка опалубки бетоном. Бетонную смесь необходимо укладывать послойно, не более 50 см за один раз. Залитая смесь нужно уплотнить глубинным вибратором. После затвердения слоя бетона, опалубка переставляется на уровень выше. Так продолжается бетонирование стены до нужной высоты.

Чтобы бетон приобрел максимальную прочность, понадобится до пяти недель. Затем можно выполнять утепление стен и отделку фасадов дома.

Если вы строите с технологией съемной опалубки, не забывайте, что стены будут достаточно холодными, по причине наличия в стенах металлических частей каркаса. Стены обязательно требуют дополнительного утепления.

Можно использовать вместо бетона смеси, обладающие меньшей теплопроводностью, например, керамзитобетон, перлитобетон, шлакобетон, газобетон или пенобетон. В таком случае, стены будут более теплыми, но менее устойчивыми к повышенным нагрузкам.

Возведение монолитных стен с несъемной опалубкой

Несъемная опалубка представляет собой панели или блоки из различных материалов. Блоки или панели монтируются в опалубочную конструкцию, затем армируется и заливается бетонной смесью. После высыхания бетона, опалубка не снимается, она остается функциональной частью стены, и выполнят роль утеплителя стен.

На данный момент наиболее распространен вид несъемной опалубки на строительных площадках в виде термоблоков из вспененного полистирола.

Строительство монолитных стен при помощи несъемной опалубки:

  1. Установка опалубки. На поверхность фундамента выкладываются элементы несъемной опалубки. Блоки крепятся друг с другом при помощи соединительных замков, которые не позволяют вытекать бетону и наделяют конструкцию нужным уровнем. Как правило, опалубка возводится на высоту до 50 см.
  2. Армирование несъемной опалубки. В блоках есть специальные пазы, в которые закладываются стержни горизонтального армирования. Затем устанавливается вертикальная арматура. Стержни соединяются вязальной проволокой.
  3. Заливка опалубки бетоном. Бетонная смесь укладывается на высоту опалубки и уплотняется глубинным вибратором. После заливки бетона выкладывается следующий ряд опалубки. За это время бетон просыхает, и можно заливать бетон. Таким образом, процесс работы проходит практически без прерывания.
  4. Отделка стен дома. По результатам строительных работ стены получаются в виде сендвича, где между пластинами полистирола находится армированный бетон. Данная конструкция нуждается в защите от природных и механических повреждений. Для этого используют различные отделочные материалы.

Для заливки несъемной опалубки используется только бетон, поскольку паропроницаемость полистирола ниже теплых смесей. Следовательно, теплые смеси между плитами полистирола будут накапливать конденсат, что приведет к образованию грибка и плесени.

Виды бетонных растворов для монолитного строительства

Монолитное строительство допускает использование растворов с различной паропроницаемостью и теплопроводностью:

  • Бетон. Дома с данными стенами требует дополнительного утепления, поскольку у бетона высокая теплопроводность.
  • Железобетон. Материал еще более холодный, чем бетон, поскольку армированный каркас выступает в роли «мостика холода».
  • Керамзитобетон. Дом будет достаточно теплым, Показатели теплопроводности и паропроницаемости зависят от плотности смеси.
  • Шлакобетон. Это бетон из шлака. Материал менее прочный, чем керамзит.
  • Опилкобетон. Это смесь из цемента, песка, древесных опилок и воды. Стены из такого материала будут экологически чистыми, прочными и теплыми. Данный материал требует покрытия гидроизоляционным слоем.
  • Арболит. Это соединение цемента с древесной щепой. Материал очень прочный и теплый.
  • Пенобетон. Это ячеистый бетон, который изготавливают из смеси цемента, песка, воды и пенообразователя. Материал отличается от остальных хорошими показателями теплопроводности и паропроницаемости.

nenovost.com

Виды монолитных работ, требования к технологиям

Технология выполнения монолитных работ это способ возведения элементов зданий и сооружений из бетонной смеси и арматуры с использованием специальных опалубочных форм в пределах строительной площадки.

Применение этого метода позволяет получать прочные, не имеющие швов и трещин, конструкции любой формы, в том числе и независящие от конфигурации типовых элементов заводского изготовления. Полный состав монолитных работ при возведении различных монолитных элементов может включать следующие этапы работ:

  • монтаж опалубки;
  • сборка и установка армирующего каркаса;
  • приготовление и заливка бетонной смеси;
  • уплотнение залитого бетона с помощью вибрационного инструмента или другими способами;
  • подогрев или увлажнение застывающей монолитной конструкции, при необходимости;
  • демонтаж опалубки.

Возведение железобетонных элементов по этой технологии производится на основании проектных расчетов и чертежей.

Сборка опалубочных конструкций

Устройство стеновой щитовой опалубки

Выполнение монолитных работ начинается с монтажа опалубки, которая, по сути, представляет собой форму для заливки бетонной смеси. При возведении фундаментов этому этапу может предшествовать разметка, земляные работы и отсыпка щебеночно-песчаной подушки.

Для устройства опалубки могут использовать:

  • обрезную доску и брус;
  • фанеру, древесно-стружечные плиты и другие аналогичные материалы;
  • листовой металл;
  • пенополистирольные плиты, которые в дальнейшем остаются в качестве утеплителя;
  • штатные щитовые элементы заводского изготовления;
  • фундаментные блоки, плиты, трубы и другое.

Лучшие материалы для монтажа опалубки не должны впитывать влагу и обеспечить максимально возможную герметичность конструкции. Потеря влаги бетонной смесью снижает качество бетона и уменьшает его марку. Поэтому рекомендуется закрывать деревянные и другие впитывающие влагу поверхности полиэтиленовой пленкой.

Штатная щитовая опалубка это конструкция из металлической рамы с закрепленным на ней листом ламинированной с одной стороны фанеры. Соединение щитов в единую конструкцию осуществляется при помощи специальных элементов и металлических стоек.

Устройство опалубки перекрытий на телескопических стойках

При монтаже опалубочной конструкции необходимо обеспечить ее прочность и способность выдерживать весовое давление залитой бетонной смеси. Разрушение опалубки во время производства монолитных работ может привести к серьезным финансовым затратам и задержке сроков строительства.

По конструктивным признакам различают следующие виды опалубки:

  • разборно-переставная;
  • подъемно-переставная;
  • сборная стационарная;
  • не снимаемая.

Кроме этого к разборным конструкциям следует отнести разборные системы из блоков, плит, труб и других строительных материалов.

Несъемная опалубка

Эта технология широко применяется для малоэтажного строительства (до 10 этажей). Она подразумевает использование пустотелых блоков из пенополистирола, они устанавливаются друг на друга и соединяются специальными элементами, напоминающими лего конструктор. Внутренняя часть заполняется бетонной смесью. Усиливается конструкция арматурными стержнями, которые и придают необходимую прочность стенам. Особенностью ее использования можно назвать решение срезу нескольких задач:

  • устройство опалубки для заливки бетона,
  • отсутствие необходимости разбирать опалубку,
  • утепление стен будущего строения.

Недостатки (только основные):

  • Малоэтажность здания.
  • Невозможность заливать таким способом перекрытия.
Видео о монолитных работах

Способы армирования и применяемые для этого материалы

Без использования арматуры невозможно добиться необходимой прочности любой монолитной конструкции.

Вязка арматуры

В качестве арматуры могут быть использованы:

  • круглые металлические стержни гладкого или переменного сечения;
  • полимерные стержни;
  • стальной трос;
  • металлическая проволока;
  • пластиковые обрезки диаметром 4-8 мм;
  • металлопрокат в виде уголка и швеллера.

Виды арматурных каркасов, применяемых в монолитном строительстве

Из стержней и проволоки способом вязки изготавливают арматурные каркасы. Это плоские или объемные конструкции, которые помещают внутрь опалубки и заливают бетонной смесью. Металлопрокат используют для внешнего обрамления углов монолита, соединяя его с арматурным каркасом.

Стальной трос используется в качестве армирующего материала с предварительным натяжением при помощи специальных механизмов.

Использование пластиковых обрезков позволяет увеличить прочность элемента без устройства армирующего каркаса. Этот способ широко применяется при заливке полов, пешеходных дорожек и оснований для мощеных дорожных покрытий.

Технология армирования в значительной мере усиливает строительную конструкцию, повышает ее прочность и несущую способность. На всех ответственных объектах до заливки бетона технадзор заказчика проверяет соответствие устройства арматурного каркаса проектным решениям с последующим составления акта на скрытые работы.

Монолитные работы или заливка бетонной смеси

Перед началом бетонирования представитель технического надзора со стороны заказчика должен проверить сборки арматурного каркаса и опалубки проектным решениям. При осмотре арматуры обращается внимание на расстояния от крайних прутов арматуры до опалубки, которое должно быть не менее 50 мм. Это обеспечит защиту металла от коррозии. По результатам проверки должен быть составлен акт на скрытые работы.

Необходимая марка бетона и его подвижность должны быть указаны в проекте. При получении готовой бетонной смеси заводского изготовления добавлять в нее воду не допускается. Это влияет на качество и может снизить прочность готовой монолитной конструкции.

Бетонная смесь может подаваться в опалубку вручную, из миксера или с помощью бетононасоса. Перекачка насосом обычно используется при необходимости перемещения бетона на верхние этажи или уровни. Залитая смесь должна быть уплотнена с помощью вибрационного инструмента до полного удаления воздушных пузырьков. Небольшие конструкции в частном строительстве могут уплотняться простукиванием опалубки и штыкованием при помощи металлического прута. Более подробно и точно правильная технология бетонирования описана здесь.

Посмотреть ППР: Проекты производства работ (монолитные работы).

Специальные способы ухода за бетоном

В холодное время года производство монолитных работ может потребовать выполнения подогрева бетона. Это делается для того, чтобы избежать возможного замерзания воды и снижения качества и прочности конструкции. Сохранения температуры достигают различными способами, среди которых к наиболее популярным относятся:

  • укрывание утеплителем;
  • использование химических добавок;
  • сооружение утепленного шатра;
  • монтаж греющего электрокабеля.

Читайте такте: способы бетонирования в зимнее время.

В жаркое летнее время монолитную конструкцию накрывают полиэтиленовой пленкой и дополнительно увлажняют, чтобы исключить быстрое высыхание влаги.

Достоинства и недостатки монолитного строительства

В сравнении с монтажом зданий из железобетонных элементов заводского изготовления технология монолитного строительства имеет следующие преимущества.

ПреимуществаНедостатки
полное отсутствие швовтрудоемкость
повышенная прочность и долговечностьболее высокую стоимость
возможность создания целостных конструкций любой конфигурации и размеровнеобходимость использования опалубочной оснастки
быстрое возведение больших объектов 

Нужно отметить, что применение монолитных технологий совместно с традиционными методами строительства в зданиях каркасного типа, позволяет снизить материальные и трудовые затраты.

Несколько видео по теме

 

vremya-stroiki.net

Устройство опалубки монолитных стен

При возведении стен с использованием технологии монолитного строительства могут применяться несколько типов опалубки. В строительстве крупных объектов гражданского и промышленного назначения актуальна съемная щитовая опалубка, позволяющая быстро возводить длинные и высокие стены. В частном секторе применяется несъемный тип опалубочных систем, позволяющих производить заливку целого здания по готовому контуру. Каждая из разновидностей имеет свои плюсы и минусы, а также особенности устройства.

Устройство съемной щитовой опалубки стен

Первым этапом сборки съемной опалубки является составление детального проекта, в котором должны быть учтены все типовые и геометрические особенности возводимой конструкции. Также до установки и закрепления формовочного комплекса производятся соответствующие расчеты, определяющие:

  • оптимальную толщину стены с учетом климатических особенностей и несущей способности архитектурных элементов и опалубки;
  • марку бетона и армирующих элементов.

Схемы установки съемной щитовой опалубки для различных вариантов стен

После составления технологического плана переходят к процессу устройства опалубочной системы, который включает в себя:

  • соединение щитов опалубки между собой с использованием замковых механизмов и стяжек;
  • монтаж палубного полотна из водостойкой фанеры;
  • раскрепление опалубки подкосами;
  • монтаж армирующих элементов;
  • соединение готовых блоков (щитов), стоящих параллельно с применением стяжных винтов.

Щиты стеновой опалубки соединяются в последовательные сегменты при помощи замков различного типа, обеспечивающих надежную фиксацию и достаточный уровень прочности. В прямолинейных сегментах могут применяться клиновые и универсальные замки. Для скрепления угловых щитов используются шкворни или специальные стяжки. После формирования блока требуемых габаритов необходимо закрепить его в вертикальном положении и создать условия для 100%-ной устойчивости.

Щиты стеновой опалубки соединяются в последовательные сегменты при помощи замков различного типа

Монтаж полотна палубы может производиться в горизонтальном или вертикальном положении, в зависимости от размеров  каркаса опалубки. Фиксация контактной поверхности к ребрам каркаса осуществляется посредством специальных крепежных устройств, вид которых также зависит от разновидности опалубочной системы.

Зафиксировать комплекс опалубочных щитов в вертикальном положении, а также произвести юстировку помогут подкосы. Существует две разновидности данных устройств: двухуровневые  и одноуровневые. Они отличаются несущей способностью и механизмом распределения нагрузки. Двухуровневый подкос применяется для более габаритных конструкций с высоким показателем нагрузок.

Армирование формы для заливки осуществляется в соответствии технологическими требованиями, предъявляемыми к конструкции. На основании функционала стены (несущая или нет) выбирается тип арматуры (вид, толщина и т.д.). При размещении армирующего элемента между щитами опалубки должно оставаться достаточное пространство, которое займет бетон, сформировав внешние кромки плиты. Для обеспечения неподвижного положения арматуры внутри опалубки используются специальные фиксаторы.

Для обеспечения неподвижного положения арматуры внутри опалубки используются специальные фиксаторы

После установки сегментов опалубки в вертикальное положение (параллельно) и укладки арматурных элементов осуществляется их скрепление стяжным винтом, обеспечивающим надежную сцепку между параллельными стенками опалубки. После завершения данного этапа и проведения всех необходимых инженерно-технических проверок может начинаться подача бетонной смеси.

Устройство несъемной опалубки стен

Опалубка несъемного типа для строительства монолитных конструкций может иметь различную форму. Кроме основных функций материал, используемый для создания формовочного пространства, играет роль утеплителя, поэтому использование данного вида опалубки целесообразно в малоэтажном частном строительстве. Как правило, в данном случае используются пенополистероловые блоки.

Устройство данного типа опалубки для монолитных стен заключается в формировании формовочного контура путем соединения полимерных блоков посредством профилей, уже установленных на каждом из элементов. Толщина стены зависит от применяемой разновидности блоков. Заливку стены можно начинать после скрепления блоков, армирования формы и проведения всех проверок.

Армирование стены в несъемной опалубке

18.05.2019

opalubka-expert.ru

Устройство монолитных стен

Главная — Услуги — Устройство монолитных стен

На сегодняшний день достаточно часто используют монолитные стены, что стало возможным благодаря внедрению в процесс строительства новых технологий касающихся изготовления бетона, наличию большого количества вариантов опалубки и многообразию способов монолитного строительства.

Возведение домов панельного типа в последнее время теряет свою обоснованность в связи с тем, что становится невыгодным с экономической точки зрения производить готовые элементы здания на заводе и осуществлять их монтаж на стройплощадке. Тем более что такая конструкция существенно уступает по своим характеристикам монолитному строению. При этом панельные дома возводятся по однотипным проектам и отличаются своей одинаковостью, что на данный момент совершенно не соответствует требованиям основной массы заказчиков, предпочитающих полукруглые формы и перепады уровней. На этом фоне выгодно смотрятся монолитные стены, которые могут иметь даже волнообразную форму.

Технология монолитного строительства позволяет превратить сооружение в единый блок. При этом в соосности его несущих стен может наблюдаться определенное несогласование. В целом такое здание можно представить как систему сот, объединенных в одно целое особым образом.

При возведении стен малоэтажных зданий используется несъемная или сборно-щитовая опалубка, что обусловлено некоторыми особенностями технологии монолитного строительства.

Так, к опалубке, точнее к ее качеству предъявляются достаточно жесткие требования. При проведении строительных работ к эксплуатации допускаются только идеально подогнанные щиты, которые образуют единую конструкцию. При этом данная конструкция усиливается с использованием стяжек выполненных из металла, дерева и других материалов.

При проведении строительных работ в большинстве случаев выставляется опалубка на одну стену, реже на вест периметр. При этом используются щиты длинной от 2 до 4 м, высота которых находится в пределах 50-80 см. Для изготовления таких щитов используются доски толщиной 30-40 мм, соединенные снаружи при помощи брусков сечением 80х80 мм, промежутки между которыми составляют 1-1,5 м. Также могут быть использованы уже готовые щиты, изготовленные в заводских условиях. Для стяжки таких щитов используют специальные металлические болты, которые при демонтаже опалубки выбивают и их можно использовать повторно. В верхней части опалубка скрепляется при помощи деревянных брусков или тех же металлических болтов.

При этом существуют некоторые отличия в возведении монолитных стен и монолитных перегородок, что во многом обусловлено такими характеристиками, как толщина и высота стен, тип используемой опалубки, степень армирования, способ подачи бетона и его последующего уплотнения.

В большинстве случаев используется способ послойного бетонирования. При его применении стена бетонируется постепенно, и высота каждого слоя находится в пределах 30-50 см. Бетон в данном случае уплотняется при помощи глубинных вибраторов.

Толщина стены, которая создается путем послойного бетонирования, не должна превышать значения в 10 см. При этом в целях получения однородной смеси и улучшения качества поверхности бетон подвергается тщательной проработке путем вибрирования, что в сочетании с равномерной подачей раствора позволяет добиться необходимо качества готового изделия. Особенностью использования вибратора является необходимость в исключении возможных касаний им во время работы опалубки, что может привести к разрушению предыдущих слоев.

stroykomtech.ru

Монолитный жб каркас: частного дома, стен здания

Монолитный каркас представляет собой технологию строительства зданий, при которой строение возводят из бетона с армированием стальными прутьями. Такое сооружение обеспечивает повышенный уровень прочности и долговечности, обходится сравнительно недорого. Раньше технология монолитно-каркасного строительства из бетона использовалась в основном в промышленной и коммерческой сферах, сегодня же все чаще таким образом возводят частные дома и коттеджи.

Основное преимущество монолитного каркаса – равномерное распределение нагрузок между бетонными колоннами, которые усилены стальной арматурой. После заливки бетоном каркас становится прочной монолитной конструкцией, в которой вся несущая нагрузка приходится на колонны, балки и перекрытия. Железобетонные здания считаются наиболее надежными, крепкими и стойкими.

При условии верного выбора и проектирования фундамента ЖБ коробка способна простоять максимальный срок, демонстрируя прекрасные эксплуатационные свойства и наилучшие технические характеристики.

Основанием для дома из бетона может служить плитный, ленточный или свайно-винтовой фундамент, который выбирают в соответствии с такими факторами: структура и характеристики грунта, особенности рельефа территории, несущая способность почвы, расчетные нагрузки и масса здания, уровень залегания грунтовых вод, конструктивные и технические особенности архитектурного проекта.

Благодаря особенностям технологии проекты домов из железобетона могут быть самыми разными – тут есть возможность реализовать любую задумку, использовать самые разные материалы (стекло, кирпич, дерево и т.д.), экспериментировать с различными элементами. Большинство современных коттеджей необычных форм и конфигураций создают с использованием монолитно-каркасной технологии.

Что такое монолитно-каркасное строительство

Устройство монолитно-каркасных зданий осуществляется по единой технологии. Монолит представляет собой цельнолитую бетонную конструкцию, которая создается прямо на строительной площадке путем заливки бетоном смонтированного каркаса из стальных прутьев и элементов. Бетон заливается и обязательно вибрируется, подбирается определенная марка, что обеспечивает высокую прочность.

Арматурный каркас может быть соединен вязальной проволокой либо сварен. Марка бетона, класс арматуры, специальные добавки в раствор подбирают, исходя из количества этажей, сейсмичности региона. Стальной каркас заливается бетоном в съемную или несъемную опалубку, которая формирует стены и другие элементы конструкции.

Что включает каркас монолитного здания:

  1. Фундамент – может быть разного типа.
  2. Колонны – расположенные вертикально и соединяющие основание и перекрытие.
  3. Монолитные перемычки и перекрытия, которые создают пояс жесткости.

Все элементы конструкции связаны как монолитным бетоном, так и арматурным каркасом, благодаря чему удается создать жесткое соединение, прочное и неподвижное, без шарниров и люфтов.

Ввиду того, что потом что-то переделать и или заменить невозможно, монолитно-каркасное строительство здания требует чрезвычайно тщательного проектирования с точными расчетами и применением специфических технологий, которые способны понизить риск появления деформаций в процессе усадки.

Достоинства технологии

Строительство частного дома по монолитно-каркасной технологии обладает определенными преимуществами, благодаря которым метод становится все более популярным и часто используется для возведения домов по индивидуальным проектам.

Основные преимущества монолитно-каркасной технологии:

  • Быстрый процесс монтажа с минимальными трудозатратами. Основные этапы – создание опалубки, арматурного каркаса, заливка бетоном. Процесс осуществляется непрерывно по отдельным зонам, что исключает простой рабочей силы.
  • Длительный срок эксплуатации без необходимости в ремонте или реконструкции.
  • В случае аварийных ситуаций при разрушении одной секции остальные элементы конструкции остаются целыми и здание не рухнет. Монолитный каркас – единственный метод безопасного строительства в сейсмоопасных регионах.
  • Возможность реализовать проект любой сложности с оригинальной планировкой, так как в данном случае нет обязательных несущих стен, перегородок. Площади можно реализовать даже как единое пространство с колоннами.
  • Перепланировка в любом формате – благодаря отсутствию несущих стен, без согласования с надзорными органами.
  • Повышение общей жесткости со временем благодаря набору прочности бетона.
  • Возможность сделать в доме потолки высотой от 3 метров.
  • Строительные работы можно проводить в любую пору года.
  • Для возведения каркаса понадобится небольшой объем материалов.
  • Габаритные конструкции не нужно доставлять на объект, сборка каркасных зданий из арматуры и бетонного раствора осуществляется непосредственно на территории строительства.
Недостатки жилья

Устройство монолитного каркаса предполагает и некоторые негативные моменты, о которых нужно знать до начала проведения расчетов и проектирования. Все эти факторы можно устранить за счет разумного применения различных технологий и методов строительства.

Главные минусы технологии монолитного каркаса:

  • Наличие мостиков холода, которые распространяются по бетонным перекрытиям, внешним колоннам, что предполагает обязательную теплоизоляцию и выполнение облицовки фасадов.
  • Большой объем работ по вязке и установке арматуры, монтажу опалубки, опорных стоек.
  • Важность правильных и максимально точных расчетов, от которых зависят безопасность и комфорт эксплуатации, прочность и срок службы здания.

Технология

Монолитно-каркасная технология применяется в строительстве одно/многоэтажных зданий различного назначения любой площади и высоты.

Этапы реализации технологии монолитного каркаса: Сначала выполняют фундамент, потом заливают стены и перегородки, далее монтируют заводскую или заливают монолитную плиту перекрытия. После этого осуществляется прокладка инженерных коммуникаций, отделочные работы, обустройство крыши.

Методы возведения фундамента

Устройство основания является одним из наиболее важных этапов строительства, так как от него зависит то, насколько качественным и прочным будет каркас, не просядет ли дом на грунте и т.д.

Виды фундамента, применяемые при заливке монолитного каркаса:

  • Сваи – тип свайного основания подбирают по типу грунта и особенностям ландшафта на территории.
  • Ленточный – заливается на объекте в опалубку с арматурой. Подходит для домов с подвалом, мелкозаглубленный обустраивают исключительно на почве с низким уровнем грунтовых вод.
  • Бетонная монолитная плита – надежная база, особенно подходит для зон с опасностью землетрясения. Фундамент заливается на строительной площадке с обязательным армированием.
Особенности строительства подвала

Для подвала роют котлован, а фундамент размещают на минусовой отметке – в основании подвала. В этом помещении заливают монолитные стены, перегородки, сверху на нулевой отметке монтируют плиту перекрытия заданной проектной толщины и с повышенной прочностью.

Методы возведения опалубки

Опалубка представляет собой форму, в которую будут заливать готовый бетонный раствор. Опалубка может быт какой угодно, формируя толщину и конфигурацию монолита.

Основные виды опалубки:

  1. Съемная – после твердения бетона демонтируется и может применяться снова.
  2. Несъемная – становится частью конструкции домов, выступая теплоизоляцией и защитой. Обычно такую опалубку делают из пенополистирола, но встречаются и конструкции из фанеры, древесины, металла. Пенополистирол дополнительно выступает в качестве утеплителя.

Типы опалубки по конструкции:

  • Туннельная – изготавливается по спроектированным данным на заводе, обладает заданными размерами, доставляется на объект готовой, неразборной.
  • Щитовая – сборная конструкция для создания монолита любых конфигураций. Предполагает оснащение крепежными элементами высокой прочности, эргономичная и надежная, ее можно использовать для заливки овальных конструкций.

Съемную опалубку можно взять в аренду, любые виды конструкции можно купить.

Армирование

С целью обеспечения прочности и жесткости монолитно-каркасной конструкции применяют стальную арматуру и армирующую сетку. Для монолитного строительства подходит рифленая/гладкая арматура сечением 6-8 миллиметров, особо прочные конструкции создают из арматуры диаметром больше 10 миллиметров. Вязать проволокой или сваривать каркас допускается горизонтально и вертикально.

В процессе создания каркаса особое внимание уделяют угловым зонам. Металл должен надежно крепиться, чтобы в будущем правильно распределять нагрузку в конструкции. Обязательно усиливают перемычки, чтобы здание не «ползло» и был оптимально распределен вес.

Как произвести расчеты и создание каркаса:

  • Средние расчеты предполагают затраты около 25 килограммов арматуры на 1 кубический метр бетонных конструкций.
  • Рабочие прутья подбираются в соответствии с расчетами, минимальные значения: 8 миллиметров для поперечной и 10 миллиметров для продольной арматуры.
  • Каркас может вязаться проволокой либо быть сваренным, создается на месте установки или на площадке с последующим перемещением.
  • Шаг арматуры в среднем составляет 15-25 сантиметров между отрезками. Прутья поперечные выступают элементами жесткости для прутьев продольных.
  • Вся арматура должна быть перевязана или сварена между собой.
  • В процессе заливки фундамента оставляют свободными вертикальные стержни, с которыми потом сопрягается арматура перекрытий и колонн (так продолжают до верхней точки здания).

Способы подачи бетона

Бетонный раствор может замешиваться непосредственно на строительном объекте или доставляться с завода специальной техникой. Чтобы смесь не застыла и не потеряла однородность, ее транспортируют в бункере с работающим миксером. Для подачи смеси на объект используют бетононасосы или краны.

Бетононасос представляет собой специальный автомобиль с длинным шлангом, который под давлением поставляет бетон в нужную точку. Очень удобно подавать бетон таким образом для заливки на высоте. Если используется кран, то бетон подают в бадьях – такой вариант актуален для сооружения небольших железобетонных конструкций.

Утрамбовка бетона

После того, как бетон залит в опалубку, его нужно уплотнить для удаления пузырей воздуха и более равномерного распределения смеси. Для этого используют вибраторы поверхностного и глубинного типа.

Главные функции вибротрамбования:

  • Улучшение внешнего вида конструкции – однородная поверхность, устранение воздушных полостей.
  • Повышение качества и прочности бетонной смеси.
  • Понижение трудозатрат и расхода материалов при выполнении отделки помещений.

Готовые монолитно-каркасные стены облицовывают керамической плиткой, кирпичом, красивым камнем. Обеспечить хорошую циркуляцию воздуха поможет обустройство вентиляции фасадов, кровли.

Монтаж перекрытий

Перекрытия в монолитно-каркасных конструкциях должны быть выполнены по той же технологии. Они образуют пояс жесткости здания.

Этапы обустройства перекрытий:

  • Создание каркаса, вязка стержней с выпусками из колонн, расположенных ниже. Стойки устанавливают на полу нижнего этажа, они должны поддерживать опалубку и исключат возможность обрушения конструкции до завершения цикла набора прочности бетона.
  • Монтаж опалубки из досок или фанеры.
  • Заливка смеси бетона без перерывов, но слоями.
  • Выжидание набора первоначальной прочности, демонтаж опалубки и стоек.

Стоимость и материалы

В процессе создания монолитно-каркасного дома качество напрямую зависит от затрат: более высокая марка бетона стоит дороже, чем больше арматуры – тем крепче здание. Поэтому экономить и игнорировать расчеты не стоит – это может стать фатальной ошибкой.

Арматуру нужно выбирать без дефектов и ржавчины, нужного сечения. Бетон обязательно должен соответствовать указанной в проекте марке, установленным характеристикам.

Если бетонирование ведется при минусовой температуре, желательно позаботиться о противоморозных добавках, при очень низкой температуре лучше работы не проводить.

Материалы для опалубки также должны быть качественными, чтобы все это не обрушилось. Тут цена материалов может быть разной и в определенных случаях высокие затраты также оправданы: несъемная опалубка позволит провести быстрее работы, в будущем поможет сэкономить на утеплении и отоплении. С другой же стороны, оправданной может быть и аренда хорошей съемной конструкции.

На все материалы нужно требовать сертификаты соответствия, паспорта качества, гигиенические заключения и т.д. Сметную стоимость дома составляют расходы на такие материалы, как: арматура и проволока, все для бетона (или заказ готовой смеси), готовая опалубка или материалы для ее монтажа, инструмент, емкости, работа людей, техника для подачи бетона, кровля, отделка и т.д. От проекта к проекту стоимость может очень сильно разниться.

Монолитный каркас – технология, позволяющая создавать прочные, надежные, долговечные дома по разумной стоимости и индивидуальному проекту. Самое главное – верно выполнить расчеты и соблюдать технологию реализации проекта.

1beton.info

Монолитное строительство — Википедия

Моноли́тное строи́тельство — метод возведения зданий при котором основным материалом конструкций является монолитный железобетон. Основная особенность монолитного строительства заключается в том, что местом для производства материала монолитных зданий является строительная площадка. Применение монолитного железобетона позволяет реализовывать многообразие архитектурных форм, а также сократить расход стали на 7-20 % и бетона до 12 %. Но при этом возрастают энергозатраты, особенно в зимнее время, и повышаются трудозатраты на строительной площадке.

История монолитного домостроения в России[править | править код]

Здание Государственного банка в Санкт-Петербурге со стороны Садовой улицы. Фото 1900 год.

Впервые в России технология была применена при строительстве здания Государственного банка в Петербурге, построенного в 1881 году фирмой «В. Гюртлер и К°». Для строительства был применён лёгкий бетон и простая деревянная опалубка. В качестве крупного заполнителя использовался кирпичный щебень и каменноугольный шлак (гарь). Из такого бетона в 1890-х годах в Петербурге возведены стены, своды и перекрытия многих жилых, общественных и промышленных зданий.

Тяжелый же монолитный бетон впервые применен в 1886 году при возведении стен железнодорожной будки на Костромской ветви Московско-Ярославской железной дороги. Её стены имели два ряда вентилируемых вертикальных пустот. Бетонирование велось в деревянных инвентарных щитах, уже применявшихся при строительстве железнодорожных сооружений. Практика возведения наружных стен из тяжёлого бетона с воздушной прослойкой продолжалась и в последующие годы. Так, описание метода возведения стен жилого дома из монолитного трамбованного бетона содержалось в так называемой привилегии, полученной в 1894 году петербургским изобретателем А. Л. Шиллером: его предложение предусматривало два вида деревянных опалубочных форм — разборные внешние, высокие вертикальные ребра которых наращиваются в процессе бетонирования, и постоянные внутренние, оставляемые в воздушной прослойке.

К началу ХХ века накопился значительный мировой опыт строительства жилых зданий из монолитного бетона. Знаменитый американский изобретатель Т. А. Эдисон разработал метод возведения домов из монолитного бетона в многократно оборачиваемых опалубках (патент 1908 года). Он применил литой бетон, приготовленный на тонкомолотом цементе собственного производства с введением пластифицирующих добавок. Дальнейшего распространения метод Эдисона не получил, однако литой бетон нашёл применение в самых разных странах, в том числе и у нас при возведении монолитных жилых домов.

В СССР со второй половины 1920-х годов начался новый этап внедрения монолитного бетона в гражданское строительство. Так, в 1926—1929 годах в Харькове был построен знаменитый 14-этажный Дом Государственной промышленности с монолитным железобетонным каркасом, а затем и другие многоэтажные здания. Реализуемые в эти годы технические решения отвечали международному уровню развития технологии, чему способствовали, в частности, нормативные документы, например «Урочные нормы на железобетонные работы».

Созданное в 1925 году Русско-германское акционерное строительное общество Русгерстрой  (позднее преобразованное в трест «Теплобетон») начало применять для монолитных стен пемзошлаковый бетон (одна часть портландцемента и по три части песка с гравием, гранулированного шлака, пемзы и котельного шлака). Для приготовления бетона использовались небольшие бетономешалки системы «Кайзер», сначала импортировавшиеся, затем выпускавшиеся заводом «Свет шахтёра». Одновременно для подъёма бетона стали применять шахтные подъёмники и укрупнённую, несколько раз оборачиваемую опалубку; её собирали из вертикальных щитов, шириной 1 м и высотой на этаж из досок толщиной 25 мм, скреплённых наружными горизонтальными рейками, внутренними временными распорками и проволочными связями. В Москве такая опалубка была внедрена в 1927 году, в Ленинграде — в 1929 году.

Трест «Теплобетон» построил в Москве, Ленинграде, Ростове-на-Дону, Туле, Брянске, Воронеже и в других городах много жилых домов с набивными стенами из пемзошлакобетона. Среди его московских построек — 6-этажный жилой дом на Тишинской площади, дом на Шаболовке, студенческое общежитие на Усачевке. Одним из существенных недостатков такого строительства была многокомпонентность состава бетона, к тому же, входившую в состав бетона пемзу приходилось привозить издалека — с Кавказа. Преодолеть этот недостаток помогли создание в 1920-х — начале 1930-х годов науки о бетоне, развитие научных методов подбора состава и технологии приготовления бетона, методов контроля его качества (работы Н. М. Беляева, Б. Г. Скрамтаева, Ю. А. Штаермана, К. С. Завриева) на специальные исследования по лёгким бетонам (работы Н. А. Попова, Р. М. Михайлова и других).

В Государственном институте сооружений, созданном в 1927 году, были разработаны, трёхкомпонентные (цементно-песчано-шлаковые) бетоны, которые впервые были применены для набивки стен толщиной 50 см в 2-этажных жилых домах Косогорского завода в Подмосковье а затем в 2-З-этажных домах «Металлотреста» Центрального района Москвы. В это время в Ленинграде с использованием щитовой деревянной опалубки строили 4–5-этажные дома с однослойными стенами из шлакобетона марки 35 и марки 50. В Закавказье (Баку, Тбилиси) для возведения монолитных стен, а иногда и перекрытий нашёл применение пемзобетон. Например, в Тбилиси (на Плехановском проспекте) в 1935 году был построен 6-этажный дом с наружными стенами толщиной 35 см из пемзобетона. Работы велись теми же методами, которые применял трест «Теплобетон». Перекрытия в этом доме выполнялись из армированного железобетона марки 50 и в двух направлениях через каждые 5-5,5 м имели рёбра.

Другим недостатком монолитного домостроения того времени было несовершенство деревянной щитовой опалубки. Преодолению его способствовало внедрение скользящей опалубки. Такая опалубка впервые была применена в США, в Филадельфии, в 1903 году. Соперничавшие друг с другом предприятия разработали несколько различных систем опалубки, наиболее известной из них стала система Макдональда. Эту систему использовали прежде всего при строительстве высоких сооружений с круглым планом, а после 1920-х годов — с различной конфигурацией плана.

Метод скользящей опалубки состоит в следующем: по всему периметру стен (после укладки фундаментов) устанавливается опалубочное кольцо высотой 120 см. С помощью гидравлических, механических или пневматических домкратов кольцо постепенно, передвигается (скользит) — вверх со скоростью 15—30 см/ч. С той же скоростью растёт здание. Непрерывно в опалубку укладываются арматура и бетон, и по мере подъёма опалубки из-под неё выходит затвердевший бетон прочностью 3-5 кг/см². Этого вполне достаточно, чтобы он выдержал тяжесть находящихся на опалубке конструкций, подмостей, оборудования и людей. Домкраты установлены на рамах, соединённых со щитами опалубки, так что домкрат как бы ползёт по стальному стержню, заделанному в свежеуложенный бетон, и тянет за собой всю конструкцию опалубки. Выходящий из-под опалубки бетон затирают с подмостей.

Первый в СССР опыт возведения жилого дома в скользящей опалубке относится к 1930 году: московская организация «Заводстрой» выполнила этим методом бетонирование однослойных пемзошлакобетонных стен 7-этажного дома на Большой Колхозной площади. Однако здесь ещё не было необходимых точности передвижения опалубки и качества работ. Созданное в конце 1925 году акционерное общество строительной индустрии (большинство его трестов находилось на Украине) с 1928 года начало использовать скользящую опалубку при строительстве элеваторов, а в начале 1930-х годов её впервые применили в жилищном строительстве в зимних условиях. В Баку однослойные наружные и внутренние стены возводили из неармированного чингильбетона, заполнителем которого служил щебень из местного известняка. Перекрытия выполняли в щитовой деревянной опалубке из армированного чингильбетона. В 1935 году стоимость таких домов снизилась на 12 % по сравнению с аналогичными кирпичными домами.

Однако, используемые в то время домкраты были несовершенны, что увеличивало затраты труда даже по сравнению с кирпичным строительством. Сложным, многодельным было и построечное бетонное хозяйство, а также подъёмные механизмы. Поэтому и предпринимались попытки усовершенствовать щитовую опалубку — увеличить её размеры, применить металл вместо дерева, оптимально увязывать конструктивные решения дома с методами их реализации. В 1931 году в Ленинграде был проведён конкурс на монолитные конструкции тонкостенных жилых домов, на механизированные способы их возведения из литого бетона и в короткие сроки. Однако первые 13 домов высотой в 4—6 этажей с наружными стенами из шлакобетона, построенные в 1931—1935 годах имели недостатки: промерзание стен, усадочные трещины, недостаточная звукоизоляция помещений.

В 1935—1936 годах в Ленинграде, на Кирочной улице (ныне улица Салтыкова-Щедрина, 20), был возведён более совершенный 6-этажный дом с применением металлической опалубки высотой на этаж. Несущие внутренние стены выполнялись из армированного тяжёлого бетона толщиной 10 см, в верхней части они имели уширения для опирания балок деревянных перекрытий. Наружные стены, кроме слоя тяжёлого бетона толщиной 10 см, имели утепляющий слой из пемзошлакобетона (26 см) и облицовочные плиты (4 см). На строительстве этого дома трудозатраты были уменьшены на 19 %, а стоимость — на 12 % по сравнению с аналогичными кирпичными домами. В летнее время этаж возводили за шесть дней с доведением бетона до 70 % полной готовности.

Основываясь на этом опыте, состоявшееся в 1936 году Всесоюзное совещание по крупноблочному и монолитному строительству квалифицировало возведение домов из литого бетона как полноценный индустриальный метод строительства. Начавшаяся война остановила его развитие. В послевоенное восстановление страны возникла острая необходимость строить много, быстро и недорого. Эти потребности смогли удовлетворить технологии крупнопанельного и объёмноблочного строительства. Благодаря им сняли острейшую жилищную проблему и перешли от коммунального заселения квартир к посемейному, однако это привело к серости и однообразию новых городов и районов. В конце XX века начинается попытка повторного внедрения монолитного строительства с целью повышения архитектурной выразительности массовой типовой застройки. Метод монолитного строительства прежде всего использовали при возведении многоэтажных здании, служащих в застройке композиционными акцентами.

Накопленный опыт монолитного домостроения выявил неоспоримые технико-экономические преимущества этого метода, вследствие чего за первое десятилетие XXI века монолитное строительство практически вытеснило с рынка кирпичное, крупноблочное и даже крупнопанельное. На сегодняшний день индустрия монолитного домостроения имеет развитую техническую базу и разнообразие опалубочных систем.

Процесс монолитного строительства состоит из связанных технологически последовательных процессов:

Последовательность некоторых процессов может меняться в зависимости от вида конструкции.

Устройство арматурного каркаса[править | править код]

Как известно, бетон воспринимает растягивающие нагрузки в 15-20 раз хуже, чем нагрузки на сжатие. С целью компенсировать слабую работу бетона на растяжение в его структуру включаются стальные стержни — арматура.

Из арматурных стержней, различных диаметров, при помощи сварки или специальной отожжённой стальной проволоки «вяжутся» арматурные каркасы будущей конструкции.

Монтаж опалубки[править | править код]

Для придания и поддержания формы конструкций, до набора ими необходимой прочности, применяется опалубка. Опалубка для стен и колонн производится из стальных или алюминиевых профилей обшитых ламинированной фанерой. Опалубка перекрытий представлена, как правило, вертикальными телескопическими стойками (Домкратами), на которые укладываются специальные деревянные балки, а на балки, в свою очередь, укладывается ламинированная фанера.

Поверхность опалубки, находящаяся в непосредственном контакте с бетоном, перед бетонированием обрабатывается техническим маслом (эмульсолом), в основе которого содержатся минеральные масла и поверхностно-активные вещества. Это необходимо для того, чтобы повысить качество поверхности конструкций и увеличить количество циклов оборачиваемости опалубки.

Монтаж опалубки может вестись как вручную, так и механизированным способом.

Укладка и уплотнение бетонной смеси[править | править код]

Укладка бетонной смеси производится в предварительно установленную опалубку. Для того, чтобы исключить возможность возникновения пустот внутри будущей конструкции в процессе укладки бетонная смесь уплотняется глубинными вибраторами. Булава вибратора погружается в бетонную смесь до тех пор, пока не прекратится выделение пузырей на поверхности смеси.

Уход за бетоном[править | править код]

Уход за бетоном включает в себя комплекс мер по предотвращению преждевременного высыхания бетонной смеси в летнее время и промерзания свежеуложенной бетонной смеси в зимнее время года, а также защиту свежеуложенного бетона от чрезмерных осадков.

Главное преимущество монолитных зданий над всеми остальными — это отсутствие швов между различными конструкциями здания. Грубо говоря, монолитное здание представляет из себя цельную железобетонную «глыбу», что обеспечивает высокую жёсткость каркаса и возможность создавать высотные здания. Кроме того, монолитная конструкция обладает высокой сейсмостойкостью, так как высокая жёсткость каркаса сводит к минимуму склонность к трещинообразованию. В монолитных зданиях существует возможность перепланировки помещений в период эксплуатации без риска повреждения несущих конструкций, а также высокое качество поверхностей стен и потолков, снижающее объёмы отделочных работ. Также значительный плюс — меньшая по отношению к кирпичным зданиям (на 15—20 %) масса.

Из недостатков можно отметить этот метод строительства весьма затратный и трудоёмкий, требует дорогое оборудование, большое число рабочих и инженеров высокой квалификации. Монолитная стена имеет высокую теплопроводность и поэтому требует утепления. Также стенам характерно отсутствие паропроницаемости, то есть стены «не дышат» и это обязательно нужно компенсировать принудительной вентиляцией.

  • В. И. Тильченко и др. Технология возведения зданий и сооружений: Строительные технологии. — 2011.
  • Н. Я. Колли. Всеобщая история архитектуры. — М.: Стройиздат, 1968. — Т. Т. 12. Книга 1. Архитектура СССР.
  • Ю. А. Дыховичный, В. А. Максименко, А. Н. Кондратьев и др. Жилые и общественные здания. Краткий справочник инженера-конструктора. — 3-е изд. — М.: Стройиздат, 1991. — 656 с. — ISBN 5-274-01058-X.

ru.wikipedia.org

Технологическая карта 4.01.01.64 Типовая технологическая карта на бетонные и железобетонные работы (монолитный бетон). Устройство монолитных железобетонных стен подвалов высотой до 6 м и толщиной до 500 мм зданий и сооружений общего назначения

Искать все виды документовДокументы неопределённого видаISOАвиационные правилаАльбомАпелляционное определениеАТКАТК-РЭАТПЭАТРВИВМРВМУВНВНиРВНКРВНМДВНПВНПБВНТМ/МЧМ СССРВНТПВНТП/МПСВНЭВОМВПНРМВППБВРДВРДСВременное положениеВременное руководствоВременные методические рекомендацииВременные нормативыВременные рекомендацииВременные указанияВременный порядокВрТЕРВрТЕРрВрТЭСНВрТЭСНрВСНВСН АСВСН ВКВСН-АПКВСПВСТПВТУВТУ МММПВТУ НКММПВУП СНЭВУППВУТПВыпускГКИНПГКИНП (ОНТА)ГНГОСТГОСТ CEN/TRГОСТ CISPRГОСТ ENГОСТ EN ISOГОСТ EN/TSГОСТ IECГОСТ IEC/PASГОСТ IEC/TRГОСТ IEC/TSГОСТ ISOГОСТ ISO GuideГОСТ ISO/DISГОСТ ISO/HL7ГОСТ ISO/IECГОСТ ISO/IEC GuideГОСТ ISO/TRГОСТ ISO/TSГОСТ OIML RГОСТ ЕНГОСТ ИСОГОСТ ИСО/МЭКГОСТ ИСО/ТОГОСТ ИСО/ТСГОСТ МЭКГОСТ РГОСТ Р ЕНГОСТ Р ЕН ИСОГОСТ Р ИСОГОСТ Р ИСО/HL7ГОСТ Р ИСО/АСТМГОСТ Р ИСО/МЭКГОСТ Р ИСО/МЭК МФСГОСТ Р ИСО/МЭК ТОГОСТ Р ИСО/ТОГОСТ Р ИСО/ТСГОСТ Р ИСО/ТУГОСТ Р МЭКГОСТ Р МЭК/ТОГОСТ Р МЭК/ТСГОСТ ЭД1ГСНГСНрГСССДГЭСНГЭСНмГЭСНмрГЭСНмтГЭСНпГЭСНПиТЕРГЭСНПиТЕРрГЭСНрГЭСНсДИДиОРДирективное письмоДоговорДополнение к ВСНДополнение к РНиПДСЕКЕНВиРЕНВиР-ПЕНиРЕСДЗемЕТКСЖНМЗаключениеЗаконЗаконопроектЗональный типовой проектИИБТВИДИКИМИНИнструктивное письмоИнструкцияИнструкция НСАМИнформационно-методическое письмоИнформационно-технический сборникИнформационное письмоИнформацияИОТИРИСОИСО/TRИТНИТОсИТПИТСИЭСНИЭСНиЕР Республика КарелияККарта трудового процессаКарта-нарядКаталогКаталог-справочникККТКОКодексКОТКПОКСИКТКТПММ-МВИМВИМВНМВРМГСНМДМДКМДСМеждународные стандартыМетодикаМетодика НСАММетодические рекомендацииМетодические рекомендации к СПМетодические указанияМетодический документМетодическое пособиеМетодическое руководствоМИМИ БГЕИМИ УЯВИМИГКМММНМОДНМонтажные чертежиМос МУМосМРМосСанПинМППБМРМРДСМРОМРРМРТУМСанПиНМСНМСПМТМУМУ ОТ РММУКМЭКННАС ГАНБ ЖТНВННГЭАНДНДПНиТУНКНормыНормы времениНПНПБНПРМНРНРБНСПНТПНТП АПКНТП ЭППНТПДНТПСНТСНЦКРНЦСОДМОДНОЕРЖОЕРЖкрОЕРЖмОЕРЖмрОЕРЖпОЕРЖрОКОМТРМОНОНДОНКОНТПОПВОПКП АЭСОПНРМСОРДОСГиСППиНОСНОСН-АПКОСПОССПЖОССЦЖОСТОСТ 1ОСТ 2ОСТ 34ОСТ 4ОСТ 5ОСТ ВКСОСТ КЗ СНКОСТ НКЗагОСТ НКЛесОСТ НКМОСТ НКММПОСТ НКППОСТ НКПП и НКВТОСТ НКСМОСТ НКТПОСТ5ОСТНОСЭМЖОТРОТТПП ССФЖТПБПБПРВПБЭ НППБЯПВ НППВКМПВСРПГВУПереченьПиН АЭПисьмоПМГПНАЭПНД ФПНД Ф СБПНД Ф ТПНСТПОПоложениеПорядокПособиеПособие в развитие СНиППособие к ВНТППособие к ВСНПособие к МГСНПособие к МРПособие к РДПособие к РТМПособие к СНПособие к СНиППособие к СППособие к СТОПособие по применению СППостановлениеПОТ РПОЭСНрППБППБ-АСППБ-СППБВППБОППРПРПР РСКПР СМНПравилаПрактическое пособие к СППРБ АСПрейскурантПриказПротоколПСРр Калининградской областиПТБПТЭ

files.stroyinf.ru

расчет толщины, армирование, гидроизоляция, утепление

Калькулятор толщины, арматуры и опалубки фундамента плиты

Информация по назначению калькулятора

Онлайн калькулятор монолитного плитного фундамента (плиты) предназначен для расчетов размеров, опалубки, количества и диаметра арматуры и объема бетона, необходимого для обустройства данного типа фундамента домов и других построек. Перед выбором типа фундамента, обязательно проконсультируйтесь со специалистами, подходит ли данных тип для ваших условий.

Все расчеты выполняются в соответствии со СНиП 52-01-2003 «Бетонные и железобетонные конструкции», СНиП 3.03.01-87 и ГОСТ Р 52086-2003

Плитный фундамент (ушп) – монолитное железобетонное основание, закладываемое под всю площадь постройки. Имеет самый низкий показатель давления на грунт среди других типов. В основном применяется для легких построек, так как с увеличением нагрузки существенно возрастает стоимость данного типа фундамента. При малом заглублении, на достаточно пучинистых грунтах, возможно равномерное приподнимание и опускание плиты в зависимости от времени года.

Обязательно наличие хорошей гидроизоляции со всех сторон. Утепление может быть как подфундаментное, так и располагаться в стяжке пола, и чаще всего для этих целей применяется экструдированный пенополистирол.

Главным преимуществом плитных фундаментов является относительно низкая стоимость и простота возведения, так как в отличии от ленточного фундамента нет необходимости в проведении большого количества земляных работ. Обычно достаточно выкопать котлован 30-50 см. в глубину, на дне которого размещается песчаная подушка, а так же при необходимости геотекстиль, гидроизоляция и слой утеплителя.

Обязательно необходимо выяснить какими характеристиками обладает грунт под будущим фундаментом, так это это является основным решающим фактором при выборе его типа, размера и других важных характеристик.

При заполнении данных, обратите внимание на дополнительную информацию со знаком Дополнительная информация.

Далее представлен полный список выполняемых расчетов с кратким описанием каждого пункта. Вы так же можете задать свой вопрос, воспользовавшись формой в правом блоке.

Общие сведения по результатам расчетов

  • Периметр плиты
  • — Длина всех сторон фундамента

  • Площадь подошвы плиты
  • — Равняется площади необходимого утеплителя и гидроизоляции между плитой и почвой.

  • Площадь боковой поверхности
  • — Равняется площади утеплителя всех боковых сторон.

  • Объем бетона
  • — Объем бетона, необходимого для заливки всего фундамента с заданными параметрами. Так как объем заказанного бетона может незначительно отличаться от фактического, а так же вследствие уплотнения при заливке, заказывать необходимо с 10% запасом.

  • Вес бетона
  • — Указан примерный вес бетона по средней плотности.

  • Нагрузка на почву от фундамента
  • — Распределенная нагрузка на всю площадь опоры.

  • Минимальный диаметр стержней арматурной сетки
  • — Минимальный диаметр по СНиП, с учетом относительного содержания арматуры от площади сечения плиты.

  • Минимальный диаметр вертикальных стержней арматуры
  • — Минимальный диаметр вертикальных стержней арматуры по СНиП.

  • Размер ячейки сетки
  • — Средний размер ячеек сетки арматурного каркаса.

  • Величина нахлеста арматуры
  • — При креплении отрезков стержней внахлест.

  • Общая длина арматуры
  • — Длина всей арматуры для вязки каркаса с учетом нахлеста.

  • Общий вес арматуры
  • — Вес арматурного каркаса.

  • Толщина доски опалубки
  • — Расчетная толщина досок опалубки в соответствии с ГОСТ Р 52086-2003, для заданных параметров фундамента и при заданном шаге опор.

  • Кол-во досок для опалубки
  • — Количество материала для опалубки заданного размера.

Для расчета УШП необходимо вычесть объем закладываемого утеплителя из объема рассчитанного бетона.

stroy-calc.ru

Калькулятор расчета оптимальной толщины монолитной фундаментной плиты

При ведении строительства на загородном участке иногда обстоятельства складываются таким образом, что оптимальным решением становится возведение фундамента в виде монолитной плиты. Это позволяет равномерно распределить нагрузку по большой площади, что особо важно на слабых, неустойчивых грунтах, где ленточная схема фундамента себя не оправдывает.

Калькулятор расчета оптимальной толщины монолитной фундаментной плиты

Даже при невысокой несущей способности грунта нет необходимости углубляться ниже уровня промерзания почвы – при правильном расчете и строительстве основание получается «плавающим», не боящимся сил морозного пучения. Но для этого размеры плиты должны соответствовать реальным условиям строительства – типу преобладающих грунтов на участке застройки и нагрузкам, которые будут выпадать на фундамент. Калькулятор расчета оптимальной толщины монолитной фундаментной плиты поможет определиться с одним их ключевых параметров, а иногда – даже оценить целесообразность применения подобного типа основания.

Работа с калькулятором требует определенных пояснений. Они будут приведены ниже, в соответствующем разделе.

Содержание статьи

Калькулятор расчета оптимальной толщины монолитной фундаментной плиты

 

Укажите запрашиваемые значения и нажмите «Рассчитать рекомендуемую толщину монолитной плиты»

Тип грунта на участке затройки

Плотные пески мелкой или пылеватой фракцииПески мелкой или пылеватой фракции, средней плотностиСупеси, твердые и пластичныеСуглинки, твердые и пластичныеГлины твердой структурыГлины пластичные

Общая площадь рассчитываемой плиты фундамента, м²

СТЕНЫ ДОМА Площадь стен указывается суммарно, за вычетом оконных и дверных проемов. (Доступно введение двух вариантов, например, для несущих внешних и внутренних стен. Если вариант не используется, оставьте значение площади по умолчанию — 0)

 

Стены, тип №1

Материал стен

— кирпичная кладка в полкирпича (120 мм)- кирпичная кладка в 1 кирпич (250 мм)- кирпичная кладка в 1.5 кирпича (380 мм)- кирпичная кладка в 2 кирпича (500 мм)- стены из газосиликатных блоков марки D600, толщина 300 мм- бревенчатый сруб, диаметр 240 мм- стены из бруса, толщина 150 мм- каркасные стены с утеплением, толщина 150 мм

Площадь стен, м²

 

Стены, тип №2

Материал стен

— кирпичная кладка в полкирпича (120 мм)- кирпичная кладка в 1 кирпич (250 мм)- кирпичная кладка в 1.5 кирпича (380 мм)- кирпичная кладка в 2 кирпича (500 мм)- стены из газосиликатных блоков марки D600, толщина 300 мм- бревенчатый сруб, диаметр 240 мм- стены из бруса, толщина 150 мм- каркасные стены с утеплением, толщина 150 мм

Площадь стен, м²

ПЕРЕКРЫТИЯ Если в перекрытии есть проем, например, для межэтажной лестницы, то его следует исключить из общей площади (Доступно введение двух вариантов, например, для межэтажного и чердачного перекрытия. Если вариант не используется, оставьте значение площади по умолчанию — 0)

 

Перекрытие, тип №1 (межэтажное)

Тип перекрытия

— перекрытие межэтажное или цокольное по деревянным балкам с утеплителем плотностью до 200 кг/м³- плита перекрытия пустотная- плита перекрытия монолитная

Площадь перекрытия, м²

 

Перекрытие, тип №2 (чердачное)

Тип перекрытия

— перекрытие чердачное по деревянным балкам с утеплителем плотностью до 200 кг/м³- плита перекрытия пустотная- плита перекрытия монолитная

Площадь перекрытия, м²

СТРОПИЛЬНАЯ СИСТЕМА И КРОВЛЯ При выборе типа кровли автоматически будет учитываться и средний вес стропильной системы с обрешеткой. Одновременно к весу крыши будет добавлено ориентировочное значение снеговой нагрузки, в зависимости от региона строительства и крутизны скатов

Общая площадь кровли, м²

Тип кровли

— листовая сталь, профнастил, металлочерепица- мягкая полимер-битумная кровля в два слоя- абесто-цементный шифер- керамическая черепица

Зона по уровню снеговой нагрузки (по карте-схеме)

IIIIIIIVVVIVII

На чем строится и как проводится расчет

Перед началом строительства обязательно проводится анализ грунтов, на которые будет опираться плита, чтобы оценить их несущую способность. Этот параметр выражается в килограммах на квадратный сантиметр, и значения несложно найти в таблицах СНиП.

Казалось бы, можно рассчитать общую нагрузку и убедиться, что она не превышает указанных значений. Однако, такой расчёт не будет достаточно объективным. В данном случае правильнее будет исходить из оптимальной распределенной нагрузки на тот или иной грунт, просчитанной именно для плитных оснований. Теорией и практикой применения плитных фундаментов доказано, что если реальная нагрузка не будет отличаться от оптимальных значений более, чем на 20÷25 процентов, стабильность здания, возведенного на таком основании будет гарантирована. То есть, будут исключены две крайности:

— При слишком тяжёлой системе «плита + дом» (с учетом внешних и эксплуатационных нагрузок) сохраняется вероятность постепенного проседания здания в грунт.

— Слишком маленькая суммарная нагрузка – также недопустима, так как даже незначительные колебания грунта будут отражаться на стабильности постройки.

Расчет, заложенный в калькулятор, строится на том, что для начала определяется нагрузка, создаваемая зданием, без учета фундаментной плиты. Затем это значение сравнивается с оптимальным, и получившаяся разница будет перекрываться за счет массы монолитного основания. Зная плотность железобетона, несложно перевести массу в объем, а затем, с учётом площади плиты – прийти к ее оптимальной толщине.

  • Все табличные значения, необходимые для расчетов, уже внесены в программу.
  • Пользователю будет предложено указать тип грунтов на участке строительства.
  • Площадь будущей плиты должна приниматься с таким расчетом, что основание в обязательном порядке выходит за границы периметра здания как минимум на 300÷500 мм.
  • Далее, для расчета нагрузки, создаваемой зданием, вносятся его параметры:
  • Материал и общая площадь стен и перегородок за вычетом оконных и дверных проемов. Доступны два варианта ввода, например, для внешних несущих стен и для внутренних. Если один из вариантов не используется, площадь стены показывается как «0».
  • Материал и площадь перекрытий, также в двух возможных вариантах. Эксплуатационная нагрузка на перекрытия уже учтена алгоритмом расчета.
  • Площадь и тип кровельного покрытия. Нагрузка от стропильной системы и утеплителя – уже учтена в программе.
  • Крутизна скатов кровли необходима для корректного учета снеговой нагрузки. Кроме того, необходимо по карте схеме (она расположена ниже) определить номер зоны для своего региона.

Карта-схема распределения территории РФ на зоны по степени снеговой нагрузки

Предполагается, что у пользователя уже имеются планы или хотя бы начальные разработки по размерам и материалам будущей постройки. Необходимо будет рассчитать площади – это несложно, особенно если воспользоваться некоторыми советами.

Как быстро и точно рассчитать площадь?

С прямоугольником ни у кого проблем не возникает, но нередко более сложные конфигурации стен, пола или кровли ставят в тупик. Обратитесь к публикации нашего портала, посвященной именно расчётам площадей – там описана методика и приведены удобные калькуляторы.

Результат оптимальной толщины плиты будет выдан в метрах. И вот здесь необходимо сразу оценить его со следующих позиций.

  • Оптимальным будет значение от 0,2 до 0,3 метра – такой фундамент полностью оправдан во всех отношениях, то есть он обеспечивает стабильность постройки и выгоден экономически. Как правило, результат округляют до толщины, кратной 50 мм.
  • В том случае, если расчет показывает, что требуется плита толщиной более 0,35 м, то не исключено, что для столь легкого здания в имеющихся условиях будет более выгодным ленточный или даже столбчатый фундамент. Следует провести тщательный анализ различных вариантов, не менее надежных, но требующих меньших затрат.
  • Если результат меньше 150 мм, а иногда программа может выдать даже отрицательное значение, то планируемый к строительству дом – чрезмерно тяжелый для данных условий в сочетании с плитным фундаментом. Начинать самостоятельное его возведение, без проведения квалифицированных геологических изысканий и профессионального расчета – неблагоразумно, так как это может привести к весьма печальным последствиям.

Плитный фундамент – все «за» и «против»

Более подробно с вопросами, касающимися рекомендуемых случаев применения такого основания, проведения необходимых расчетов и практического строительства монолитного плитного фундамента читатель может познакомиться в специальной публикации нашего портала.

stroyday.ru

Калькулятор расчета монолитного фундамента

В строительстве известно большое количество типов фундаментов, различных по своим конструктивным особенностям, способам возведения и исходным материалам.

Фундаментальным можно считать монолитный тип основания, который призван выдерживать больше нагрузки и любые неблагоприятные климатические условия.

Монолитный тип подразделяют на подвиды: мелкозаглубленный и глубокозаложенный.

При возведении небольшого по габаритам дома, монолитное основание можно обустроить только при наличии дополнительной рабочей силы, или, в крайнем случае, помощи друзей.

Устройство монолитного фундамента

Большое преимущество монолитного типа основания заключается в его уникальной способности монтажа на абсолютно любых поверхностях. Даже если поверхность строительной площадки – это неравномерная по своей структуре почва, с участками торфяников и песчаных подушек, то монолитный фундамент, представленный бетонной плитой и опалубкой способен выдержать любую нагрузку будущего здания.

Монолитное основание весьма устойчиво к нагрузкам, даже к тем, которые возникают вследствие просадки грунта. Эта особенность обеспечивается большой площадью опоры, которая существенно снижает давление на почву.

К отрицательным характеристикам монолитного основания можно отнести:

  • большой расход дорогостоящих материалов;
  • массивность сооружения;
  • большие трудозатраты при возведении конструкции.

В отличие от других видов фундамента, монолитная основа требует усиления по всей конструкции. Она, как правило, проводиться путем армирования поверхности. Такой подход также позволяет справиться с возможными нагрузками, возникающими при движении почвы.

Традиционно монолитное основание используется в строительстве тех зданий, у которых функции основания берет на себя поверхность первого этажа.

Внимание! Применение монолитных оснований позволяет воплощать в жизнь большое количество архитекторских проектов современных зданий.

Расчет монолитного фундамента

От того, насколько верными будут результаты расчета, зависит уровень прочности дома и длительность его эксплуатации. Для всех основных показателей монолитного основания стоит проводить расчет еще на стадии разработки строительного проекта.

Первым делом определяем уровень нагрузки, который сможет выдержать выбранный тип фундамента и  почва, на которую будет давить основание. Выделяют временный и постоянный тип нагрузки. Постоянные включают в себя вес фундамента, крыши и стен, а также учитывают массу мебели, оборудования расположенных в доме, и людей проживающих в нем.

Переменные нагрузки несколько сложнее рассчитать, так как – это те погодные и климатические условия, которые преобладают на территории возведенного здания.

Перед тем как начать расчет фундамента, специалисты вычисляют площадь опоры, на которой он будет располагаться. Обязательно проводится расчет массы монолитного основания, так как превышение нагрузки на грунт, может привести к довольно плачевной ситуации.

Важно! При проведении расчетов, специалисты особое внимание уделяют строительным материалам, которые будут применяться в строительстве дома. Такой подход дает возможность правильно оценить реальную нагрузку и правильно распределить ее по всей площади дома.

Толщина монолитного фундамента

Расчет показателя толщины следует проводить с учетом:

  • показателей почвы;
  • геодезии участка;
  • технологических особенностей строительного проекта.

Учитывая данные параметры, проводят расчет толщины и площади монолитного основания. Рассмотрим особенности применения монолитного основания в зависимости от показателя толщины.

При минимальном значении в 15 см, монолитное основание подходит лишь для легких небольших построек, возведенных на непучинистом грунте. Идеальный вариант – толщина фундамента в 20-30 см. Это оптимальный параметр для возведения знаний, независимо от материалов использования и видов почвы строительного участка.

Если проектом предусмотрена дополнительная защита от низких температур, то фундамент утепляют пенопластовыми пластинами и соответственно при расчетах нужно учитывать утолщение края. Морозоустойчивый тип монолитного основания выполняется из железобетонной плиты. Применять основание с толщиной более 30 см – нерационально.

Толщина стен ленточного фундамента должна быть не меньше 35см. Если на строительном участке преобладают сыпучие почвы, стоит обязательно расширить основание фундамента методом обустройства нескольких уступов, с целью уменьшения давления на почву. Ширина возведенных элементов должна быть порядка 20 см, показатель высоты около 30-40см. Обрез ленточного фундамента должен превышать уровень поверхности грунта.

Расчет для монолитного ленточного фундамента

Для начала определяем следующие габариты: ширину стен, периметр будущей постройки и высоту заливки фундамента. Каждый из этих показателей необходим для правильного расчета объема отливки.

Приступим к расчету:

Найдем высоту фундамента. Для этого воспользуемся следующей формулой:

F ≥ Z + 10 см., где F – это показатель высоты фундамента, а Z – является единицей глубины заделки колонны.

Важно! Высота фундамента должна быть больше или приравниваться к длине арматуры, применяемой для укрепления бетонной заливки.

Затем вычислим объем отливки. Для этого воспользуемся следующей формулой:

Vотл= b × P × F, где b – это ширина стен, P – периметр основания, F – высота отливки.

Чтобы подсчитать объем внутренней части необходимо:

V = (b × l × F) – Vотл  ,где b – это ширина стен, l –длина фундамента  F – высота отливки, Vотл – объем отливки.

Также необходимо произвести расчет опалубки. Для этого первым действием определяем площадь боковых поверхностей. После этого находим площадь боковых стенок, для этого периметр основания умножаем на 2 и умножаем на высоту отливки. На следующем этапе определяется площадь одной доски:

S доски = b × l, где b – это ширина доски, а l – длина доски.

Чтобы подсчитать количество пиломатериала необходимо:

Количество пиломатериала = S боковых поверхностей  / S одной доски.

Рассмотрим расчет монолитного ленточного фундамента на примере. Допустим, что фундамент имеет следующие исходные данные:

  • длина -15м;
  • ширина — 3,8м;
  • высота отливки — 0,3м;
  • высота отливки — 0,18м.

Исходя из этих данных, определяем объем отливки по ранее рассмотренной формуле. Получаем, что Vотл = (15*2+3,8*2)*0,18*0,3 = 2,03м3.

Теперь определим объем внутренней части V = (3,8*15*0,3) – 2,03 = 15,07м3.

В результате произведенных расчетов мы определили, что объем отливки равен 2,03 м3, а объем под заполнитель 15,07 м3.

Технологический процесс обустройства монолитного фундамента очень сложный и дорогой. Но категорически недопустимо вносить какие-либо изменения в вычисления материалов, с целью экономии денежных средств. В противном случае подобная деятельность может привести к весьма плачевным результатам. Возведенная конструкция будет настолько хрупкой и низкокачественной, что вряд ли сможет выдержать нагрузку здания. Как следствие возможны полные или частичные разрушения возведенной постройки.

Поэтому вычисления основных параметров монолитного фундамента нужно проводить с неукоснительным выполнением всех рекомендаций, а в случае спорных ситуаций, нужно обращаться за помощью к специалистам.

В следующем видео рассмотрим типовые ошибки при армировании и бетонировании ленточного монолитного фундамента 

Марка бетонаСоотношение материала (Цемент х Песок х Щебень)Расход Цемента на 1м3 бенона (кг.)
М-1001 х 4.6 х 7.0170
М-1501 х 3.5 х 5.7200
М-2001 х 2.8 х 4.8240
М-2501 х 2.1 х 3.9300
М-3001 х 1.9 х 3.7320

bouw.ru

Монолитные стены подвала: расчет толщины, армирование, гидроизоляция, утепление

санитарная обработка курятника.

Строительство любого дома предполагает возведение фундамента. Фундаменты больших многоэтажных домов рассчитываются по строительным нормам, действующим для каждого отдельно взятого региона, профессиональными проектировщиками.

Иная ситуация, если строится малоэтажный частный дом. Очень часто строительство ведется самостоятельно и нужно возвести не только фундамент, но и построить глубокий, функциональный подвал, в котором можно было бы обустроить вспомогательные помещения.

В этом случае, чтобы подвал получился хорошим и не требовал дальнейшего ухода, следует:

  • Узнать насколько высоко поднимаются грунтовые воды;
  • Тщательно спроектировать подвал;
  • Провести (при необходимости) осушение участка;
  • Использовать качественные материалы и технологии строительства;
  • Сделать гидроизоляцию и теплоизоляцию стены и пол подвала;
  • Оборудовать подвал приточно-вытяжной вентиляцией;
  • Сделать отмостку.

Преимущества монолитных стен

Если планируется размещать в подвале подсобные помещения, то возведение монолитной конструкции подземных стен, предпочтительнее, чем делать их из блоков или кирпича. Основное преимущество монолитного фундамента — высокая прочность и относительно низкая влагопроницаемость.

Поскольку монолитный способ возведения подвала предполагает, что он расположен под всей площадью здания, то давление всей строительной конструкции значительно снижается, что сохраняет здание даже при сильных деформациях грунта.

Расчет толщины

Толщина стен фундамента и плиты, а также их армирование зависят от уровня грунтовых вод. Если грунтовые воды не поднимаются до уровня подвала, то это упрощает строительство и делает его менее затратным. Так, нижняя бетонная плита может быть не силовой и выступать за стены приблизительно сантиметров на 5-10, а толщина стен подвала из монолитного бетона при заглублении на 1-2,5 метра при наличии поперечных стен может колебаться от 20 до 40 см.

Если подвал оказывается ниже уровня грунтовых вод, то плита пола должна быть толщиной не менее 20 см, выходить за контур стен на 30 — 40 см и правильно армирована.

Железобетонные плиты перекрытия укладывают на стены подвала через три-четыре недели, но в этот же сезон, чтобы упредить наклон стен внутрь здания под давлением грунта.

Армирование

Армировать стены и пол подвала нужно независимо от их толщины. Строительные нормы предусматривают «типовое армирование углов и примыканий монолитных стен». Поскольку в процессе эксплуатации сверху на стены подвала будет действовать вес дома, жильцов, мебели, снега (нагрузки на сжатие), а с боков – давление грунта (нагрузки на растяжение), не армировать бетон нельзя.

Достаточную прочность конструкции придаст армирование монолитной стены в 2 сетки из арматуры диаметром 12 мм с вертикальным и горизонтальным шагом арматуры не более 40 см, поперечно соединенные в шахматном порядке через каждые две ячейки арматурой того же диаметра.

Отступ арматуры от края бетона во всех несущих стенах и фундаментной плите подвала — 5-7 см.

В последнее время популярность приобретает стеклопластиковая арматура, которая не поддаётся коррозии, дешевле, прочнее и, к тому же, с ней легче работать.

Способы гидроизоляции стен

Гидроизоляция подвала проводится как горизонтальная, так и вертикальная. Причем горизонтальная изоляция делается под основной плитой либо рубероидом, либо полиэтиленовой пленкой не тоньше 200 микрон. Изоляция должна выступать за стены подвала не менее, чем на 15 см.

Вертикальная изоляция зависит от уровня грунтовых вод. Если подвал не подвергается опасности затопления, то достаточно нанести два слоя горячей битумной мастики, поскольку монолитная стена не сильно пропускает влагу.

В случае периодического подтопления, предусматривают нанесение рулонной гидроизоляции, защищенной дополнительной кирпичной кладкой или другим защитным материалом, и выводят ее на 15-20 см над поверхностью грунта.

Утепление стен подвала

Если ваш подвал будет отапливаемым, то обязательным является его утепление. Для этого, через неделю после проведения вертикальной гидроизоляции стен, можно прямо сверху наклеить плиты утеплителя. Приклеивать плиты начинают снизу и очень плотно подгоняют встык. Перед обратной засыпкой грунта выполняют защиту утеплителя гладкими асбестоцементными плитами. Верхние плиты утеплителя выступают над поверхностью грунта на 40-50 см.

< Предыдущая

Следующая >

 

Почитайте ещё:

grosprint.ru

Как рассчитать монолитное перекрытие: расчет пролета

Многоэтажные здания в наше время проектируются с использованием габаритных унифицированных схем, причем основным типом перекрытий являются сборные перекрытия. Применение монолитных плит необходимо тогда, когда по каким-нибудь причинам необходимо отступить от унифицированных габаритных схем. К примеру, если по архитектурным или технологическим требованиям предусматриваются особенные характеристики здания (высота этажей, величина нагрузки, сложность очертаний в плане).

Подобные перекрытия отличаются гораздо большей жесткостью.

В сфере проектирования многоэтажных сооружений сложилось мнение о неиндустриальности монолитных железобетонных плит.

Однако с применением щитовой инвентарной опалубки и при надлежащей механизации работы монолитное перекрытие становится индустриальным и требует меньших денежных вложений (экономия электроэнергии).

Их достоинство заключается в большей жесткости в отличие от унифицированных конструкций (причиной тому является прочная связь элементов плиты), вследствие этого монолитные плиты зачастую являются более экономичными (из-за отсутствия сварных стыков и меньшего расхода материала). Главным минусом такого перекрытия является сложность работ в холодное время года.

Расчет монолитного перекрытия: обратиться за помощью или одолеть самому?

Не вызывает сомнений, что оптимальным вариантом строительства монолитной плиты является его проведение в полном соответствии с планом. Расчет конструкции, который проводится специалистами, имеет некоторые преимущества:

Схема монолитного армированного перекрытия: назначение элементов конструкции.

  1. Монолитное перекрытие имеет требуемую несущую способность.
  2. Количество и сортамент арматуры, толщина и марка бетонного перекрытия, которые применяются в конструкции по расчету профессионалов, считаются оптимальными, что дает возможность обойти ненужный избыток материалов и чрезмерные затраты труда.
  3. Разработанная специалистами программа строительства разрешает опереть монолитную плиту не только на стены, но также и на отдельно взятые колонны, что во много раз расширяет свободу планировки дома. Причем армирование конструкции в местах его соприкосновения с колоннами во многом отличается от армирования обыкновенного перекрытия, поскольку в таких участках нужно устанавливать вспомогательные стержни арматуры усиления.
  4. В проекте произведен четкий расчет всех объемов работ, что значительно помогает облегчить устройство конструкции тогда, когда с целью выполнения работ вы решите обратиться в строительную компанию или к частной бригаде.

Но что делать в том случае, если вы по какой-то причине не можете обратиться к подобного рода специалистам? Попробовать самостоятельно рассчитать устройство и армирование перекрытия? Конечно, вы можете предпринять такую попытку, но вряд ли сможете осуществить задуманное без наличия специального образования и навыков. Плюс к тому, при таких попытках от осознания того факта, что постичь такой расчет «в бравой кавалерийской атаке» не получается, многие поддаются панике и унынию.

Но не нужно отчаиваться, ведь вы строите свой собственный дом, а не торгово-развлекательный центра с помещениями размером 12 на 24 м, поэтому для устройства перекрытий в частном доме можно прибегнуть к стандартному решению. А за консультацией к специалистам вам стоит обращаться в тех случаях, если вы решите сделать ваше жилище с рядом из монолитных колонн и несущего перекрытия, или же в том случае, когда пролет перекрытия будет превышать 7 м.

Ребристые монолитные плиты являются системой перекрестных балок — основных и второстепенных, — которые соединяются монолитно между собой и поверху объединяющей их плитой.

Вернуться к оглавлению

Типы монолитных перекрытий

Балки и ригели, элементы балочного перекрытия, становятся одним целым с монолитной конструкцией.

Выделяют балочные и безбалочные системы плит. Балочный тип характеризуется наличием ригелей, которые располагаются либо поперек строения, либо крест-накрест. Безбалочное монолитное перекрытие не имеет выступающих ребер. Как показывает практика, целесообразней всего применять поперечное расположение ригелей. Но все-таки окончательный вариант зависит от назначения возводимого монолитного перекрытия, направлением в помещениях технологических потоков, характером размещения нагрузок, методом устройства жесткости каркаса, можно разместить крупногабаритное оборудование на ригелях конструкции непосредственно, на отдельный ригель нагрузка снижается. При устройстве монолитной конструкции балки и ригели становятся одним целым с плитами.

У безбалочного типа монолитного перекрытия отсутствуют выступающие ребра ригелей. Вместо них выступают участки плит 0,2-0,3 от места, где находится пролет. Им отведена роль плитных плоских ригелей, которые работают между колоннами в пролет по схеме балок. Из-за этого исключается устройство отверстий и проемов в участках междуколонных плит монолитного перекрытия, в этом качестве может применяться срединная часть монолитной плиты. Принимаются монолитные конструкции толщиной, которая примерно равна 1/32 самого большого пролета, и если пролет не превышает 6 м, проще изготавливать плиты монолитного перекрытия плоскими.

Вернуться к оглавлению

Ребристые монолитные перекрытия

Плиты перекрытия в данной конструкции опираются на главные и второстепенные балки.

Монолитные ребристые конструкции, у которых есть балочные плиты, состоят из главных балок , второстепенных балок и плиты, которая объединяется с балками в монолитное одно целое. Основные балки имеют упор на колонны и могут располагаться в поперечном или же продольном направлении. Принимается пролет основных балок в границах от 6 до 8 м. Высота главных балок принимается равной 1/8-1/15 величины, которой обладает пролет, а ширина — &frac12; значения высоты. У второстепенных балок монолитной конструкции пролет равен 5-7 м, и устанавливается шаг второстепенных балок от 1,5 до 3 м. От назначения монолитного перекрытия зависит значение толщины плиты, но оно должно быть не менее 60 мм. Если предусматриваются значительные нагрузки, то толщину плиты можно увеличить до 120 мм.

Плиты перекрытия работают в коротком направлении, опираясь при этом на главные и второстепенные балки. Во время сооружения ребристое монолитное перекрытие требует немалых затрат материала и рабочей силы, по этой причине зачастую их заменяют монолитным перекрытием по профнастилу.

Монолитные ребристые перекрытия с плитами, которые упираются по контуру, состоят из равной высоты балок, которые в перпендикулярных направлениях опираются на колонны, и из плит, связанных монолитно с балками. Принимается пролет балок величиной в границах от 4 до 6 м. В зависимости от назначения конструкции, ее размеров и нагрузки, принимается толщина плит. Она находится в пределах от 60 до 160 мм. Если сетка колонн одинакова, конструкции с плитами, которые опираются по контуру, могут стать менее экономичными, нежели монолитное перекрытие с балочными плитами.

Вернуться к оглавлению

Безбалочный тип монолитного перекрытия

В основе безбалочной монолитной конструкции лежит сплошная плита, которая опирается на колонны. В таком типе перекрытия по сравнению с ребристым типом упрощается устройство опалубки. Можно придавать разнообразные архитектурные формы монолитным капителям. Толщина плиты принимается в пределах от 1/30 до 1/35 большего пролета. Безбалочные перекрытия дают возможность использовать объем перекрытия и являются экономически выгодней, если пролет не более 6 м с квадратной сеткой колонн и равномерно распределенными тяжелыми нагрузками на монолитное перекрытие. Безбалочный тип монолитного перекрытия более востребован в промышленном и жилом строительстве в случае устройства гладкого потолка.

Вернуться к оглавлению

Возведение монолитного перекрытия по профнастилу

Проектируя монолитное перекрытие по профнастилу, нужно соблюдать правила и требования СНиП II-23-81 «Стальные конструкции» и СНиП 2.03.01-84 «Бетонные и железобетонные конструкции».

Монолитные плиты по профнастилу используются при строительстве многоэтажных общественных и производственных зданий с широким диапазоном нагрузок, если пролет и шаги конструкций нестандартны, большом количестве отверстий и проемов, во время реконструкции построек и возведения рабочих площадок. Плиты монолитного перекрытия, имеющие один пролет, с внешней арматурой в форме стального профилированного настила, открытой снизу, обладают огнестойкостью в пределах 30 мин, неразрезные плиты конструкции, у которых имеется не один пролет, с расположенной по всей длине пролета верхней арматурой — 45 мин и больше.

Для многоэтажных зданий с широким диапазоном нагрузки используются монолитные перекрытия по профнастилу.

Используемый в качестве арматуры перекрытия профнастил должен иметь защитное покрытие (оцинковку или любое другое), которое сможет обеспечить ему стойкость к коррозионным процессам. Для устройства монолитного перекрытия, которое выполняется по профнастилу, возможно применение тяжелых бетонов на мелкозернистом или обычном заполнителе, а их класс по прочности на сжатие должен быть не ниже В15. Стальные прогоны делаются сварными из прокатной листовой или профильной стали или же из прокатных двутавров.

В основе такого перекрытия лежит монолитная железобетонная плита, которая бетонируется по профнастилу и применяется в роли внешней арматуры после набора бетоном необходимой прочности. Перекрытие может опираться на железобетонные либо стальные прогоны, а также на бетонные или кирпичные стены. Пролет плиты выбирается в диапазоне от 1,5 до 6 м. Возможен больший пролет при возведении временных опор на время бетонирования и набора прочности. Профилированные листы следует стыковать по длине впритык на прогонах, без нахлестки. По ширине профнастил стыкуется с помощью нахлестки боковых граней. В целях местного или общего усиления монолитного перекрытия производится установка вспомогательной арматуры в форме отдельных стержней, сеток и каркасов.

Толщина бетона поверх профнастила не должна быть менее 30 мм, а если в конструкции пола отсутствует бетонная стяжка, то толщина должна быть не менее 50 мм.

Толщина бетонной полки монолитной плиты над профилированными листами определяется через расчет деформации и прочности, а также следуя технико-экономическим соображениям. Ее значение не должно быть меньше 30 мм, а в случае отсутствия бетонной стяжки в конструкциях пола — не меньше 50 мм. Листы профнастила направляют широкими гофрами вниз. Если поперек настила размер отверстия не превышает значение в 500 мм, тогда необходимо усиление монолитной конструкции в виде установки в примыкающие к отверстию гофры продольных стержней арматуры, которые заводятся за оси прогонов, или же в форме поперечных стержней, которые будут окаймлять отверстие, заводя их на два-три гофра за пределы подрезки с каждой стороны. Если величина отверстия поперек гофр профнастила превышает 500 мм, то необходимо предусматривать в конструкции перекрытия по контуру отверстия вспомогательные компоненты балочной клетки, которые переносят нагрузку с ослабленного участка с отверстием на прогоны.

На этапе возведения стальной профнастил является несущей конструкцией. Осуществляя расчет, узнают его жесткость и прочность как для тонкостенного стального изгибаемого элемента, который работает на нагрузку от своей массы настила, массы бетона и монтажных нагрузок, которые включают в себя массу рабочих и оборудования в процессе строительства монолитного перекрытия. Во время эксплуатации несущей конструкцией выступает монолитная железобетонная плита перекрытия, в которой профилированные листы применяются в качестве внешней рабочей арматуры.

Вернуться к оглавлению

Опора монолитного перекрытия по профнастилу

В зависимости от схемы расчета, при опоре монолитной плиты можно использовать не одно решение. В строениях, стены которых состоят из монолитного железобетона или кирпича, плиты с последующим замоноличиванием опорного участка опираются на стены. На опоре устраивается закладная деталь в форме металлического уголка, к ней дюбелями крепится профнастил.

Вернуться к оглавлению

Программа армирования монолитного перекрытия

Этап армирования монолитных перекрытий является весьма ответственным при возведении дома. От правильности его выполнения зависит не только несущая способность постройки, но и ее стоимость.

Армирование монолитного перекрытия производится в два слоя. Как основания применяются стержни арматуры А-500С 10 мм диаметром, которая кладется с шагом в 200 мм как в верхнем, так и нижнем слое. При помощи вязальной проволоки 1,2-1,5 мм диаметром стержни арматуры соединяются в сетки; они легко связываются друг с другом при помощи специального крючка. Арматурная сетка должна не доходить своими торцами до вертикальной опалубки по плоскости перекрытия на расстояние 20-25 мм.

Схема армированного монолитного перекрытия

Сделать две основные арматурные сетки — только часть дела. Следующей стадией будет выполнение армирования плиты, то есть размещение сеток на требуемое расстояние по высоте. Отталкиваясь от того, что арматурная сетка должна защищаться слоем бетона 20 мм толщиной, по вертикали расстояние между слоями арматуры должно быть 105-125 мм. Для этого делаются специальные фиксаторы из арматуры диаметром 10 мм. Опорные нижние части и верхняя горизонтальная полка фиксатора имеют длину по 350 мм. Расчет длины вертикальных частей делают в зависимости от толщины перекрытия, так что они составляют от 105 до 125 мм.

Сделать такие фиксаторы из арматуры, как и другие детали армирования монолитного перекрытия, нетрудно при помощи гибочного приспособления, которое можно сделать самостоятельно. Размещаются фиксаторы разделения верхнего и нижнего слоя арматуры с шагом 1×1 м, каждый новый ряд в шахматном порядке от предыдущего. Причем фиксатор устанавливается под углом 10-15 градусов по отношению к главным стержням арматурного каркаса.

Вернуться к оглавлению

Расчет прочности монолитной плиты перекрытия

Произвести расчет перекрытия поможет специальная компьютерная программа, но она не может учитывать абсолютно всех нюансов, таких как характеристики арматуры и бетона. В любом случае требуется непосредственное участие проектировщика. Если не произвести для монолитного перекрытия профессиональный расчет, оно рискует быть недостаточно прочным или непомерно затратным.

Однако если вы решили взять все в свои руки и не обращаться к специалистам, то ниже можете ознакомиться с тем, как правильно рассчитать монолитное перекрытие.

Как правило, прочностный расчет монолитного перекрытия сводится к сопоставлению двух факторов:

Для того чтобы рассчитать нагрузку на монолитную плиту перекрытия лучше всего обратиться за помощью к профессионалам или специальным программам.

  1. Нагрузок, которые действуют в плите.
  2. Прочности армированных сечений плиты.

Первое значение должно быть меньше второго.

Разберемся сперва, как рассчитать нагрузку на монолитное перекрытие.

Имеем следующие постоянные:

Собственный вес пола, толщина которого 50-100 мм (стяжка, к примеру) — 2,2 т/м2 × 1,2 = 2,64 т/м3 (если пол 50 мм — 110 кг/м3).2/23. Можно рассчитать несколько значений для частных случаев:

Плита в плане 4 × 4 м — Mа=Mb = 0,8 т/м.

Плита в плане 5 × 5 м — Mа=Mb = 1,3 т/м.

Плита в плане 6 × 6 м — Mа=Mb = 1,9 т/м.

1popotolku.ru

Расчет монолитной плиты перекрытия пример

Частные строители в процессе возведения своего дома часто сталкиваются с вопросом: когда необходимо произвести расчет монолитной железобетонной плиты перекрытия, лежащей на 4 несущих стенах, а значит, опертой по контуру? Так, при расчете монолитной плиты, имеющей квадратную форму, можно взять в расчет следующие данные. Кирпичные стены, возведенные из полнотелого кирпича, будут иметь толщину 510 мм. Такие стены образуют замкнутое пространство, размеры которого равны 5х5 м, на основания стен будет опираться железобетонное изделие, а вот опорные площадки по ширине будут равны 250 мм. Так, размер монолитного перекрытия будет равен 5.5х5.5 м. Расчетные пролеты l1 = l2 = 5 м.

Схема армирования монолитного перекрытия.

Кроме собственного веса, который прямо зависит от высоты плиты монолитного типа, изделие должно выдерживать еще некоторую расчетную нагрузку.

Схема монолитного перекрытия по профнастилу.

Отлично, когда данная нагрузка уже известна заранее. Например, по плите, высота которой равна 15 сантиметрам, будет производиться выравнивающая стяжка на основе цемента, толщина стяжки при этом равна 5 сантиметрам, на поверхность стяжки будет укладываться ламинат, его толщина равна 8 миллиметрам, а финишное напольное покрытие будет удерживать мебель, расставленную вдоль стен. Общий вес мебели при этом равен 2000 килограммов вместе со всем содержимым. Предполагается также, что помещение иногда будет умещать стол, вес которого равен 200 кг (вместе с закуской и выпивкой). Стол будет умещать 10 человек, общий вес которых равен 1200 кг, включая стулья. Но такое предусмотреть чрезвычайно сложно, поэтому в процессе расчетов используют статистические данные и теорию вероятности. Как правило, расчет плиты монолитного типа жилого дома производят на распределенную нагрузку по формуле qв = 400 кг/кв.м. Данная нагрузка предполагает стяжку, мебель, напольное покрытие, людей и прочее.

Эта нагрузка условно может считаться временной, т. к. после строительства могут осуществляться перепланировки, ремонты и прочее, при этом одна из частей нагрузки считается длительной, другая – кратковременной. По той причине, что соотношения кратковременной и длительной нагрузок неизвестны, для упрощения процесса расчетов можно считать всю нагрузку временной.

Определение параметров плиты

Схема сборной плиты перекрытия.

По причине, что высота монолитной плиты остается неизвестной, ее можно принять за h, этот показатель будет равен 15 см, в этом случае нагрузка от своего веса плиты перекрытия будет приблизительно равна 375 кг/кв.м = qп = 0.15х2500. Приблизителен этот показатель по той причине, что точный вес 1 квадратного метра плиты будет зависеть не только от диаметра и количества примененной арматуры, но и от породы и размеров мелкого и крупного наполнителей, которые входят в состав бетона. Будут иметь значение и качество уплотнения, а также другие факторы. Уровень данной нагрузки будет постоянным, изменить его смогут лишь антигравитационные технологии, но таковых на сегодняшний день нет. Таким образом можно определить суммарную распределенную нагрузку, оказываемую на плиту. Расчет: q = qп + qв = 375 +400 = 775 кг/м2.

Схема монолитной плиты перекрытия.

В процессе расчета следует взять во внимание, что для плиты перекрытия будет использован бетон, который относится к классу В20. Этот материал обладает расчетным сопротивлением сжатию Rb = 11.5 МПа или 117 кгс/см2. Будет применена и арматура, относящаяся к классу AIII. Ее расчетное сопротивление растяжению равно Rs = 355 МПа или 3600 кгс/см2.

При определении максимального уровня изгибающего момента следует учесть, что в том случае, если бы изделие в данном примере опиралось лишь на пару стен, то его можно было бы рассмотреть в качестве балки на 2-х шарнирных опорах (ширина опорных площадок на данный момент не учитывается), при всем при этом ширина балки принимается как b = 1 м, что необходимо для удобства производимых расчетов.

Расчет максимального изгибающего момента

Схема расчета монолитного перекрытия.

В вышеописанном случае изделие опирается на все стены, а это означает, что рассматривать лишь поперечное сечение балки по отношению к оси х будет недостаточно, так как можно рассматривать плиту, которую отражает пример, так же как балку по отношению к оси z. Таким образом, растягивающие и сжимающие напряжения окажутся не в единой плоскости, нормальной к х, а сразу в 2-х плоскостях. Если производить расчет балки с шарнирными опорами с пролетом l1 по отношению к оси х, тогда получится, что на балку будет действовать изгибающий момент m1 = q1l12/8. При всем при этом на балку с пролетом l2 будет действовать такой же момент m2, т. к. пролеты, которые отображает пример, равны. Однако расчетная нагрузка одна: q = q1 + q2, а если плита перекрытия имеет квадратную форму, то можно допустить, что: q1 = q2 = 0.5q, тогда m1 = m2 = q1l12/8 = ql12/16 = ql22/16. Это значит, что арматура, которая укладывается параллельно оси х, и арматура, укладываемая параллельно z, может быть рассчитана на идентичный изгибающий момент, при этом момент окажется в 2 раза меньше, чем для той плиты, которая опирается только на 2 стены.

Схема кровли профнастилом.

Так, уровень максимального расчета изгибающего момента окажется равен: Ма = 775 х 52/16 = 1219.94 кгс.м. Но такое значение может быть использовано лишь при расчете арматуры. По той причине что на поверхность бетона станет действовать сжимающие напряжения в двух взаимно перпендикулярных плоскостях, то значение изгибающего момента, применимое для бетона, следующее: Мб = (m12 + m22)0.5 = Mаv2 = 1219.94.1.4142 = 1725.25 кгс.м. Так как в процессе расчета, который предполагает данный пример, необходимо какое-то одно значение момента, можно взять во внимание среднее расчетное значение между моментом для бетона и арматуры: М = (Ма + Мб)/2 = 1.207Ма = 1472.6 кгс.м. Следует брать во внимание, что при отрицании такого предположения можно рассчитать арматуру по моменту, который действует на бетон.

Сечение арматуры

Схема перекрытия по профлисту.

Данный пример расчета монолитной плиты предполагает определение сечения арматуры в продольном и в поперечном направлениях. В момент использования какой бы то ни было методики следует помнить о высоте расположения арматуры, которая может быть разной. Так, для арматуры, которая располагается параллельно оси х, предварительно можно принять h01 = 13 см, а вот арматура, располагаемая параллельно оси z, предполагает принятие h02 = 11 см. Такой вариант верен, так как диаметр арматуры пока неизвестен. Расчет по старой методике проиллюстрирован в ИЗОБРАЖЕНИИ 2. А вот используя вспомогательную таблицу, которую вы увидите на ИЗОБРАЖЕНИИ 3, можно найти в процессе расчета: ?1 = 0.961 и ?1 = 0.077. ?2 = 0.945 и ?2 = 0.11.

Схема примера несъемной опалубки.

В таблице указаны данные, необходимые в ходе расчета изгибаемого элемента прямоугольного сечения. Элементы при этом армированы одиночной арматурой. А как производится расчет требуемой площади сечения арматуры, можно увидеть на ИЗОБРАЖЕНИИ 4. Если для унификации принять продольную, а также поперечную арматуру, диаметр которой будет равен 10 мм, пересчитав показатель сечения поперечной арматуры, приняв во внимание h02 = 12 см, мы получим то, что вы сможете увидеть, взглянув на ИЗОБРАЖЕНИЕ 5. Таким образом, для армирования одного погонного метра можно применить 5 стержней поперечной арматуры и столько же продольной. В конечном итоге получится сетка, которая имеет ячейки 200х200 мм. Арматура для одного погонного метра будет иметь площадь сечения, равную 3.93х2 = 7.86 см2. Это один пример подбора сечения арматуры, а вот расчет удобно будет производить, используя ИЗОБРАЖЕНИЕ 6.

Все изделие предполагает использование 50 стержней, длина которых может варьироваться в пределах от 5.2 до 5.4 метра. Учитывая то, что в верхней части сечение арматуры имеет хороший запас, можно уменьшить число стержней до 4, которые расположены в нижнем слое, площадь сечения арматуры в этом случае окажется равна 3.14 см2 либо 15.7 см2 по длине плиты.

Основные параметры

Схема расчета бетона на фундамент.

Вышеприведенный расчет был простым, но, чтобы уменьшить количество арматуры, его следует усложнить, т. к максимальный изгибающий момент будет действовать лишь в центральной части плиты. Момент в местах приближения к опорам-стенам стремится к нулю, следовательно, остальные метры, исключая центральные, можно армировать, используя арматуру, которая имеет меньший диаметр. А вот размер ячеек для арматуры, которая имеет диаметр, равный 10 мм, увеличивать не следует, так как распределенная нагрузка на плиту перекрытия считается условной.

Следует помнить, что существующие способы расчета монолитной плиты перекрытия, которая опирается по контуру, в условиях панельных построек предполагают применение дополнительного коэффициента, который будет учитывать пространственную работу изделия, ведь воздействие нагрузки заставит плиту прогибаться, что предполагает концентрированное применение арматуры в центральной части плиты. Использование подобного коэффициента позволяет максимум на 10 процентов уменьшить сечение арматуры. Но для железобетонных плит, которые изготавливаются не в стенах завода, а в условиях стройплощадки, применение дополнительного коэффициента не обязательно. Прежде всего это обусловлено необходимостью дополнительных расчетов на раскрытие возможных трещин, на прогиб, на уровень минимального армирования. Более того, чем большее количество арматуры имеет плита, тем меньше окажется прогиб в центре и тем проще его можно устранить либо замаскировать в процессе финишной отделки.

Так, если использовать рекомендации, которые предполагают расчет сборной сплошной плиты перекрытия общественных и жилых зданий, тогда площадь сечения арматуры, которая принадлежит к нижнему слою, по длине плиты окажется равна примерно А01 = 9.5 см2 , что примерно в 1.6 раза меньше полученного в данном расчете результата, но в этом случае необходимо помнить, что максимальная концентрация арматуры должна оказаться посредине пролета, поэтому разделить полученную цифру на 5 м длины не допустимо. Однако это значение площади сечения позволяет приблизительно оценить, какое количество арматуры можно сэкономить после проведения расчетов.

Расчет прямоугольной плиты

Схема монолитного перекрытия своими руками.

Данный пример для упрощения расчетов предполагает использование всех параметров, кроме ширины и длины помещения, таких же как в первом примере. Бесспорно, моменты, которые действуют относительно оси х и z в прямоугольных плитах перекрытия, не равны. И чем больше окажется разница между шириной и длиной помещения, тем больше плита перекрытия станет напоминать балку, размещенную на шарнирных опорах, а в момент достижения определенного значения уровень влияния поперечной арматуры будет почти неизменным.

Существующие экспериментальные данные и опыт, полученный при проектировании, показывают, что при соотношении ? = l2 / l1 > 3 показатель поперечного момента окажется в 5 раз меньше продольного. А в случае когда ? ? 3, определить соотношение моментов допустимо, используя эмпирический график, который проиллюстрирован на ИЗОБРАЖЕНИИ 7, где можно проследить зависимость моментов от ?. Под единицей подразумеваются плиты монолитного типа с контурным шарнирным опиранием, двойка предполагает плиты с трехсторонним шарнирным опиранием. График изображает пунктир, который показывает допустимые нижние пределы в процессе подбора арматуры, а в скобках указаны значения ?, что применимо для плит с трехсторонним опиранием. При этом ? < 0,5 m = ?, нижние пределы m = ?/2. Но в этом случае интерес представляет лишь кривая №1, которая отображает теоретические значения. На ней можно видеть подтверждение предположения, что уровень соотношения моментов равен 1 для плиты квадратной формы, по ней можно определить уровень моментов для остальных соотношений ширины и длины.

Формулы и коэффициенты

Схема монтажа перекрытия.

Так, для расчета плиты перекрытия монолитного типа используется помещение, которое имеет длину, равную 8 м, и ширину, равную 5 м. Следовательно, расчетные пролеты окажутся равны l2 = 8 м и l1 = 5 м. При этом ? = 8/5 = 1.6, уровень соотношения моментов равен m2/m1 = 0.49, а вот m2 = 0.49m1. По причине, что общий момент равняется M = m1 + m2, то M = m1 +0.49m1 или m1 = M/1.49, общий момент следует определять по короткой стороне, что обусловлено разумностью решения: Ма = ql12/8 = 775 х 52 / 8 = 2421.875 кгс.м. Дальнейший расчет приведен на ИЗОБРАЖЕНИИ 8.

Так, для армирования одного погонного метра плиты перекрытия следует применить 5 стержней арматуры, диаметр арматуры в этом случае будет равен 10 мм, при этом длина может варьироваться до 5.4 м, а начальный предел может быть равен 5.2 м. Показатель площади сечения продольной арматуры для одного погонного метра равняется 3.93 см2. Поперечное армирование допускает использование 4 стержней. Диаметр арматуры плиты при этом равен 8 мм, максимальная длина равна 8.4 м, при начальном значении в 8.2 м. Сечение поперечной арматуры имеет площадь, равную 2.01 см2, что необходимо для одного погонного метра.

Стоит помнить, что приведенный расчет плиты перекрытия можно считать упрощенным вариантом. При желании, уменьшив сечение используемой арматуры и изменив класс бетона либо и вовсе высоту плиты, можно уменьшить нагрузку, рассмотрев разные варианты загрузки плиты. Вычисления позволят понять, даст ли это какой-то эффект.

Схема строительства дома.

Так, для простоты расчета плиты перекрытия в примере не было учтено влияние площадок, выступающих в качестве опор, а вот если на данные участки сверху станут опираться стены, приближая таким образом плиту к защемлению, тогда при более значительной массе стен данная нагрузка должна быть учтена, это применимо в случае, когда ширина данных опорных участков окажется больше 1/2 ширины стены. В случае когда показатель ширины опорных участков окажется меньше или будет равен 1/2 ширине стены, тогда будет необходим дополнительный расчет стены на прочность. Но даже в этом случае вероятность, что на опорные участки не станет передаваться нагрузка от массы стены, окажется велика.

Пример варианта при конкретной ширине плиты

Возьмем за основу ширину опорных областей плиты, равную 370 мм, что применимо для кирпичных стен, имеющих ширину в 510 мм. Этот вариант расчета предполагает высокую вероятность передачи на опорную область плиты нагрузки от стены. Так, если плита будет удерживать стены, ширина которых равна 510 мм, а высота – 2.8 м, а на стены станет опираться плита следующего этажа, сосредоточенная постоянная нагрузка окажется равна.

Более правильным в этом случае было бы брать во внимание в процессе расчета плиту перекрытия в качестве шарнирно опертого ригеля с консолями, а уровень сосредоточенной нагрузки – в качестве неравномерно распределенной нагрузки на консоли. Кроме того, чем ближе к краю, тем нагрузка была бы больше, но для упрощения можно предположить, что данная нагрузка равномерно распределяется на консолях, составляя 3199.6/0.37 = 8647, 56 кг/м. Уровень момента на шарнирных опорах от подобной нагрузки будет равен 591.926 кгс.м.

Это значит, что:

  • в пролете m1 максимальный момент будет уменьшен и окажется равен m1 = 1717.74 – 591.926 = 1126 кгс.м. Сечение арматуры плиты перекрытия допустимо уменьшить либо и вовсе изменить остальные параметры плиты;
  • изгибающий опорный момент вызовет в верхней части плиты растягивающие напряжения, бетон на это в области растяжения не рассчитан, значит, необходимо дополнительно армировать в верхней части плиты перекрытия монолитного типа или уменьшить значение ширины опорного участка, что позволит уменьшить нагрузку на опорные участки. На случай если верхняя часть изделия не будет дополнительно армирована, плита перекрытия станет образовывать трещины, превратившись в плиту шарнирно-опертого типа без консолей.

Данный вариант расчета загружения следует рассматривать вместе с вариантом, который предполагает, что плита перекрытия уже имеется, а стены – нет, что исключает временную нагрузку на плиту.

o-cemente.info

что нужно предусмотреть? + видео

При постройке частного дома приходится либо придерживаться строгих стандартов в проектировании, исходя из типовых габаритов бетонных плит, либо выполнить расчет монолитного перекрытия.

Для чего нужен расчет монолитного перекрытия

От прочности стен зависит надежность всей конструкции здания, и этот факт неоспорим, но не меньшее значение для безопасности проживающих в частном доме (равно как и в многоквартирном) имеют перекрытия. Крепкий пол под ногами – это очень важно для того, чтобы чувствовать себя в помещениях комфортно. Но, если плиты из бетона на этапе проектирования вынуждают придерживаться определенных рамок, поскольку параметры их являются константой, то расчет монолитного перекрытия, наоборот, приходится делать, исходя из желаемой планировки дома. И ошибки при этом крайне нежелательны.

Любое перекрытие способно выдержать только строго определенную (выраженную в килограммах) нагрузку на квадратный метр. Не зная эту величину, и превысив ее, к примеру, изменяя планировку путем установки перегородок, можно спровоцировать возникновение трещин в структуре бетона. Как следствие, залитое монолитное основание этажа будет ослаблено, и впоследствии может разрушиться. Во избежание расчет нужно делать так, чтобы иметь запас прочности перекрытия, принимая во внимание характеристики используемой марки бетона, диаметр и количество прутков для арматуры, и их суммарный вес.

В некоторых случаях для усиления монолитного наливного основания можно изготавливать схожим образом горизонтальные железобетонные балки под перекрытием, которые будут играть роль ребер жесткости. Для их расчета нужно лишь заранее определить габариты, которые складываются из высоты, ширины и длины. В этом и состоит основная разница между балкой и перекрытием, для расчета которого нужно использовать такие параметры, как площадь и толщина бетонной заливки. Далее мы рассмотрим основные нормы, которых следует придерживаться при заливке плит, чтобы их прочность была достаточно высокой.

На чем основывается расчет железобетонных конструкций

В первую очередь следует учитывать, что сборное перекрытие, полученное из готовых плит дешевле приблизительно на 15-20 %, чем наливное монолитное основание. Причиной тому невысокая себестоимость выпускаемых на заводах типовых железобетонных конструкций, в сравнении с залитым в собранную на месте опалубку замешанным вручную или на арендованной бетономешалке раствором. Ведь для того, чтобы монолитное основание получилось надежным, недостаточно просто залить цементную смесь, сначала необходимо связать каркас из арматуры, что требует немалых трудозатрат. По прочности готовые плиты и наливные перекрытия получаются одинаковыми при равной толщине.

Рассмотрим все составляющие монолитного основания, на которых строится расчет железобетонных конструкций. В первую очередь, сооружается опалубка, которая должна быть добротной, чтобы заливка получилась качественной. Не желательно использовать обрезные доски, поскольку нижняя, потолочная часть плиты, должна быть идеально ровной. Следовательно, в качестве основы для опалубки лучше выбрать толстую фанеру, желательно, ламинированную (к ней бетон пристает несколько хуже, чем к обычной). Боковины также делаются из фанерных полос, а вот подпорки лучше установить из бруса, сечением не менее чем 100х100 миллиметров.

Далее из металлических прутков, связанных проволокой, собираются верхняя и нижняя армирующие сетки, соединенные посредством коротких поперечин в каркас. Слишком частыми ячейки делать не рекомендуется, поскольку это придаст лишнюю массу монолитному основанию, увеличив собственную нагрузку плиты. Обычно используется арматура с профилем А-II или А-III. Диаметр прутка для однорядной вязки требуется не менее 12, а для двухрядной – не меньше 10 миллиметров. Для поперечин используются стержни диаметром около 8 миллиметров. Шаг между арматурой достаточно соблюдать порядка 0.12 метра.

Для перекрытия большой площади обязательно нужны опорные горизонтальные балки, которые также заливаются на месте и нуждаются в армировании.

Для того, чтобы узнать, какой запас прочности необходимо придать монолитному основанию, обратимся к СНиП. Нормативная нагрузка на перекрытие в жилом доме по стандартам должна соответствовать 150 килограммам, кроме того, не следует забывать про коэффициент запаса, соответствующий 1.3.  В итоге получаем величину 150х1.3=195 кг/м2. Соотношение толщины плиты и ее площади должно иметь пропорции 1:30, иными словами, для монолитного основания 3х2 метра хватит толщины в 20 сантиметров. Арматуру желательно погрузить в раствор так, чтобы крайние прутки были покрыты бетоном не менее чем на 3 сантиметра.

Рассматриваем расчет заливки плиты на примере

Итак, предположим, что площадь загородного дома должна составить 50 м2, причем оба этажа будут одинаковы по размерам. Для нижнего изготавливается фундамент, который может быть столбчатым или ленточным (если полы будут уложены на деревянные лаги). Стены, сложенные из строительных блоков, могут выдержать различную нагрузку в зависимости от используемого материала. Так, возводя перегородки из газобетона, их лучше заключить в устроенную по периметру комнат систему вертикальных и горизонтальных железобетонных балок, которые должны выдержать нагрузку стен второго этажа.

Вертикальные балки заливаются поэтапно, порционно, иначе застывание бетона заняло бы слишком много времени. А вот горизонтальные опорные системы могут отливаться вместе с перекрытием, главное – грамотно собрать опалубку. Исходя из площади монолитного основания второго этажа, понадобится арматурная сетка соответствующей площади. Для защиты торцов будущей плиты от промерзания по внешнему периметру этажа устанавливаются борта из того же материала, какой будет использован для стен. С внутренней стороны укладывается прокладка из твердого утеплителя. Только затем монтируется армирующая сетка. Двухслойная, если толщина перекрытия больше 15 сантиметров, и однослойная, если меньше.

Теперь коснемся расхода компонентов для бетонного раствора. Объем перекрытия получаем по формуле V = S x H, где два последних параметра площадь и толщина соответственно. Чем прочнее будет основание, тем лучше, поэтому желательно получение бетона марки 400, для чего понадобится цемент марки от 400 до 600, от значения будет зависеть коэффициент водоцементного соотношения. Подробнее разобраться в тонкостях вам поможет калькулятор цемента.

Для нашей же плиты несложно подсчитать объем по уже имеющимся данным, с учетом пропорций цемента, песка и щебня, например, 1:4:5. Связующий компонент возьмем марки 600, толщина перекрытия пусть будет 20 сантиметров, в итоге объем раствора должен быть 500.000 см2 х 20 см = 10.000.000 см3 или 10 кубометров. Исходя из вышеприведенной пропорции, получим приблизительно 1 тонну цемента, 4 тонны песка и 5 тонн щебня. Воды потребуется исходя из коэффициента В/Ц = 0.60, 1000 кг х 0.60 = 600 литров, опять же примерно. Разумеется, расчеты замеса гораздо более сложны.

Оцените статью: Поделитесь с друзьями!

remoskop.ru

Монолитные стены

Архив рассылки «Непрошеные советы» для начинающих проектировщиков. Выпуск № 30.

Здравствуйте!

В тридцатом выпуске непрошеных советов я хочу написать о монолитных стенах (кроме, стен подвалов – это отдельная тема для разговора).

Какими должны быть надежные монолитные стены, и что нужно знать при их проектировании?

Прежде всего, толщина стен. Если стена – несущая, и имеет двойное армирование, то ее толщина не должна быть меньше 200 мм. Даже если расчет позволяет меньшую толщину. Дело в том, что качественно выполнить армирование и бетонирование высоких стен (а высота у них в разы превышает толщину) очень сложно при толщине менее 200 мм. А если работу выполнить сложно, то качество гарантировать невозможно. Поэтому следует запомнить это ограничение, чтобы не выходить за его пределы в целях экономии.

Следующий момент – это проемы в стенах. Всегда желательно обрамлять их арматурой по следующему принципу: охватывая открытыми хомутами рабочую арматуру стены так, как показано на рисунке (такие хомуты конструктивно устанавливаются по всему периметру проема с шагом 200-300 мм).

Если от верха проема до низа перекрытия осталось небольшое расстояние, и стена больше напоминает в этом месте перемычку, то и армировать ее следует как перемычку. Ведь, по крайней мере, на период бетонирования перекрытия эта перемычка будет испытывать определенную нагрузку, которую нужно определить и заложить в расчет. Если же от верха проема до верха стены далеко (значение не уточняю, т.к. нужно учитывать ширину проема, нагрузки на верх стены), то проем можно обрамлять хомутами по описанному выше принципу. Для примера все-таки приведу: при проеме шириной 1 м без значительных нагрузок от перекрытия об армировании перемычки можно задумываться при высоте сечения 300 мм и меньше.

Насчет армирования, оптимальная арматура сеток – диаметр 12 мм с шагом 200х200 мм. Чаще всего по расчету получается значительно меньше – разве что у основания стен и в районе отверстий доходит до 12 мм. Но здесь нужно учитывать, что сетки из арматуры меньшего диаметра, особенно выпуски на следующий этаж, ведут себя очень капризно – гнутся, деформируются и в ходе работы, и даже при сильном ветре. Поэтому диаметр арматуры меньше 12 мм допустимо применять только в небольших частных домах с малыми объемами арматурных работ.

Хочется еще обратить ваше внимание: если стены лестнично-лифтовой клетки являются ядром жесткости, в них следует предусматривать конструктивное армирование – по углам клетки устанавливаются гнутые Г-образные стержни, связывающие путем нахлестки наружную арматуру стен в единый в плане прямоугольник. Длина таких стержней должна равняться двум длинам нахлестки для данного диаметра арматуры (по одной длине нахлестки в каждую сторону). В принципе, такое дополнительное армирование не будет лишним в любых углах монолитных несущих стен.

И напоследок совсем небольшой список литературы (из одной книги): в пособии Тихонов «Армирование элементов монолитных железобетонных зданий» можно найти примеры армирования стен (в конце книги), за что автору большая благодарность.

На самом деле, стены – это самая простая и нудная часть проектирования железобетонного каркаса здания. Простое армирование, простая опалубка, но нужно показать все отметки, все проемы, штрабы и т.д. Советую при разработке чертежей не пренебрегать видами и развертками, с ними строителям гораздо проще работать, чем с планами и разрезами по планам.

С уважением, Ирина.

class=»eliadunit»>

Добавить комментарий

Типы стен, требующих монолитного строительства

Контекст 1

… и экспериментальные исследования прочности стен из кирпичной кладки, как правило, сосредоточены на рассмотрении прямоугольных поперечных сечений. Тем не менее, многие стены в практических ситуациях усилены опорами, возвратными линиями или другими фланцевыми секциями для увеличения их бокового сопротивления ͑ Рис. 1 ͒. Чтобы добиться эффективного композитного поведения для этих типов непрямоугольных стен, требуется монолитное структурное соединение через вертикальную границу раздела между компонентами каменной кладки.Опорные фланцы обычно соединяются со стенкой кладкой в ​​виде рядов коллекторов или металлическими соединителями, работающими на сдвиг, встроенными в стыки основания и проходящими через плоскость сдвига с вертикальным стыком на границе раздела, заполненным строительным раствором. Этот последний метод полезен там, где есть разница в рисунках склеивания на каждой стороне стены или когда разные материалы используются бок о бок. Соединители также полезны, когда влагонепроницаемая мембрана встроена в вертикальное соединение между ребрами и наружным листом стенки мембраны, чтобы предотвратить проникновение влаги в блоки с высокой абсорбцией.В конструкции недостаточная способность к вертикальному сдвигу вдоль границы раздела может быть результатом значительных изменений сечения стены вниз по зданию или эффектов дифференциальной вертикальной нагрузки на полки и стенку секции ͑ Sinha and Hendry 1981; Корреа и Рамальо 2003 ͒. Эти эффекты вместе с неравномерной осадкой конструкции или, чаще, ветром или сейсмическими воздействиями ͑ Drysdale et al. 1994, 2008 ͒ — это лишь некоторые из примеров, когда способность к сдвигу границы раздела в непрямоугольных секциях могла быть критическим параметром при проектировании.Эта пропускная способность интерфейса может иметь отношение к упругой конструкции ͑ в зависимости от требований кодекса, и она, безусловно, важна для расчета предельной прочности, где необходимо учитывать неупругие эффекты. Эта проблема также будет интересна проектировщикам в случае экстремальных нагрузок, когда от каменных конструкций может потребоваться повышенная структурная целостность как часть комплексной стратегии проектирования против прогрессирующего обрушения из-за аварии, неправильного использования, саботажа или других причин. . Для боковых нагруженных непрямоугольных поперечных сечений для расчета модуля сечения поперечной стенки ͑ Рис.1 ͒, рассматриваемая фланцевая часть поперечной стенки обычно ограничивается определенными пределами отношения l / h, чтобы учесть эффекты сдвига l — длина стенки и l, h — высота l / h the 1,5 стенка ͒. Требования к фланцам для C-, L-, le = и 0,75 Z-образной формы h + 0,5 л, сечения 1,5 Յ l ар / ч Յ обычно 3,5 · ограничено от 1 до ͒ 1/6 общей высоты 2,5 h , стенка или шесть л / ч, умноженных на 3,5 толщины пересекающейся стены по этим уравнениям, в зависимости от того, какой результат эффективнее, может быть меньше.фланец Для T-образного сечения, ширина стенок которого превышает ширину фланца в 1,5 раза, высота секций или трех секций обычно на четверть вдвое больше, чем стена выше. высота Обратите внимание на то, что любая расчетная сторона ограничительной стенки для фланцевых секций стены может существенно отличаться в зависимости от конструкции в коде изгиба ͓ Австралийский стандарт сопротивления непрямоугольным элементам ͑ 2002 ͒; EN ͑ кладка 2005a ͒; Элемент кладки. Стандарты С момента принятия нового стандарта Объединенного комитета MSJC J MSJC использует ͒ elastic 2008; канадский дизайн для неармированных стен Ассоциацией стандартов ͑ кирпичная кладка CSA 2004 г .; ͑ УРМ и др.͒ ͔. ͑ Рис. 2 Согласно ͒, установленному некоторыми авторами верхнему пределу ͑ Ортон в 1986 году, в более высоких зданиях, если учитывать фланцевую часть, целесообразно ограничить эффективную ширину этой фланцевой части поперечной стены. к половине предполагаемой для стены при локальном изгибе, т. е. эффективная ширина фланца T- и I-образных стен будет около h / 6, а ширина C-, L- и Z-образных стен — около h / 12. Обычно напряжения сдвига вдоль линии, соединяющей фланец с стенкой, следует проверять, если часть фланца превышает примерно 40% длины стенки.Обратите внимание, что в соответствии с новым MSJC ͓ Объединенным комитетом по стандартам кладки ͑ MSJC ͒ 2008 ͔, эффективная длина фланца ͑ le ͒, которая также зависит от соотношения l / h элемента стенки, рассчитывается как l, l / h 1,5. le = 0,75 ч + 0,5 л, 1,5 Յ л / ч Յ 3,5 · ͑ 1 ͒ 2,5 ч, л / ч Ն 3,5 Эти уравнения могут привести к получению эффективной ширины фланца более чем в 1,5 раза больше высоты или трех четвертей высоты стены на по обе стороны стены стены и приведет к значительному увеличению сопротивления изгибу непрямоугольного элемента кладки.Поскольку в новом стандарте MSJC используется эластичная конструкция для неармированной каменной кладки без трещин (URM ͒ 2 Рис. 2), внутренний верхний предел прочности на изгиб, налагаемый этими допущениями, обычно приводит к некритическим уровням напряжения сдвига на границе раздела фланец-стенка. Это может быть не так, если выполняется анализ сечения с трещинами. В этой области было проведено лишь ограниченное количество исследований. Как следствие, правила разработки кода значительно различаются от страны к стране и отражают ограниченность имеющихся знаний.Глубокие исследования этого явления в отношении поведения стенки диафрагмы были выполнены Фиппсом в Соединенном Королевстве Фиппс и Монтегю 1986, а затем эта работа была расширена в Австралии Фиппсом и Пейджем 1995a, b. Совсем недавно эта проблема была оценена также Correa and Ramalho (2003) и Drysdale et al. ͑ 2008 ͒. Этот общий недостаток знаний о способности к вертикальному сдвигу привел к переменным и консервативным положениям проектирования, и, таким образом, получаются чрезмерно консервативные прогнозы прочности, когда эти кодовые процедуры используются при проектировании несущих конструкций.Двумя факторами, усложняющими разработку положений о согласованном проектировании, являются широко различающиеся типы стен и методы строительства и детализация в разных странах. В некоторых положениях кодекса для расчета напряжения сдвига используется теоретическое распределение параболического напряжения ͑ f v = VQ / I n b, а не метод среднего напряжения ͑ f v = V / A ͒. Однако во многих кодексах используется среднее напряжение сдвига, поэтому прямое сравнение допустимых значений в соответствии с различными положениями кодов не всегда корректно.Для целей данной статьи коды Европейского Союза, Австралии, Канады и США обобщены и сопоставлены в таблице 1. В последней версии нового Европейского стандарта для каменных конструкций ͑ EN 2005a ͒ допустимая нагрузка на вертикальный сдвиг соединения между двумя соседними стены обсуждается очень кратко. Сопротивление вертикальному сдвигу стыка двух каменных стен должно быть получено с помощью соответствующих испытаний ͑ которые в настоящий момент не определены. При отсутствии результатов испытаний характеристическое сопротивление вертикальному сдвигу может быть основано на начальном сопротивлении горизонтальному сдвигу при нулевых сжимающих напряжениях ͑ f v k 0 ͒.Это контрастирует с Австралийским стандартом для каменных конструкций ͑ Австралийским стандартом 2002 года, который содержит вполне конкретные, но, вероятно, консервативные ͒ положения, ͑ Таблица 1. Он также предъявляет некоторые уникальные требования к прочности на сдвиг отдельных соединителей. Они были основаны на механистическом подходе и подходили для методов расчета пределов. Проект США …

Контекст 2

… и экспериментальные исследования прочности стен из кирпичной кладки, как правило, сосредоточены на рассмотрении прямоугольных поперечных сечений.Тем не менее, многие стены в практических ситуациях усилены опорами, возвратными линиями или другими фланцевыми секциями для увеличения их бокового сопротивления ͑ Рис. 1 ͒. Чтобы добиться эффективного композитного поведения для этих типов непрямоугольных стен, требуется монолитное структурное соединение через вертикальную границу раздела между компонентами каменной кладки. Опорные фланцы обычно соединяются со стенкой кладкой в ​​виде рядов коллекторов или металлическими соединителями, работающими на сдвиг, встроенными в стыки основания и проходящими через плоскость сдвига с вертикальным стыком на границе раздела, заполненным строительным раствором.Этот последний метод полезен там, где есть разница в рисунках склеивания на каждой стороне стены или когда разные материалы используются бок о бок. Соединители также полезны, когда влагонепроницаемая мембрана встроена в вертикальное соединение между ребрами и наружным листом стенки мембраны, чтобы предотвратить проникновение влаги в блоки с высокой абсорбцией. В конструкции недостаточная способность к вертикальному сдвигу вдоль границы раздела может быть результатом значительных изменений сечения стены вниз по зданию или эффектов дифференциальной вертикальной нагрузки на полки и стенку секции ͑ Sinha and Hendry 1981; Корреа и Рамальо 2003 ͒.Эти эффекты вместе с неравномерной осадкой конструкции или, чаще, ветром или сейсмическими воздействиями ͑ Drysdale et al. 1994, 2008 ͒ — это лишь некоторые из примеров, когда способность к сдвигу границы раздела в непрямоугольных секциях могла быть критическим параметром при проектировании. Эта пропускная способность интерфейса может иметь отношение к упругой конструкции ͑ в зависимости от требований кодекса, и она, безусловно, важна для расчета предельной прочности, где необходимо учитывать неупругие эффекты. Эта проблема также будет интересна проектировщикам в случае экстремальных нагрузок, когда от каменных конструкций может потребоваться повышенная структурная целостность как часть комплексной стратегии проектирования против прогрессирующего обрушения из-за аварии, неправильного использования, саботажа или других причин. .Для боковых нагруженных непрямоугольных поперечных сечений для расчета модуля сечения поперечной стенки (рис. 1) рассматриваемая фланцевая часть поперечной стенки обычно ограничивается определенными пределами отношения l / h, чтобы учесть сдвиг. эффекты запаздывания ͑ l — длина стены и l, h — высота l / h Յ 1,5 стены. Требования к фланцам для C-, L-, l e = и 0,75 Z-образной формы h + 0,5 л, сечения 1,5 Յ l ар / ч Յ обычно 3,5 · ограничено от 1 до ͒ 1/6 от общей высоты 2.5 h, стенка или шесть l / h, умноженных на Ն 3,5 толщины пересекающейся стены Эти уравнения могут иметь меньший результат в зависимости от того, какой результат эффективен. фланец Для T-образного сечения, ширина стенок которого превышает ширину фланца в 1,5 раза, высота секций или трех секций обычно на четверть вдвое больше, чем стена выше. высота Обратите внимание на то, что любая расчетная сторона ограничительной стенки для фланцевых секций стены может существенно отличаться в зависимости от конструкции в коде изгиба ͓ Австралийский стандарт сопротивления непрямоугольным элементам ͑ 2002 ͒; EN ͑ кладка 2005a ͒; Элемент кладки.Стандарты С момента принятия нового стандарта Объединенного комитета MSJC J MSJC использует ͒ elastic 2008; канадский дизайн для неармированных стен Ассоциацией стандартов ͑ кирпичная кладка CSA 2004 г .; ͑ УРМ и др. ͒ ͔. ͑ Рис. 2 Согласно ͒, установленному некоторыми авторами верхнему пределу ͑ Ортон в 1986 году, в более высоких зданиях, если принять во внимание фланцевую часть, целесообразно ограничить эффективную ширину этой фланцевой части поперечной стены. к половине предполагаемой для стены при локальном изгибе, т. е. эффективная ширина фланца T- и I-образных стен будет около h / 6, а ширина C-, L- и Z-образных стен — около h / 12.Обычно напряжения сдвига вдоль линии, соединяющей фланец с стенкой, следует проверять, если часть фланца превышает примерно 40% длины стенки. Обратите внимание, что в соответствии с новым MSJC ͓ Объединенным комитетом по стандартам кладки ͑ MSJC ͒ 2008 ͔, эффективная длина фланца ͑ le ͒, которая также зависит от отношения л / ч элемента стенки, рассчитывается как л, л / ч 1,5 le = 0,75 ч + 0,5 л, 1,5 Յ л / ч Յ 3,5 · ͑ 1 ͒ 2,5 ч, л / ч Ն 3,5 Эти уравнения могут привести к эффективной ширине фланца более 1.В 5 раз превышающую высоту или три четверти высоты стены по обе стороны от перемычки стены, что приведет к значительному увеличению сопротивления изгибу непрямоугольного элемента кладки. Поскольку в новом стандарте MSJC используется эластичная конструкция для неармированной каменной кладки без трещин (URM ͒ 2 Рис. 2), внутренний верхний предел прочности на изгиб, налагаемый этими допущениями, обычно приводит к некритическим уровням напряжения сдвига на границе раздела фланец-стенка. Это может быть не так, если выполняется анализ сечения с трещинами.В этой области было проведено лишь ограниченное количество исследований. Как следствие, правила разработки кода значительно различаются от страны к стране и отражают ограниченность имеющихся знаний. Глубокие исследования этого явления были проведены в отношении поведения стенки диафрагмы Фиппсом в Соединенном Королевстве ͑ Фиппс и Монтегю 1986 ͒, и эта работа была …

Монолитная плита: плюсы, минусы и сравнение со стержнем. Стена | Coral Isle Builders

Знаете ли вы, что в прошлом году было построено (и завершено) более 1,4 миллиона новых домов? Это очень много расчищенной земли, заложена тонна фундамента и возведено бесчисленное количество стен.

Конечно, немногие дома действительно являются домами для формочки для печенья. У каждого есть свой набор разрешений, разный набор гор для восхождения и разный тип готового продукта.

Но остается одно. Ничего не получается, если он не стоит на твердой почве. А в жилищном строительстве это включает в себя правильный фундамент.

Как и все остальное в процессе строительства, закладка фундамента дома не является универсальным делом. Есть несколько различных методов, которые помогут создать прочный каркас, и монолитная плита, безусловно, является одним из подходов.

Ниже мы разберем этот способ фундамента, обозначим его плюсы и минусы и сравним его, пожалуй, со вторым по распространенности фундаментом — кормовой стеной. Приготовьтесь взглянуть на местность поближе и посмотреть, какой из них подходит для вашего проекта.

Что такое монолитная плита?

Слово монолитный — прилагательное. Это означает «сформированный из одного большого каменного блока». В строительной отрасли мы определяем это как «все за один прием».

Итак, монолитная плита — это гигантский блок цемента, залитый одним махом.Хотя его можно заливать сразу, это не обязательно однородная плита.

Делается толще там, где будет несущая стена, и по всему периметру (вместо нижних колонтитулов). Это обеспечивает дополнительную поддержку на самых ответственных должностях.

Плюсы монолитной плиты

Однослойные фундаментные работы имеют много преимуществ. Давайте взглянем на некоторые из самых известных льгот.

Быстро

Первое и самое заметное преимущество монолитной плиты заключается в том, что ее можно укладывать намного быстрее, чем другие фундаменты.Поскольку это однократная заливка, монолитный фундамент разрушается быстрее, чем другие распространенные методы, в том числе стены ствола.

Доступно

Практически в каждой отрасли время — деньги. Учитывая легкость, которую дает одна заливка, это делает строительный проект более доступным.

С самого начала снижаются затраты на рабочую силу, что позволяет сэкономить часть финансовых средств, необходимых для реализации крупного жилищного проекта.

Прочный

При правильных условиях монолитная плита может быть такой же прочной, как и любой другой фундамент.Главное, на что нужно обратить внимание, — это ровная площадка.

Если земля была расчищена и требуется очень мало грунта для заполнения, возможно, вам нужны идеальные условия для монолитной плиты. Хороший, ровный грунт не представляет особых трудностей для фундамента такого типа.

Минусы монолитной плиты

Последний «за», который мы только что перечислили, сегвеи в качестве одного из минусов этого фундамента. Итак, давайте прямо сейчас погрузимся в это.

Он легко треснет

Монолитные плиты могут легко потрескаться , если они не установлены на ровной поверхности.Таким образом, участки, требующие большого количества грязи, должны вызывать удивление.

Если грунт аккуратно (и полностью) утрамбован, у этих фундаментов есть большой риск растрескивания со временем. И, конечно же, как только фундамент треснет, последуют другие структурные повреждения, в том числе потрескавшиеся стены.

В зонах затопления не очень хорошо

Если строящийся дом должен возвышаться над поймой, большинство строителей не будут рекомендовать монолитную плиту.

Это создаст слишком большую нагрузку на эти несущие стены и стены по периметру.А треснувший фундамент — это не просто неприятность.

Как мы только что намекнули, эти трещины могут доходить до пола и гипсокартона, нанося вред. Неудивительно, что это долгосрочный рецепт катастрофы.

Вход в стенку ствола

Итак, если монолитная плита не рекомендуется, какой следующий лучший вариант? Стенка ствола — отличная альтернатива, хотя и более трудоемкий процесс. Вот как работают стволовые стены.

Сначала заливается нижний колонтитул на уровне земли.Вот почему можно работать с неровным грунтом в основании стенки ствола. После заливки нижнего колонтитула укладываются цементные блоки, создавая стену, которая поднимется до уровня готовой плиты.

Когда требуется много засыпной грязи, стенки ствола выравнивают все, достигая ровной отметки. Конечно, этот более трудоемок, но вы можете видеть, как он будет иметь долгосрочные преимущества. Дом без трещин в стенах говорит само за себя.

Монолитная плита для ровной поверхности

Одним из основных определяющих факторов для монолитной плиты является наличие ровной поверхности, которая не должна возвышаться над поймой.

Если ваш будущий дом соответствует этим условиям, то вы сможете ускорить процесс строительства и сократить свой бюджет.

Если вы живете на юго-западе Флориды и хотите погрузиться в азарт новой постройки, мы надеемся, что вы обратитесь к нам сегодня. Здесь, в Coral Isle Builders, мы создаем индивидуальные оазисы для наших клиентов.

С первой встречи мы адаптируем процесс строительства к вашим стандартам. Это означает, что у вас есть право голоса от фундамента до потолка вашего будущего дома.

И не забывайте о радостях, связанных с выбором подходящего ковра, плитки и удобств для вашего прибрежного оазиса. Приходите изучить все планы этажей, чтобы увидеть, на каком из них изображено ваше имя.

В настоящее время мы строим в Кейп-Корал, Форт-Майерс, Пайн-Айленд, Эстеро и Бонита-Спрингс. Если у вас есть земля в любой из этих областей, мы будем более чем счастливы построить на ней участок и вручную доставить индивидуальный дом вашей мечты.

Монолитное строительство — обзор

Огнеупорные детали (см. Главу 17)

Стены, крыша и под обычно сооружаются из огнеупорных материалов в виде кирпича или монолитной конструкции с использованием литейных или пластмассовых (формованных) материалов.Формованные и литые материалы стали популярными конструкционными материалами для вертикальных стен и крыш. Они удерживаются на месте металлическими или керамическими анкерами, прикрепленными к обвязке печи. Утрамбованные пластмассовые материалы часто предпочтительнее литейных изделий в частях печи, подверженных частым и резким перепадам температуры.

При строительстве из кирпича важно ограничить количество различных размеров, чтобы упростить строительство и ремонт. Обычный стандартный кирпич, принятый в Великобритании, имеет размер 230 × 115 × 75 мм (9 дюймов × 4½ дюйма × 3 дюйма).Хотя стена построена из отдельных кирпичей, она будет действовать при нагревании как масса, расширяться и сжиматься с температурой. Поэтому необходимо учитывать методы склеивания, обеспечивающие максимально прочную конструкцию и допускающие движение. Форма связки, широко используемая для кирпичной кладки печи, показана на Рис. 12. Вся кирпичная кладка должна быть уложена с минимальным количеством швов, а шамотный цемент должен быть не хуже кирпича или не хуже. Высокие кирпичные стены могут иметь тенденцию выпирать внутрь, поэтому рекомендуется наклонять их наружу как целую стену или увеличивая толщину у основания.Возведение таких стен в виде вертикальной арки — еще один способ уменьшить склонность к обрушению.

Рис. 12. Типовая конструкция стенки печи

Подпружиненные арки кирпичной конструкции строятся отдельными кольцами или склеиваются. Связанные арки (, рис. 13, ) более прочны, но должны быть построены с использованием «связующих», то есть кирпичей, в 1,5 раза превышающих стандартную длину. Толщина арки варьируется от 115 мм для пролета до 1,5 м до 345 мм для пролета около 5,5 м. Там, где это позволяет конструкция, хорошей практикой является поддержание арки за счет «перекоса назад», опирающегося на стальной элемент, прикрепленный к обвязке печи, так, чтобы арка поддерживалась независимо от стенок печи.Если арка встроена в стену, как и в случае дверного проема, часто строят вторую арку, чтобы можно было заменить нижнюю арку, не нарушая стены.

Рисунок 13. Конструкция железобетонной арки

Для пролетов более 4–5 м используются подвесные арки. Используются многие собственные конструкции подвесных арок, состоящих из огнеупорных блоков особой формы, подвешенных либо на огнеупорных профилях, либо на металлических зажимах. Подвесные арки также изготавливаются из литого или формованного огнеупора, удерживаемого огнеупорными формами, встроенными в основной материал (огнеупорные формы удерживаются металлическими опорами) или только встроенными опорами.Проектированием и поставкой подвесных арок предпочтительно заниматься компании, специализирующиеся на этой работе, и следует получить их рекомендации относительно теплового расширения, метода возведения и прочности опоры.

Поды большинства печей должны выдерживать высокие температуры, износ из-за движения продукта, ударные нагрузки и воздействие окалины или шлака. Поэтому очень важен тщательный выбор огнеупорного материала (Глава 17). По возможности следует проветривать очаг, чтобы свести к минимуму количество тепла, передаваемого к фундаменту.Способ сооружения вентилируемого очага показан на Рис. 14 . Кирпичная кладка печи поддерживается на чугунных или стальных плитах, которые, в свою очередь, размещаются на низких кирпичных стенах или опорах, образуя проходы для воздуха. Эта конструкция, с пластинами или без них, также используется для вентиляции днища или боковых сторон дымоходов.

Рис. 14. Вентиляция подов печи

Под многие печи необходимы капитальные основания. Они должны быть как можно более простыми и усиленными стальными стержнями.Следует сделать контурный чертеж фундамента, чтобы показать нагрузки от печи, которые могут быть использованы инженерами-строителями для определения толщины бетона в соответствии с несущей способностью грунта. Обычно к статической нагрузке добавляют 50% для перемещения таких нагрузок, которые встречаются в печах, где продукт проталкивается над подом, и 100% для ударной нагрузки, когда существует риск падения продукта, как в случае слитков в яма для замачивания. В основании следует оставить карманы для затирки связующих элементов в их окончательном положении.Если есть риск проникновения воды в фундамент, их следует строить с небольшим уклоном в одну сторону, где можно предусмотреть отстойник.

Информация — Hempcrete Walls: Building Journal

Эти блоки имеют структурные элементы, интегрированные в матрицу конопли, и весь блок сушится на производственном объекте. После того, как блоки прибывают на место, они строятся так же, как и стандартные бетонные блоки с использованием раствора, чтобы получить полностью прочную и прочную стеновую систему.Инженерные решения, которые вошли в конструкцию этого блока, весьма сомнительны, и сообщается, что стены могут достигать высоты 800 футов, что делает их очень захватывающей новой перспективой. Благодаря этой системе блочных стен стена практически полностью готова после постройки, что экономит огромное количество времени и труда. Он полностью хорошо изолирован, имеет толщину 11 дюймов, и для его завершения требуется только внешняя известковая штукатурка и внутренняя известковая штукатурка.

3. Готовые структурные стеновые панели

Другой метод, который был использован для строительства бетонных стен из пенькового дерева, — это полностью структурно изолированные панели, созданные на заводе.Эти SIP, по сути, представляют собой специально изготовленные на заказ секции стен, которые построены из пенькового бетона и конструкции и отправлены на объект в собранном виде. Затем каждая панель собирается на месте в соответствии с проектными чертежами, чтобы быстро сформировать готовую оболочку здания над готовым фундаментом. Эти системы панельных стен в основном были созданы в Англии. Некоторые очень красивые коммерческие здания построены из них, и они оказались лучше, чем здания, построенные из стандартных строительных материалов.

4.Распыление пенькового бетона

Этот метод очень похож на заливку пенькового бетона на месте с той разницей, что используется промышленное оборудование для распыления. Вместо того, чтобы смешивать конопляный бетон и заполнять опалубку снизу вверх, большие количества конопляного бетона смешиваются в бетономешалке, а затем используется промышленный распылитель для возведения стены из конопли из внутренней опалубки. Говорят, что он намного быстрее и имеет лучшие изоляционные свойства, чем набивной вручную конопляный бетон, но оборудование довольно дорогое и требует гораздо большего количества ноу-хау.На данный момент, похоже, нет компаний, использующих этот метод в Северной Америке, но я уверен, что это произойдет, когда правила выращивания конопли будут смягчены.

5. Модульные заводские панели с биокомпозитным заполнением на месте

Эта новая запатентованная строительная технология монолитного биокомпозитного строительства находится на ранних стадиях разработки Calmura Natural Walls и имеет многообещающие перспективы для расширения использования конопляного бетона во всем мире. Компания Calmura протестировала прототипы в лабораторных условиях и смогла создать модульные панели из биокомпозита из конопли или древесной щепы, с которыми легко обращаться, аккуратно резать и устанавливать.Они будут служить постоянными панелями опалубки вместо установки и снятия временной опалубки. Панели заводского производства будут иметь сертифицированные характеристики, которые могут быть указаны архитекторами и инженерами, и ускорят работу подрядчиков, строителей и отделочников стен на месте. Пространство между панелями может быть заполнено другими изоляционными материалами, но считается, что лучшим заполнением будет легкий биокомпозит из влажной смеси или конопляный бетон, чтобы создать прочную монолитную стену, которая поможет укрепить и поддержать структурный деревянный каркас здания. строительство.Calmura разрабатывает эту технологию в течение нескольких лет и сейчас работает над внедрением ее в опытно-промышленную эксплуатацию для дальнейшего развития и проверки.

Монолиты пристенного потока

Монолиты пристенного потока

W. Адди Маевски

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Реферат : Пристенные монолиты стали самой популярной конструкцией дизельных фильтров.Они происходят из проточных носителей катализатора, где концы каналов альтернативно закупорены, чтобы заставить поток газа проходить через пористые стенки, действующие как фильтры. Монолиты пристенного потока изготавливаются из специальных керамических материалов, таких как кордиерит и карбид кремния. Определен ряд механических и термических свойств для характеристики и сравнения различных монолитов. Были разработаны фильтры разных размеров, которые доступны в стандартной комплектации.

Введение

Керамические монолиты с проточной стенкой, которые являются производными проточных ячеистых опор, используемых для каталитических нейтрализаторов, стали наиболее распространенным типом подложки для дизельных фильтров.Они отличаются, среди других конструкций дизельных фильтров, большой площадью поверхности на единицу объема и высокой эффективностью фильтрации. Монолитные дизельные фильтры состоят из множества небольших параллельных каналов, обычно квадратного сечения, проходящих через деталь в осевом направлении. Монолиты дизельных фильтров получают из проточных монолитов путем закупоривания каналов, как показано на Фиг.1. Соседние каналы альтернативно закупориваются на каждом конце, чтобы пропустить аэрозоль дизельного топлива через пористые стенки подложки, которые действуют как механический фильтр.Чтобы отразить эту структуру потока, подложки упоминаются как монолиты потока стенок .

Рисунок 1 . Расход газа в монолитном фильтре

(любезно предоставлено Corning Inc.)

Монолиты с проточной стенкой чаще всего доступны в цилиндрических формах, как показано на рисунке 2, хотя части с овальным поперечным сечением также возможны для приложений с ограниченным пространством.

Рисунок 2 . Цилиндрические пристенные монолиты

Слева: карбид кремния; Справа: кордиерит

(любезно предоставлено NGK)

Стенки пристенного фильтра имеют множество мелких пор, которые необходимо тщательно контролировать в процессе производства.Общая пористость материала обычно составляет от 45 до 50% или выше, тогда как средний размер пор обычно составляет от 10 до 20 мкм. Механизм фильтрации на монолитных фильтрах с проточной стенкой представляет собой комбинацию кека и глубинной фильтрации. Глубинная фильтрация является доминирующим механизмом на чистом фильтре, поскольку частицы откладываются в сети пор внутри материала стенки. По мере увеличения количества сажи на поверхности стенок впускных каналов образуется слой твердых частиц, и фильтрация корки становится преобладающим механизмом.Как правило, монолитные фильтры имеют эффективность фильтрации от 70 до 95% от общего количества твердых частиц (TPM). Более высокая эффективность наблюдается для твердых фракций ТЧ — элементарного углерода и металлической золы (как обсуждалось ранее, фильтры твердых частиц могут быть неэффективными в борьбе с органическими и сульфатными твердыми частицами).

Пристенные монолиты обычно представляют собой экструзионные изделия из пористых керамических материалов. В промышленных фильтрах чаще всего используются два материала: кордиерит и карбид кремния (SiC) .Кордиерит — это синтетическая керамика, разработанная для проточных каталитических подложек и впоследствии адаптированная для применения в фильтрах. Кордиеритовые фильтры используются в основном в двигателях, работающих в тяжелых условиях. Карбид кремния долгое время использовался в ряде отраслей промышленности для таких применений, как полупроводники, абразивы или материалы для контакта с расплавленным металлом и высокой температурой. Совсем недавно он был использован в качестве фильтрующего материала в дизельных легковых автомобилях. Новейший коммерческий монолитный материал фильтра — титанат алюминия , также представленный для применения в легковых автомобилях.

Таблица 1
Коммерческие монолитные стеновые материалы
Материал Формула Поставщики монолитов
Кордиерит 2MgO-2Al 2 O 3 -5SiO 2 Corning, NGK, Denso, Hitachi Metals
Карбид кремния SiC Ibiden, NGK, Saint-Gobain, LiqTech
Титанат алюминия Al 2 TiO 5 Корнинг

###

Сейсмические характеристики и повреждение монолитных бетонных самоцентрирующихся качающихся стен под действием соотношения осевых напряжений

  • Aaleti S, Sritharan S (2009) Упрощенный метод анализа для характеристики несвязанных систем сборных железобетонных конструкций после напряжения.Eng Struct 31 (12): 2966–2975

    Статья

    Google Scholar

  • Аджраб Дж. Дж., Пеккан Дж., Мандер Дж. Б. (2004) Качающиеся стеновые каркасные конструкции с дополнительными системами арматуры. J Struct Eng 130 (6): 895–903. DOI: 10.1061 / (ASCE) 0733-9445 (2004) 130: 6 (895)

    Артикул

    Google Scholar

  • ASCE (2007) Сейсмическая реабилитация существующих зданий (ASCE / SEI 41-06).Американское общество гражданского строительства, Рестон

    Книга

    Google Scholar

  • ASCE (2013) Сейсмическая оценка и модернизация существующих зданий (ASCE / SEI 41-13). Американское общество гражданского строительства, Рестон

    Google Scholar

  • ASCE (2016) Минимальные расчетные нагрузки и соответствующие критерии для зданий и других конструкций (ASCE / SEI 7-16). Американское общество гражданского строительства Рестон, Вирджиния

    Google Scholar

  • Asgarian B, Shokrgozar HR (2009) Фактор модификации реакции BRBF.Журнал J Constr Steel Res 65 (2): 290–298. DOI: 10.1016 / j.jcsr.2008.08.002

    Артикул

    Google Scholar

  • Аслам М., Скализ Д.Т., Годден В.Г. (1980) Отклик твердых тел на землетрясение и раскачивание. J Struct Div 106 (2): 377–392

    Google Scholar

  • ATC (1995) Факторы модификации отклика конструкции (ATC-19). Совет по прикладным технологиям, Редвуд-Сити

    Google Scholar

  • Борощек Р.Л., Яньес Ф.В. (2000) Экспериментальная проверка основных аналитических допущений, используемых при анализе структурных стеновых зданий.Eng Struct 22 (6): 657–669. DOI: 10.1016 / S0141-0296 (99) 00007-3

    Артикул

    Google Scholar

  • BSSC (2001) NEHRP рекомендовал положения о сейсмических нормах для новых зданий и других сооружений; часть 2: комментарий (FEMA-369). Совет по сейсмической безопасности зданий (BSSC), Вашингтон, округ Колумбия

  • CSI (2011) Компоненты и элементы PERFORM для PERFORM-3D и PERFORMCOLLAPSE. Computers and Structures Inc., Беркли

    Google Scholar

  • EERI (2012) Землетрясение Mw 7.1 Эрджи-Ван, Турция 23 октября 2011 года. Исследовательский институт инженерии землетрясений. www.eeri.org

  • Эркмен Б., Шульц А.Е. (2009) Самоцентрирующееся поведение несвязанных, предварительно напряженных стен из сборного железобетона, сдвинутых на сдвиг. J Earthq Eng 13 (7): 1047–1064. DOI: 10.1080/13632460

  • 9136

    Артикул

    Google Scholar

  • Esfandiari A (2009) Прочность на сдвиг структурных бетонных элементов с использованием метода однородных элементов сдвига.Доктор философии, диссертация, Университет Британской Колумбии, Ванкувер

  • Файфар П. (2002) Структурный анализ в сейсмической инженерии — прорыв в упрощенных нелинейных методах. Документ, представленный на 12-й Европейской конференции по сейсмической инженерии, Лондон

  • FEMA (2009) Количественная оценка факторов сейсмических характеристик зданий (FEMA P695). Федеральное агентство по чрезвычайным ситуациям, Вашингтон, округ Колумбия

    Google Scholar

  • Хассанли Р., Эль-Гавади М.А., Миллс Дж. Э. (2015) Коэффициенты прочности и сейсмических характеристик кирпичных стен с последующим натяжением.J Struct Eng 141 (11): 1–15. DOI: 10.1061 / (ASCE) ST.1943-541X.0001272

    Артикул

    Google Scholar

  • Хассанли Р., ЭльГавади М.А., Миллс Дж. Э. (2016) Поведение несвязанных бетонных стен после натяжения после воздействия силы-смещения. Eng Struct 106: 495–505. DOI: 10.1016 / j.engstruct.2015.10.035

    Артикул

    Google Scholar

  • Генри Р.С. (2011) Самоцентрирующиеся сборные железобетонные стены для зданий в регионах с низкой и высокой сейсмичностью.Доктор философии, диссертация, Оклендский университет, Окленд

  • Холден Т., Рестрепо Дж., Мандер Дж. Б. (2003) Сейсмические характеристики сборных железобетонных и предварительно напряженных бетонных стен. J. Struct Eng 129 (3): 286–296. DOI: 10.1061 / (ASCE) 0733-9445 (2003) 129: 3 (286)

    Артикул

    Google Scholar

  • Housner GW (1963) Поведение перевернутых маятниковых структур во время землетрясений. Bull Seismol Soc Am 53 (2): 403–417

    Google Scholar

  • Джафари А., Гасеми М.Р., Акбарзаде Бенгар Х., Хассани Б. (2016) Моделирование динамического поведения и оценка ущерба, наносимого самоцентрирующимися качающимися стенами.J Rehabil Civil Eng 4 (2): 93–108. DOI: 10.22075 / jrce.2017.10565.1169

    Google Scholar

  • Каппос А.Дж. (1991) Аналитический прогноз землетрясения при обрушении зданий с дистанционным управлением: предлагаемая методология. Earthq Eng Struct D 20 (2): 167–176. DOI: 10.1002 / eqe.42

    206

    Артикул

    Google Scholar

  • Kim TH, Lee KM, Chung YS, Shin HM (2005) Оценка сейсмического повреждения железобетонных колонн моста.Eng Struct 27 (4): 576–592. DOI: 10.1016 / j.engstruct.2004.11.016

    Артикул

    Google Scholar

  • Колозвари К., Уоллес Дж. В. (2016) Практическое нелинейное моделирование железобетонных несущих стен. J Struct Eng. DOI: 10.1061 / (ASCE) ST.1943-541X.0001492

    Google Scholar

  • Kurama Y, Sause R, Pessiki S, Lu LW, El-Sheikh M (1998) Сейсмический расчет и оценка реакции несвязанных предварительно напряженных сборных бетонных стен.Сборные сейсмические конструкционные системы (ПРЕССЫ). Rep. No. 98 (03), Lehigh Univ., Lehigh

  • Laursen PPT (2002) Сейсмический анализ и проектирование бетонных стен с последующим напряжением. Доктор философии, диссертация, Оклендский университет, Окленд

  • Лин Ю.Й., Чанг К.С., Ван Ю.Л. (2004) Сравнение метода коэффициента вытеснения и метода спектрального анализа емкости с экспериментальными результатами колонн RC. Earthq Eng Struct D 33 (1): 35–48. DOI: 10.1002 / eqe.336

    Артикул

    Google Scholar

  • Махин С., Бертеро В.В. (1972) Скорость воздействия нагрузки на железобетонные элементы без трещин и после ремонта.EERC 72-9, Центр инженерных исследований землетрясений, Калифорнийский университет, Беркли

  • Мандер Дж. Б., Пристли М. Дж., Парк Р. (1988) Теоретическая модель напряжения и деформации для замкнутого бетона. J Struct Eng 114 (8): 1804–1826. DOI: 10.1061 / (ASCE) 0733-9445 (1988) 114: 8 (1804)

    Артикул

    Google Scholar

  • Мик Дж. У. (1975) Влияние опрокидывания фундамента на динамический отклик. J Struct Div 101 (ST7): 1297–1311

    Google Scholar

  • Митчелл Д., Тремблей Р., Каракабейли Э., Паултре П., Саатчиоглу М., Андерсон Д.Л. (2003) Коэффициенты изменения сейсмической силы для предлагаемого издания 2005 года Национального строительного кодекса Канады.Может J Civ Eng 30 (2): 308–327. DOI: 10.1139 / l02-111

    Артикул

    Google Scholar

  • Нассар А.А., Кравинклер Х. (1991) Сейсмические требования для систем SDOF и MDOF, том 95. Центр землетрясений Джона А. Блюма, факультет гражданского строительства, Стэнфордский университет

  • Ньюмарк, штат Ньюмарк, Холл, Вирджиния (1982) Спектры и дизайн землетрясений. Технический отчет, Исследовательский институт сейсмической инженерии, Беркли

  • NIST (2012) Оценка методологии FEMA P-695 для количественной оценки факторов сейсмических характеристик зданий (NIST GCR 10-917-8).Национальный институт стандартов и технологий, Гейтерсбург

    Google Scholar

  • Пампанин С. (2005) Новые решения для высоких сейсмических характеристик зданий из сборного / предварительно напряженного железобетона. J Adv Concr Technol 3 (2): 207–223. DOI: 10.3151 / jact.3.207

    Артикул

    Google Scholar

  • Perez FJ, Sause R, Pessiki S (2007) Аналитическое и экспериментальное поведение поперечной нагрузки несвязанных предварительно напряженных сборных железобетонных стен.J Struct Eng 133 (11): 1531–1540. DOI: 10.1061 / (ASCE) 0733-9445 (2007) 133: 11 (1531)

    Артикул

    Google Scholar

  • Preti M, Giuriani E (2007) Предварительные результаты полномасштабного эксперимента по сейсмическому раскачиванию структурных стен. Доклад, представленный на третьем центральноевропейском конгрессе по бетонному строительству, Вышеград

  • Прети М., Джуриани Э. (2012) Полномасштабное экспериментальное исследование сейсмических структурных стен.Документ, представленный на пятнадцатой всемирной конференции по сейсмической инженерии, Лиссабон,

  • Preti M, Meda A (2015) ЖБИ несвязанные армированные армированным бетоном бетонные конструкции. Mater Struct 48 (1-2): 249-260. DOI: 10.1617 / s11527-013-0180-8

    Артикул

    Google Scholar

  • Preti M, Marini A, Metelli G, Giuriani E (2009) Полномасштабное экспериментальное исследование предварительно напряженной качающейся структурной стены с несвязанными стальными дюбелями в качестве срезных шпонок.Доклад, представленный на 13-й конференции ANIDIS по сейсмической инженерии, Болонья,

  • Пристли М.Н., Макрей Г.А. (1996) Сейсмические испытания сборных узлов соединения балки с колонной с несвязанными арматурами. PCI J 41 (1): 64–81

    Статья

    Google Scholar

  • Пристли М.Н., Тао Дж.Р. (1993) Сейсмический отклик сборных железобетонных конструкций с частично отслоившимися арматурами. PCI J 38 (1): 58–69

    Статья

    Google Scholar

  • Рестрепо Дж. И., Рахман А. (2007) Сейсмические характеристики самоцентрирующихся структурных стен, содержащих рассеиватели энергии.J Struct Eng ASCE 133 (11): 1560–1570. DOI: 10.1061 / (восхождение) 0733-9445 (2007) 133: 11 (1560)

    Артикул

    Google Scholar

  • Siegel LH ​​(2013) Требования к сейсмическому проектированию, Вирджиния (H-18-8). Управление строительства и управления объектами, Департамент по делам ветеранов США

  • Sritharan S, Beyer K, Henry RS, Chai Y, Kowalsky M, Bull D (2014) Понимание плохих сейсмических характеристик бетонных стен и последствий для проектирования.Earthq Spectra 30 (1): 307–334. DOI: 10.1193 / 021713EQS036M

    Артикул

    Google Scholar

  • Twigden KM, Sritharan S, Henry RS (2017) Циклические испытания несвязанных систем из предварительно напряженных бетонных стен с дополнительным демпфированием и без него. Eng Struct 140: 406–420. DOI: 10.1016 / j.engstruct.2017.02.008

    Артикул

    Google Scholar

  • Uang C-M (1991) Установление коэффициентов R (или R w) и C d для обеспечения сейсмической защиты здания.J Struct Eng 117 (1): 19–28. DOI: 10.1061 / (ASCE) 0733-9445 (1991) 117: 1 (19)

    Артикул

    Google Scholar

  • Видик Т., Файфар П., Фишингер М. (1994) Спектры согласованных неупругих расчетов: прочность и смещение. Earthq Eng Struct D 23 (5): 507–521. DOI: 10.1002 / eqe.42

    504

    Артикул

    Google Scholar

  • Wallace JW (2012) Поведение, проектирование и моделирование несущих стен и соединительных балок — уроки недавних лабораторных испытаний и землетрясений.Int J Concr Struct Mater 6 (1): 3–18. DOI: 10.1007 / s40069-012-0001-4

    Артикул

    Google Scholar

  • Уолш К.К., Курама Ю.К. (2009) Поведение и проектирование неограниченных систем прядей / анкеровок после растяжения для сейсмических применений. Отчет о структурных инженерных исследованиях, отчет № NDSE-09-02, Университет Нотр-Дам, Индиана

  • Ватанабе Г., Кавашима К. (2004) Оценка коэффициентов усиления смещения для сейсмического проектирования мостов.Доклад, представленный на 1-й Международной конференции по проектированию городских землетрясений, Токио,

  • Wight GD (2006) Сейсмические характеристики системы стен из бетонной кладки после напряжения. Доктор философии, диссертация, Оклендский университет, Окленд

  • Wu Y (2008) Разработка гибридных сборных железобетонных и стальных специальных стойких к моменту рам. Доктор философии, диссертация, Университет Южной Калифорнии, Лос-Анджелес

  • Йоопрасертчай Э., Хадивиджая И.Дж., Варнитчай П. (2016) Сейсмические характеристики сборных железобетонных качающихся стен с продольными скобами изгиба.Mag Concr Res 68 (9): 462–476. DOI: 10.1680 / jmacr.15.00237

    Артикул

    Google Scholar

  • Монолитный, минималистичный: две поверхности, одно полотно с бетонной отделкой для стен / пола

    Минималистичный вид, характерный для покрытия Microtoppping, можно увидеть здесь, в этой квартире в Бельгии.

    Представьте себе удобство и универсальность декоративной отделки из бетона, которую можно наносить на стены или пол.

    Вообще-то, это не дело воображения. Такая декоративная отделка уже существует.

    Однако более ярким аспектом этих материалов может быть их роль в улучшении визуальных эффектов в определенных архитектурных условиях — пространствах, где «меньше значит больше» с точки зрения цвета или умопомрачительных декоративных узоров.

    Таково предложение компании Ideal Work, итальянской компании-разработчика цементных покрытий и других декоративных покрытий. И экспонат А в случае этой концепции Ideal Work — это музейное пространство.

    «Музейные здания, как и художественные галереи, должны действовать как чистый фон, который демонстрирует (искусство и другие экспонаты) в лучшем виде, делая их легкими для отслеживания, доступа и понимания», — отмечает Ideal Work в маркетинговой литературе, посвященной музеям. -космические приложения продуктов Nuvolato Architop, Microtopping и Lixio.

    Хотя их нельзя наносить на вертикальные поверхности, Ideal Nuvolato Architop и Lixio являются хорошими кандидатами для бесшовных поверхностей или более традиционной обработки полов.Nuvolato Architop можно использовать для создания полированных полов поверх существующих или новых полов с минимальной глубиной нанесения. А Lixio предлагает «более традиционную отделку» для существующих полов, аналогичную терраццо, с использованием открытого заполнителя различных размеров и цветов.

    Microtopping — отличный выбор для тех, кому нужна сплошная поверхность без видимых стыков. Он идеально подходит как для горизонтальных, так и для вертикальных поверхностей, включая лестницы. Покрытие используется как в жилых домах, так и в выставочных залах.Универсальный продукт Microtopping

    Ideal можно использовать для создания гармонирующих бесшовных поверхностей пола и стен в новостройках и при ремонте. При номинальной толщине всего 3 мм он обеспечивает «идеальный, почти анонимный» фон », согласно Ideal Work.

    «При просмотре реальных произведений истории или искусства никто не хочет отвлекаться на« умную »архитектуру, яркие цвета и тяжелые текстуры», — отмечает Джованни Фонте Бассо, менеджер по коммуникациям.

    Going micro
    «Microtopping элегантен, универсален, мегаполисен и минималистичен», — говорит Бассо.Материал был использован в Мемориальном центре Липа вспоминает музей в Липе, Хорватия; музей Тезеум в Тонгерене, Бельгия; и знаменитый Палаццо Дукале (Дворец дожей), одна из главных достопримечательностей Венеции.

    Представитель компании сообщил, что цементный материал можно использовать для обновления существующих поверхностей различных типов — бетонных, самовыравнивающихся, керамических, деревянных или других — без удаления этих оснований. Продукт характеризуется высокой устойчивостью к погодным изменениям, простой в уходе и быстрой установкой.

    Ideal Work использует термин «непрерывное пространство» для описания декоративного эффекта, создаваемого с помощью микроцемента в минималистичной современной среде, где поверхность выделяется как главная особенность, или в «классической, деревенской или винтажной среде, где она дополняет стиль с изысканное усмотрение ».

    По сути, минималистский подход.

    Minimalism, американское издание
    Но прежде всего заслуга в этой минималистской волне принадлежит компании Ideal Work и другим производителям и пользователям этих видов отделки в Европе, а также американским подрядчикам, таким как Доминик Кардоне из Diversified Contemporary Finishes Inc.предложить несогласие.

    По крайней мере, на Восточном побережье, минимализм, в отличие от полихроматического избытка, очень популярен, говорит Кардоне, который живет в Бруклине, Нью-Йорк. Кардоне часто использует материалы от Duraamen Engineered Products Inc., в том числе бетонные микровыступы Skraffino, в своих декоративных усилиях.

    Кардоне приводит свой недавний проект — вестибюль элитного жилого дома в Нью-Йорке — в качестве примера подхода минимализма, издание East Coast.Он использовал микровставку Skraffino в теплых серых тонах, чтобы создать приглушенный нейтральный фон для декоративных элементов и предметов интерьера, которые дизайнер проекта сделал заметными в пространстве вестибюля.

    На стены, сделанные из гипсокартона, шпателем Cardone нанесли два слоя Skraffino. Он выбрал смесь 50-50 тонких и сверхтонких сортов микрогранулы, используя белый базовый цвет. Первый слой сушился в течение ночи, затем шлифовали и очищали перед нанесением второго слоя.

    В помещениях общего пользования этого жилого дома в Нью-Йорке есть микровставки Skraffino теплого серого цвета. Покрытие было выбрано так, чтобы обеспечить нейтральный фон, чтобы лучше всего отображать декоративные элементы и мебель здания.

    Кардоне использовал смесь серого и коричневого цветов, добавленную к белому базовому цвету, чтобы получить то, что он называет «теплым серым». Обработку завершил прозрачный акриловый герметик.

    На новом бетонном полу компания Cardone также применила микровставку Skraffino. Здесь он начал со шлифовки и мелкого ремонта, а затем применил самовыравнивающуюся подложку Duraamen Param 5500 — цементирующий материал из алюмината кальция.

    Получился «красивый холст», — говорит он. После высыхания он нанес шваброй акриловую дисперсию Duraamen CP1000, которая также является сополимерным компонентом системы Skraffino, в качестве грунтовки. Skraffino наносился шпателем в два слоя с просеиванием между ними с помощью полировального инструмента. Первый слой был нанесен тонким слоем микрогранулы, за которым следовала тонкая сверхтонкая смесь для верхнего покрытия.

    Работа была завершена еще одной шлифовкой, нанесением прозрачной эпоксидной смолы со 100-процентным содержанием твердых частиц, еще одной шлифовкой и, наконец, нанесением прозрачного уретанового герметика.

    Эффективность герметика в таких покрытиях пола очень высока, подчеркивает Кардоне. Здесь «Он создан, чтобы противостоять пробкам», — говорит он.

    CimentArt, новый микроцемент на рынке США из Европы, можно наносить практически на любую поверхность, включая душевые, стены и столешницы.

    Представитель Duraamen говорит, что Skraffino определен там, где дизайнеры и владельцы выбирают бесшовные бетонные стены. Современные высотные дома, лофты и квартиры являются типичными кандидатами для таких применений микроцемента.

    Компания Duraamen недавно выпустила еще один продукт, «Arapido», распыляемую микрогранулу для бетона, предназначенную для быстрого нанесения на большие площади.

    Эффект «галереи»
    Кардоне говорит, что монолитный эффект этого микротоппинга на полах и стенах создает «простой, чистый, элегантный» вид, который привлекает внимание к другим элементам дизайна — более темной, обтянутой кожей нише в стене. в одном месте и деревянные панели в другом, а в другом — камень и бетон.Другая обстановка дополняет картину.

    «В галерее вы хотите, чтобы искусство или экспонаты появлялись», — говорит он. «В розничной торговле вы хотите, чтобы продукт выделялся среди других». Здесь в центре внимания мебель и архитектурные элементы.

    Этот эклектичный подход также дает пространству больше глубины и тепла, говорит он.

    По словам Кардоне, нанесение микрогранул может создавать разнообразную текстуру поверхности, которая добавляет глубины, с использованием трех разных сортов и специальной техники затирки.

    «Он может быть от грубого до полностью отполированного, так что это зависит от дизайнера и установщика». Он применяет термин «последовательно противоречивый» к отделке, которая демонстрирует вариации и глубину. Освещение также играет ключевую роль в создании впечатления.

    Расширяющаяся палитра микроцемента
    Новым продуктом в портфеле средств для обработки стен и пола из микроцемента стала европейская импортная компания CimentArt. Линия продуктов из Испании прибыла на берег во Флориде, где новая компания CimentArt Florida ступила на рынок Северной Америки под именем U.Дистрибьютор S.

    «Мы будем создавать дистрибьюторскую сеть», — говорит Джон Майлз, управляющий директор CimentArt Florida в Клируотере. В новостном объявлении о продукте говорится, что CimentArt выиграл в Испании награды за качество и экологичность.

    «Микроцемент можно наносить практически на любую поверхность и пространство», — говорит Майлз, ссылаясь на плитку, душевые, столешницы, дерево, гипс и гипсокартон, бетон, керамику и фарфор. Его следует наносить максимальной толщиной 2 мм, чтобы получить сплошное покрытие с эффектом мраморности и без стыков.Поразительно, что различные слои основы, верхнего покрытия, герметика и двухкомпонентного лака тем сильнее, чем они тоньше, отмечает Майлз. Продукты на основе микроцемента также обеспечивают гидроизоляцию поверхностей.

    Линия продуктов доступна в различных цветах и ​​включает продукты для достижения декоративной, гладкой или каменной отделки, а также оксидные, однотонные, металлик, аква-кварц и аква-цвета. Ассортимент продукции также включает в себя смешивающую смолу для формул микроцемента, полиуретановые и акриловые герметики, металлический герметик для «высокого декора» с 10 различными металлическими покрытиями и акриловую грунтовку, среди прочего.

    Американская компания Ardex Americas со штаб-квартирой в США делает ставку на арену отделки стен и полов с помощью Ardex SD-M, цементируемого микроволокна для шлифовки внутренних поверхностей бетона и терраццо, а также керамической, фарфоровой и карьерной плитки.

    Несмотря на то, что он продается в основном для горизонтальных поверхностей, Ardex отмечает, что микровыступы часто указываются и используются дизайнерами, подрядчиками и другими установщиками на стенах. Здесь его устойчивость к ударам и истиранию, а также гладкая кремообразная консистенция обеспечивают великолепные характеристики.Его можно применить художественно, чтобы имитировать деревенский вид, а также в качестве лепнины или отделки в разобранном виде.

    Хотя в первую очередь он позиционируется как микротоппинг для горизонтальных поверхностей, дизайнеры часто используют Ardex SD-M для стен, чтобы придать им деревенский вид.

    В вертикальных приложениях микровставка используется для создания «уникальной эстетики» на лицевых частях камина, акцентных стенах и фартуках в розничной, жилой, коммерческой и гостиничной среде.

    Крейг Моррис, менеджер по развитию бизнеса Ardex Americas в области готовых поверхностей, советует, что для вертикальных применений, спецификаторам и пользователям следует обращаться в технический отдел компании за рекомендациями и другими соображениями, особенно в тех случаях, когда микроштак будет наноситься на поверхности на основе гипса, такие как гипсокартон. .

    www.ardexamericas.com
    www.cimentartusa.com
    www.duraamen.com
    www.idealwork.com

    Доминик Кардоне был одним из лучших мастеров на выставке Contemporary Concrete LIVE! на выставке World of Concrete 2020.

    Есть еще вопросы о вашем проекте?

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    *

    *

    *