Сваи винтовые нагрузка: Нагрузка на винтовую сваю 108, 133, 159, 89, 219

Содержание

Нагрузка на винтовую сваю 108, 133, 159, 89, 219


Какие допустимые нагрузки способны выдерживать винтовые сваи и какая у них несущая способность? Какой диаметр винтовой сварной сваи (свсн) будет самым подходящим для устройства свайно-винтового фундамента?  – это самые задаваемые вопросы на этапе проектирования строительства. Ошибки в расчётах, как правило, снижают надёжность опор под зданиями, приводят к усадке или крену строений. И, в конечном счёте, к повреждениям их основных конструкций.


Допустимая нагрузка – важнейший показатель винтовых элементов фундамента


Важной характеристикой винтовых свай, влияющей на правильный их подбор при устройстве фундаментов под конкретные сооружения, является несущая способность.


Это ничто иное, как учитывающая деформации почвы максимальная нагрузка, которую выдерживают сваи без потери своих функциональных качеств. Для грунтов с различными прочностными характеристиками, а также изделий, отличающихся длиной, диаметром трубы и лопастей – она разная.


Далее ознакомимся с параметрами, от которых зависит допустимая нагрузка на винтовые сваи, а также с правильным её теоретическим расчётом.


Виды свай и их параметры


Разнообразие типоразмеров этих изделий связано с применением их под конкретные виды возводимых объектов.


В частном домостроении преимущественно используются винтовые элементы фундаментов с диаметрами трубы от 89 до 159мм. Так, допустимая нагрузка на винтовую сваю 89мм делает возможным их применение при возведении каркасных одноэтажных домов, веранд и беседок. С увеличением диаметра трубы увеличивается цена и расширяется диапазон их применения: 108мм, 133мм и 159мм – для устройства фундаментов двухэтажных каркасных домов, а также одноэтажных из бруса, пенобетона и кирпича.


 


А допустимая нагрузка на винтовую сваю 325мм приемлема при использовании её в проектировании тяжёлых конструкций домов или промышленных объектов.


При расчётах допустимых нагрузок на сваи используют такой важный параметр, как площадь её конструктивного элемента – лепестковой подошвы.


 


При этом за радиус подошвы принимают расстояние от центра сваи до крайней (образующей контур лепестка) точки.


Для вычисления площади используют известную математическую формулу: возведённый в квадрат радиус лопастей умножают на 3,14 (число Пи). Для разных диаметров труб она составляет:

  • 89мм – 490см2;
  • 108мм –706см2;
  • 159мм – 1590см2;
  • 325мм – 9567см2 (для расчётов значения диаметров лопастей всегда берут в сантиметрах).


На выбор длины детали влияют характер грунта (в том числе уровень его промерзания) и перепады высот на стройплощадке.


Длина свай стандартизована и составляет:

  • для коротких – 160-250см;
  • для длинных – до 11,5м (с шагом 50см).


При правильной установке они должны упираться лопастями в плотный слой грунта.  


Прочность грунта основания


Одним из исходных данных при расчёте допустимой нагрузки на винтовые сваи являются прочностные характеристики грунта на участке строительства. Их точное определение возможно при выполнении изыскательского бурения.


 


Если вызов геологов не предусмотрен бюджетом – можно самостоятельно оценить залегающий грунт. Для этого достаточны информация о составе грунтов на конкретном участке и умение использовать в справочниках соответствующие данные. Примерные значения расчётных сопротивлений (кг/см2) грунтов на глубине 1,5м следующие:

  • глина – 3,7–4,7;
  • суглинки и супеси – 3,5–4,4;
  • песок (от мелких фракций до крупных) – 4–6.


Такие данные содержат и строительные справочники, и СНиПы.


Определение максимально возможной величины нагрузки на винтовую сваю


Для расчёта нагрузок, которые способны выдержать элементы свайно-винтового фундамента, нужно знать площадь подошвы их лепестков и прочностные характеристики (максимальная несущая возможность) грунта. Перемножив между собой величины этих показателей, получают желаемое значение несущей способности винтовой опоры – максимально возможной выдерживаемой нагрузки.


Для примера определим, какую нагрузку выдерживает винтовая свая 108х2500мм. Исходные данные для упрощённого расчёта принимаем такими:

  • грунт на строительном участке – глина;
  • диаметр лопасти сваи 108мм – 300мм.


Воспользуемся данными таблиц в справочнике и определим несущую способность грунта (Rо) в месте установки фундамента: Rо = 6кг/см2. Площадь лепестковой подошвы этого вида свай мы определили ранее (смотри выше), S = 706см2.


Искомую нагрузку получим в результате перемножения:


F = Rо х S = 6 х 706 = 4,23 (тонны).


Именно такую расчётную (среднюю) нагрузку выдерживает одна свая 108мм, упираясь лопастью в слой глины.


Однако, её значение есть неоптимизированным, так как не учитывает коэффициент надёжности (γk). Он зависит от количества опор в фундаменте и способа производства геологических изысканий. При известных результатах таких изысканий на участке его значение составляет 1,2.


Выполняя самостоятельные исследования почвы на участке и используя табличные показатели прочности грунта, необходимо увеличивать запас надёжности. Для этого надо использовать в расчётах коэффициент надёжности порядка 1,7–1,4. Его величина зависит от количества свай в фундаменте: при минимальном количестве (до 5) он будет максимальным – 1,7. С увеличением опор до 20 коэффициент уменьшится до 1,4. При этом устанавливаемые сваи должны иметь низкие ростверки.


Таким образом, с учётом коэффициента надёжности расчёты максимально возможной нагрузки на сваи N (при пользовании табличными данными о грунтах) показывают её уменьшение по сравнению с расчётной нагрузкой F:


N = F : γk = 4,2 : 1,7 = 2,47 (т).  


В качестве заключения


Качественный монтаж свайно-винтовых фундаментов зависит от правильного расчёта нагрузок на винтовые сваи, включающих и геологическую оценку грунта. Ошибки в расчётах приведут к занижению несущей способности фундамента или же большому перерасходу материала.

Какую нагрузку выдерживают винтовые сваи


С точки зрения характера восприятия нагрузок винтовые сваи можно условно разделить на две большие группы:


  • узколопастные, диаметр лопасти которых превосходит диаметр ствола менее чем в полтора раза;

  • широколопастные (лопастные), у которых диаметр лопасти в полтора раза и более превосходит диаметр ствола.


Узколопастные модификации воспринимают нагрузки благодаря высокой несущей способности грунтов и рассчитанному количеству витков, шагу и ширине лопасти (обеспечивает учет в полном объеме трения по боковой поверхности). Хорошо проявляют себя в особо плотных сезоннопромерзающих и вечномерзлых (многолетнемерзлых) грунтах. Требуют обязательного выполнения расчетов на противодействие касательным силам морозного пучения из-за значительного трения по боковой поверхности ствола (подробнее «Воздействие сил морозного пучения»).


Широколопастные модификации хорошо воспринимают проектные нагрузки даже в грунтах с низкой несущей способностью благодаря:


Тем не менее, несущие свойства грунтов будут иметь решающее значение и для этой группы. К примеру, широколопастная свая с диаметром ствола 57 миллиметров и лопастью 200 миллиметров, установленная в грунт с высокой несущей способностью, может воспринять нагрузки до 5 тонн, тогда как конструкция с диаметром ствола 159 миллиметров с лопастью 500 миллиметров, установленная в слабый грунт, может держать менее 5 тонн.


По результатам исследований, проведенных специалистами компании «ГлавФундамент», был построен график зависимости несущей способности винтовой сваи от характеристик основания и конструктивных особенностей самой сваи (рисунок 1).


Из представленных зависимостей видно, что изменение интересующего параметра под влиянием характеристик грунта более значительно, чем под влиянием изменений, связанных с конструктивными особенностями сваи. Это в очередной раз подтверждает, что при выборе конструкции сваи следует в первую очередь отталкиваться от грунтовых условий площадки строительства, их изменчивости как в плане, так и по глубине. Это позволит подобрать экономически эффективную конструкцию, которая обеспечит эксплуатационную надежность в течение всего срока службы здания/сооружения.


Рисунок 1 – График зависимости несущей способности винтовой сваи от характеристик грунта и конструктивных особенностей сваи


dS1, dS2, dS3 – условный диаметр лопасти винтовых свай (исполнение 1, 2, 3).


ds1, ds2, ds3 – условный диаметр ствола винтовых свай (исполнение 1, 2, 3).


h – глубина погружения.


e/Il – отношение пористости грунта к показателю текучести.

Допустимая нагрузка на винтовые сваи

Несущая способность свайного оборудования определяется климатическими особенностями региона, в котором производится укладка свайного фундамента, а также типом грунта. Допустимая нагрузка на винтовые сваи (несущая способность) – представляет собой максимальную нагрузку, которую способна вынести каждая свая и все сваи вместе в виде готовой конструкции, а также грунты с сохранением их функциональных качеств.

Какой считается допустимая нагрузка на винтовые сваи?

Стоит отметить, что параметр несущей способности не является статичным показателем. Это связано с тем, что данный параметр во многом зависит от опорной поверхности, в которую планируется вкручивать винтовые сваи в Лобне. Поэтому при проведении расчетов допустимой нагрузки на винтовые сваи, а также при выявлении показателя прочности готовой конструкции, всегда следует ориентироваться на средний показатель. К примеру, допустимая нагрузка на винтовые сваи с учетом мягкопластичности лесса, варьируется в пределах 2 – 4,3 т.

Фундаменты, при устройстве которых используются винтовые сваи, отличаются высокой степенью надежности. Стабильность и прочность таких оснований достигается благодаря повышенному противодействию оборудования получаемым нагрузкам. Для получения запаса несущей способности конструкции винтовые сваи в Кашире следует устанавливать с шагом не более 2 – 3 м. Это даст возможность обойтись незначительным поперечным сечением фундаментной балки и увеличить прочность фундамента.

При проведении строительства на глиняных грунтах, сваи должны обладать следующими параметрами несущей способности:

  • Тугопластичные глины – 4,2 – 6,3 т;
  • Мягкопластичные породы – 3,7 – 5,8 т;
  • Полутвердые породы – 4,5 – 6,7 т.

При проведении строительства в Москве и области, где преобладают песчаные грунты, нужно учитывать дополнительные параметры допустимой нагрузки:

  • Пылеватые пески – 4,2 – 6,3 т;
  • Мелкие пески – 5,6 – 7,7 т;
  • Средние пески – 9 – 11 т.

Расчет несущей способности суглинки и супеси производится аналогичным образом. Строители очень часто предпочитают не применять максимально возможную нагрузку на свайную конструкцию и каждую сваю в отдельности. Впрочем, это отнюдь не говорит о том, что свайно-винтовые фундаменты теряют в прочности, они по-прежнему обладают чрезвычайно высокими эксплуатационными параметрами.

Это достигается за счет конструктивной особенности свай, на которых помимо стержня имеются винтовые элементы. Винтовая конструкция делает оборудование слабодеформируемым и устойчивым к серьезным механическим нагрузкам. Поэтому если говорить о стоимости таких фундаментов, то она вполне оправдана и окупает себя до копейки, особенно при использовании на сложных грунтах. Винтовые сваи отличаются продолжительным эксплуатационным периодом за счет обработки оборудования защитными составами. Поэтому в некоторых случаях здания, возведенные на таких фундаментах, переживают своих владельцев. 

 

Винтовые сваи нагрузка расчет | Город свай

Начинающим строителям, а также всем тем, кто увлекается стройкой, а именно возведением фундамента, полезно будет ознакомиться с этой статьей, в которой указываются основные методики для расчета несущей способности винтовых свай.

Несущая способность винтовых свай: как правильно рассчитать нагрузку на винтовую сваю?

Для того чтобы рассчитать какова нагрузка на 1 винтовую сваю, нужно найти показатели площади основания сваи и узнать точное значение сопротивляемости почвенного грунта. Эти два значения требуется перемножить между собой, чтобы получить значение несущей способности сваи. Итак, приведем пример. Несущая способность винтовой сваи 108, которая установлена в глиняный грунт, будет определена таким способом:

  • Для начала требуется узнать значение площади лепестковой подошвы винтовой сваи. Например, диаметр лопастей винтовой сваи 108 равен 300 мм, значит, радиус равен 150 мм. Далее высчитать значение, перемножив радиус лопасти (150 мм) возведенный в квадрат на число Пи (3,14). Получится 706,5 см2.
  • После этого, оперируя данными таблицы в источниках, узнать несущую способность того грунта, где устанавливается фундамент. Несущая способность глиняного грунта равна 6 кг/ см2.
  • Затем, две полученные величины: нагрузку лопасти подошвы и нагрузку грунта перемножить. Из этого получается 6х706,5=4,2 тонны.

Из этих расчетов становится ясно, какую нагрузку может выдержать одна винтовая свая диаметром 108.

Как произвести расчеты несущей способности винтовой сваи, учитывая при этом надежность строительной конструкции?

Приведенные выше расчеты могут дать лишь общий результат, без учета конкретно того строения, которое вы планируете возводить. При расчетах следует учитывать и такой критерий, как запас прочности конструкции. Для того чтобы сделать расчет несущей способности сваи при этом, учитывая запас прочности сооружения, нужно воспользоваться формулой:

N=Fd/Yx

В данной формуле показатель N это та нагрузка, которую мы планируем рассчитать, F – это среднее значение несущей способности сваи, которую можно узнать методом умножения нагрузки грунта и площади винтовой сваи, Yx – это показатель запаса надежности сооружения. Точность вычислений несущей способности винтовой сваи с учетом запаса прочности здания будет определена лишь в том случае, если будет наиболее точно рассчитана несущая способность грунта, на котором будет возводиться постройка.

В конечном счете исходя из указанных нами условий – свая 108 и глинистый грунт, коэффициент запаса надежности сооружения может быть равным:

  • 1,75–1,4. Общее количество свай в данном случае может быть от пяти до двадцати, причем сваи должны быть с низким ростверком, монтирующимся на висячих опорах. 
  • 1,25 – такой коэффициент может быть выявлен при примерном расчете несущей способности грунтовой поверхности, с использованием сваи-эталона при зондировании почвы. Такие испытания проводятся геологами, которые создают на месте установки фундамента площадку для измерений с применением сваи-эталона. 
  • 1,2 – данный коэффициент получается при максимально точном измерении, которое возможно лишь при тщательном зондировании почвы, а также изучении почвенных образцов в химической лаборатории. 

По результатам расчетов получается, что несущая способность свай диаметром 108 равна 3,5 тонны. Этот показатель получается при точном измерении характеристик грунта, и на 1 тонну меньше – 2,5 при расчетах на основании табличных данных о характеристиках грунта.

Какова максимальная способность винтовых свай к нагрузке?

Теперь, когда нам известны все нюансы определения нагрузки на несущую опору, мы может рассчитать максимальную нагрузку на одну сваю. Для того чтобы произвести эти расчеты требуется:

  • Грунтовой поверхностью будет выступать песок с максимальной несущей способностью 15 кг/см2.
  • Опорой будут выступать свая маркой 108, которая имеет диаметр лопасти 300 мм. 
  • Коэффициент надежности равен 1,75, который указывает на точные показатели несущей способности и количестве свай около пяти.

В результате на основании этих данных, мы можем определить максимальную несущую способность каждой сваи, воспользовавшись следующим методом:

  • Площадь лепестковой опоры сваи 108 равна 706,5 см2.
  • Приблизительное значение опоры в соответствии с характеристиками грунтовой поверхности исходя из табличных данных равна — 10,5 тонн (706,5х15).
  • Оптимизированное значение опоры (точное значение) равно нагрузке в 6 тонн.

Исходя из этих данных, можно сделать вывод о том, что одна свая, имеющая радиус лопасти 150 мм, которая погружена в песок, может выдержать нагрузку равную 6 тоннам. Винтовые сваи – это очень надежный вид фундамента, которые ценятся в кругах строителей именно за их универсальные и надежные качества.

Как выполнить расчет несущей и допустимой способности винтовых свай

На запас прочности опорного столба влияет его длина и диаметр. Пример зависимости этих показателей можно увидеть в таблице 1.

Таблица 1. Несущая способность винтовых свай.

Диаметр, мм

Н/С, т

Длина опоры, м

89,0

4

2,5

108,0

7

2,5

133,0

8,5

2,5

Большое значение для расчетов имеет тип грунта на участке застройки, глубина залегания плотного несущего слоя, уровень промерзания почвы. При проектировании фундамента нужно подбирать такое количество стержней, чтобы проектная нагрузка на основание была меньше табличной, то есть обязательно должен быть запас прочности.

Основные составляющие расчетов нагрузки на сваи:

  • диаметры ствола и лопастей;
  • длина свайной конструкции;
  • характеристики грунта. 

Самый простой способ расчета выполняется при помощи формулы H = F / уk, где:

  • H — вес, который выдерживает свайная конструкция;
  • F — «чистая» нагрузка;
  • уk — поправочный коэффициент.

Коэффициент надежности зависит от количества столбов в свайном поле, нагрузки на почву. Для определения поправочного коэффициента используют следующие данные:

  • Коэффициент 1,2. Его используют в том случае, если были проведены точные геологические исследования с зондированием почвы, сбором образцов, лабораторными исследованиями грунта. Этот способ редко используют при строительстве частных домов из-за высокой стоимости геологической экспертизы.
  • Значение 1,25. Такой коэффициент используется если было проведено пробное бурение. Сваю-эталон вкручивают в нескольких точках на участке застройки. Таким способом определяют глубину залегания несущего пласта, его толщину. Для выполнения пробного бурения нужны практические навыки, а также определенные познания в области геологии.
  • Значение 1,75. Этот показатель применяется при самостоятельном исследовании грунта и использовании справочных данных. Он подходит для свайных фундаментов при количестве опорных столбов до 22 штук. 

Для частного строительства лучше применять 2 способ, поскольку провести полноценную геологическую экспертизу своими силами невозможно. 

Чтобы рассчитать неоптимизированную несущую нагрузку нужно выполнить вычисления по следующей формуле F = S x Rо, где Ro это прочность основания, а S — площадь лопасти. Ее вычисляют по специальной формуле или используют исходные данные, которые предоставляют изготовители винтовых свай.

Таблица 2. Размеры и вес свайных конструкций. 

Диаметр столба, мм

Диаметр лопасти, мм

Длина, м

Вес, кг

Толщина стали (ствол), мм

Толщина стали (лопасть), мм

89,0

250,0

3,0

24,1

3,0-3,5

4,0

108,0

300,0

3,0

34,9

3,5-4,0

5,0

133,0

350,0

3,0

44,6

4,0-4,5

5,0

При определении длины опорных конструкций нужно учитывать тип грунта и особенности климата данной местности. Поскольку сваи вкручивают ниже точки промерзания необходимо знать на какую глубину промерзает почва. Средние показатели для Москвы и Московской области:

  • глинистые почвы и суглинки — 135 см;
  • песчаные — от 164 до 176 см;
  • каменистые — 200 м.

Для определения прочности основания (Ro) применяют табличные данные.

Таблица 3. Тип почвы и ее несущая способность.

Тип грунта

Rо на глубине 150 см и более, кг/см2

Галька с включениями глины

4,5

Гравелистый с включениями глины

4,0

Песчаные почвы (крупная фракция)

6,0

Песчаные почвы (средняя фракция)

5,0

Песчаный (мелкая фракция)

4,0

Пылеватый песок

2,0

Глинистые почвы и супеси

3,5

Вязкие глинистые почвы

6,0

Просадочный грунт или насыпное основание (с уплотнением)

1,5

Насыпной грунт (без уплотнения)

1,5

Данные из таблиц подставляют в формулу и находят ориентировочную нагрузку на основание. Полученное число умножают на коэффициент надежности и определяют проектную нагрузку на один опорный столб.

Более точное значение можно получить, используя множество коэффициентов: от глубины залегания лопастей и силы бокового трения до характера работы опоры, величины выдергивающих или сжимающих сил. Чтобы упростить работу используют данные из таблиц.

Таблица 4. Несущая способность одной свайной опоры (Ф ствола 108 мм, Ф лопасти 300 мм).

Тип почвы

Несущая способность сваи в кг при глубине залегания лопасти, см

150

200

250

300

мягкопластичная лессовая

2200

2900

3600

4300

полутвердые глинистые

4700

5400

6000

6700

тугопластичные глинистые

4200

4900

5600

6300

мягкопластичные глинистые

3700

4400

5000

5800

полутвердый суглинок

4400

5100

5800

6500

тугопластичная суглинистая

3900

4600

5300

6000

мягкопластичная суглинистая

3500

4200

4800

5500

песчаные (крупная и средняя фракция)

9700

10400

11100

песчаные (мелкая фракция)

6300

700

7700

пылеватый песок

4900

5600

6300

Запас прочности свайных опор диаметром 108 мм позволяет использовать их в качестве основания для строительства каркасных, бревенчатых, брусовых домов в один этаж. Для двухэтажных построек, а также сооружений из кирпича и блока используют сваи большего диаметра.

Расчет нагрузки на винтовые сваи для фундамента

Винтовые сваи от «ДИАС» — это надежность изготовленной конструкции. Благодаря собственному производству мы получаем качественный продукт, используя материалы с высокими эксплуатационными характеристиками. Соблюдая все правила процесса изготовления (резки, изгиба, сварки), мы можем их применять на обводненных, торфяных или песчаных грунтах.

Для того, чтобы сделать заказ и начать строительство, необходимо рассчитать допустимые нагрузки, которые сможет выдержать свайно-винтовая конструкция. Важно произвести правильные расчеты надежности опор под здание, чтобы в будущем не допустить усадки наклона или разрушения.

Определение расчетного веса конструкции

При выборе качественной опоры для фундамента и будущего строения, нужно обратить внимание на важную характеристику из таблицы винтовых свай – их несущую способность. Ее суть заключается в максимально возможной нагрузке, которую сможет выдержать конструкция, не теряя своих функциональных качеств. На расчет возможной тяжести на фундаментальный материал влияют несколько факторов. А именно параметры:

  • Тип почвы, в которой будут размещаться опоры;
  • Метод изготовления и состав материала;
  • Ее длина;
  • Площадь лепестковой опоры.

К примеру, можем рассчитать нагрузку на винтовую сваю диаметром 108 сантиметров. Для этого мы учитываем значения площади лепестков и характеристики грунта. Для точного вычисления показателей лучше воспользоваться услугами инженеров, которые произведут инженерно-геологические и гидрогеологические изыскания. Это поможет определить количество, размеры, границы расположения на земельном участке металлических стержней. Средняя тяжесть, которую выдерживает винтовая свая диаметром 108 сантиметров составляет до 7 тонн.

Какой вид продукции выбрать, чтобы обеспечить надежность сооружения?

Свайный фундамент отличается характерной устойчивостью к высоким нагрузкам. Например, винтовые сваи 89 диаметра способны выдержать до 5 тонн веса.

Наши специалисты помогут определить, сколько необходимо свай для конкретного фундамента и какой должна быть их несущая способность. Если у Вас остались какие-либо вопросы о расчетах конструкций 57, 76, 89, 108, 133 диаметра, позвоните нам по одному из номеров телефонов +7 (495) 532-17-64, +7 (925) 083-96-04.

Для чего подойдут винтовые сваи диаметром 76 мм?


При выборе размеров винтовых свай для каждого строительного объекта, прежде всего ориентируются на расчетную нагрузку. Это значение определено базовыми нормативами для разных сфер использования. Оно указывает расчетную нагрузку на одну сваю, а также позволяет высчитать оптимальное количество опор, которое потребуется для каждого объекта любой площади.


 

Получить консультацию специалиста


Применение свай 76 мм


Они относятся к группе, рассчитанной на небольшую вертикальную весовую нагрузку, так же, как и 57 — миллиметрового диаметра. Но 76 — миллиметровый вариант способен выдерживать более значительные как динамические, так и статические нагрузки.


Эффективно и рационально их использование при сооружении:


  • Заборов и ограждений любого типа. Особенно со сплошной, не сетчатой площадью, которая, как парус, подвергается сильному ветровому давлению;

  • придорожных знаков, указателей;

  • небольших архитектурных форм любого назначения, различных ландшафтных сооружений в парках и садах;

  • навесов, террас, павильонов, беседок;

  • хозяйственных построек разного назначения;

  • теплиц, оранжерей и парников;

  • любых других нестандартных объектов.


Для вышеперечисленных сооружений рекомендуется применять винтовые сваи 76 мм без всякого дополнительного усиления. Необязательно ленточное бетонирование по всему периметру. Не требуется устройство ростверков или армирование оснований.


Расчетная нагрузка на один такой элемент — до 3 тонн. Если сооружение большой массы и допустимая нагрузка незначительно превышает этот показатель, использование этого диаметра возможна, но с усилением бетонным монолитом. Но это не всегда экономически и технологически обоснованно. В большинстве случаев намного проще использовать более крупные сваи или такие же дополнительные по количеству, поделив лишнюю нагрузку.


Купить винтовые сваи 76 мм от компании ЛенСвая


Эти изделия выпускаются на производятся предприятии ЛенСвая. Они разной длины, от 1 до 4 м, что позволяет выбрать нужный размер. Диаметр лопастей — 250 мм. С ними можно использовать оголовки размером 200 на 200 мм.


Если нет готового проекта, в котором уже рассчитано нужное количество и размеры свай, наши специалисты могут точно и профессионально сделать расчет.


 

Бесплатный расчёт стоимости фундамента


 


Продукция от производителя, без посредников — всегда дешевле.


В нашей компании можно заказать полное проектирование, расчет количества элементов и само строительство любого фундамента на основании винтовых свай 76 мм.


Это избавит вас от лишних хлопот с тратой времени и поможет снизить расходы за счет точного расчета, когда не придется покупать чрезмерное количество свай.


Наши фундаменты надежно служат без всякого ремонта и обслуживания, по принципу «сделал и забыл на десятилетия»!


 


Винтовые сваи

— что нужно знать инженеру — статьи

Основы спирального глубокого фундамента

Спиральная основа состоит, по меньшей мере, одной спираль-образной стальные несущей пластины, прикрепленной к центральному стальному валу. Вал обычно представляет собой прочный стальной стержень (квадрат от 12 до 23 дюймов) или толстостенную трубу (диаметром от 2 до 8 дюймов). Винтовые пластины изготовлены из высокопрочной стали (диаметром от 6 до 16 дюймов, толщиной d или 2 дюйма). Каждая спираль имеет круглую форму в плане и имеет резьбу с определенным шагом (обычно 3 дюйма).

Установка осуществляется с помощью гидравлических двигателей, устанавливаемых практически на любой тип машины. Переносное оборудование доступно для таких труднодоступных мест, как лазейки, подвалы и узкие переулки. Ударное буровое оборудование не используется. Двигатель с высоким крутящим моментом от 5 до 25 об / мин обеспечивает энергию вращения, а машина обеспечивает давление (давление прижима), необходимое для установки. Винтовой фундамент вращается (ввинчивается) в землю, чтобы продвинуться на одно шаговое расстояние за оборот.Спиральные основания можно полностью раздвигать; так что винтовые пластины могут быть установлены на любую заданную глубину опоры.

Винтовой фундамент может использоваться для противодействия как подъемным, так и сжимающим нагрузкам. Установленные на нужную глубину и крутящий момент, винтовые пластины служат отдельными несущими элементами, выдерживающими нагрузку. Центральный вал, который передает крутящий момент во время установки, теперь передает осевую нагрузку на винтовые пластины. Центральный стальной вал также обеспечивает сопротивление осевой нагрузке за счет поверхностного трения и поперечным нагрузкам за счет пассивного давления грунта.

Зачем нужны спиральные фундаменты?

Низкие затраты на мобилизацию: винтовые фундаменты обычно устанавливаются с помощью небольшого оборудования, такого как обратная лопата с резиновыми колесами. Это исключает высокие затраты на мобилизацию, связанные с оборудованием, используемым для установки забивных свай, бурильных валов или шнековых свай. Удаленное расположение или труднодоступные участки также увеличивают затраты на мобилизацию, что делает винтовой фундамент лучшим выбором.

Расширяющиеся грунты: Несущие плиты винтовых фундаментов обычно размещаются ниже глубины сезонных колебаний влажности.Сила разбухания на валу прямо пропорциональна площади поверхности контакта между почвой и валом. Поскольку винтовые фундаменты имеют меньшие валы, чем обычные сваи, подъемные силы меньше.

Круглогодичная установка: Винтовой фундамент можно устанавливать в любую погоду, поскольку не требуется бетон или раствор. Это позволяет работать без перерыва.

Временные конструкции: Спиральные основания можно удалить, изменив процесс установки в обратном порядке.Во время зимних Олимпийских игр 2002 года в Солт-Лейк-Сити винтовые фундаменты использовались для поддержки временных трибун и судейских кабин на различных объектах, а также огромных информационных знаков, информирующих посетителей о событиях.

Ремонтные работы: Самый большой сегмент рынка винтовых фундаментов на сегодняшний день — это ремонтные основания. Они могут дополнять или заменять существующие фундаменты, поврежденные дифференциальной осадкой, растрескиванием, пучением или общим разрушением фундамента.Винтовые фундаменты идеально подходят для ремонтных работ, поскольку их можно устанавливать в ограниченном внутреннем пространстве. Работа является малотравматичной, с минимальным ущербом для ландшафтного дизайна или разрушением для жильцов здания.

Соображения о целесообразности

Нагрузки: Расчетные нагрузки сжатия и растяжения для винтовых фундаментов составляют от 12,5 до 50 тонн. Грунт обычно является ограничивающим фактором, поскольку количество и размер спиральных оснований можно варьировать в зависимости от области применения.

Грунты: спиральные фундаменты могут быть установлены в грунтах с числом ударов (N-значение) менее 80 ударов на фут 2-дюймового пробоотборника согласно ASTM D-1586. Недостатком винтовых фундаментов является то, что они не могут быть установлены в прочную скалу или очень твердую плотную почву с силой более 80 ударов на фут.

Теория дизайна

Существует несколько методов проектирования спиральных фундаментов и прогнозирования их характеристик под нагрузкой. Двумя из этих методов являются несущая способность и корреляция крутящего момента.

Несущая способность

Общее уравнение несущей способности Терзаги предполагает, что общая несущая способность винтового основания, при растяжении или сжатии, равна сумме грузоподъемности каждой отдельной винтовой пластины. Рассчитав несущую способность грунта и применив ее к отдельным участкам спиральной пластины, определите ее. Метод несущей способности достаточно хорошо предсказывает несущую способность при наличии адекватных данных о грунте.Данные о почве обычно предоставляются в геотехническом отчете. Если данные о почве отсутствуют или недоступны, требуются другие методы проектирования.

Корреляция крутящего момента

Эмпирическая взаимосвязь между крутящим моментом при установке и грузоподъемностью считается важнейшим признаком винтовых фундаментов. Взаимосвязь такова: по мере того, как винтовой фундамент устанавливается (привинчивается) во все более плотную / твердую почву, сопротивление установке (называемое энергией установки или крутящим моментом) будет увеличиваться.Аналогичным образом, чем выше крутящий момент при установке, тем выше осевая нагрузка установленного винтового фундамента. Взаимосвязь может быть описана следующим уравнением:

QU = Kt x T

QU = Максимальная вместимость винтовой сваи

Kt = Эмпирический коэффициент крутящего момента

T = средний монтажный крутящий момент

Значение Kt может варьироваться от 3 до 20 футов, в зависимости от условий почвы и проектных параметров (в основном, размера вала).Для вала квадратного сечения оно обычно составляет от 10 до 20. Для вала трубы оно обычно составляет от 3 до 10 футов. Инструменты контроля крутящего момента обеспечивают хороший метод управления производством во время установки.

Проверка емкости

Инженер может использовать соотношение между крутящим моментом установки и допустимой нагрузкой, чтобы установить критерии минимального крутящего момента для установки производственных винтовых фундаментов. Рекомендуемые значения по умолчанию для Kt [10 для квадратного вала и 7 для трубчатого вала с наружным диаметром 32 дюйма] обычно дают консервативные результаты.Для крупных проектов можно использовать программу испытаний под нагрузкой перед производством, чтобы установить соответствующий коэффициент корреляции крутящего момента (Kt) для существующих проектных грунтов.

Другие проблемы дизайна

Фактор безопасности: для сжимающих нагрузок коэффициент безопасности 2 исторически был достаточен для учета неизбежных неопределенностей в почве, установке и производстве. В некоторых случаях, как в случае с анкерными креплениями для удержания грунта, коэффициент запаса прочности может быть меньше единицы.5.

Расстояние между спиральными основаниями: Рекомендуемое межцентровое расстояние между соседними спиральными основаниями в пять раз больше диаметра самой большой спирали. Абсолютный минимальный интервал составляет три диаметра. Требования к минимальному расстоянию применяются только к винтовой пластине, что означает, что центральный вал может быть поврежден для получения необходимого расстояния.

Помощь в проектировании: За помощью в проектировании на любом этапе процесса проектирования, включая расчет емкости, выбор винтового фундамента, коррозию, проблемы бокового продольного изгиба и характеристики, обратитесь к местному установщику или дистрибьютору спирального фундамента.Они либо помогут вам напрямую, либо направят ваш запрос производителю. Блок-схема алгоритма проектирования демонстрирует этапы проектирования винтового фундамента.

Торги

Если на конкретном участке известна удовлетворительная информация о грунтах, подрядчик может единовременно предложить винтовые фундаменты или анкеры, независимо от длины. Паушальные ставки популярны среди владельцев, потому что цена известна заранее.

Цена за фундамент с добавлением / вычетом ставки обычно используется, когда информация о почве практически отсутствует.Это, наверное, самый распространенный вид контракта. Используется заранее определенная длина заявки с добавлением / вычетом суммы на линейный фут, чтобы учесть изменения в геологических условиях.

Возможные преимущества и ограничения винтовых свай и спиральных анкеров

Инженеры

иногда спрашивают: «Каковы некоторые из потенциальных преимуществ использования винтовых свай или спиральных анкеров в моем проекте и каковы некоторые ограничения?» Это отличные вопросы, и кажется, что здесь можно дать короткие и простые ответы.

Возможные преимущества использования винтовых свай и винтовых анкеров

A1. Быстрая установка

Винтовые сваи и винтовые анкеры обычно устанавливаются с помощью обычного строительного оборудования, такого как гусеничный экскаватор или мини-экскаватор, оснащенный низкоскоростным высокомоментным гидромотором соответствующего размера. Нет необходимости мобилизовать специальное оборудование, например кран с сваебойным молотком или большую буровую установку. Это обеспечивает быструю и недорогую мобилизацию; Подрядчики могут быстро отреагировать и прибыть на место.Обычно требуется только оператор и один рабочий. Большая грузоподъемность может быть получена при использовании относительно небольшого монтажного оборудования.

Скорость установки обычно составляет от 6 до 10 об / мин, что означает, что это занимает всего около 30 секунд. продвинуть винтовой или винтовой анкер на фут, или около 5 мин. на 10 футов длины. В зависимости от используемой удлинительной секции бригада может прикрепить удлинитель трубы или квадратного вала примерно за минуту, поэтому установка 50 футов займет всего 30-40 минут.Установка не зависит от погодных условий в большинстве случаев установки даже в неблагоприятных условиях.

A2. Непосредственная несущая способность

Винтовые сваи и винтовые анкеры уникальны среди большинства других типов фундаментов или анкерных систем тем, что их можно нагружать сразу после установки. Нет необходимости ждать, пока затвердеет бетон или раствор, или, в случае забивных свай, не нужно ждать, пока не исчезнет избыточное давление поровой воды.Это может быть важно для некоторых проектов, например, для аварийного реагирования, когда график строительства короткий, а остальная часть проекта зависит от установки фундамента или анкеров.

В большинстве почвенных условий предельная нагрузка винтовых свай и спиральных анкеров со временем будет увеличиваться в результате эффектов старения и тиксотропии. Это означает, что мощность сразу после установки может быть несколько ниже, чем мощность длительного хранения, что является консервативным.

A3. Минимальное нарушение рабочего места

По сравнению с большинством других видов строительной деятельности, связанных с установкой забивных свай, буронабивных валов или других систем анкерного крепления, установка винтовых свай и спиральных анкеров практически не вызывает нарушения строительной площадки. В частности, установка винтовых свай и спиральных анкеров обычно не приводит к вырубанию почвы. Это сохраняет чистоту на объекте, требует минимальной очистки в каждом месте установки после установки и обычно означает более низкие затраты на проект.Дополнительным преимуществом является низкий уровень шума, связанный с установкой. Установка также производит минимальные вибрации, которые могут быть важны для некоторых проектов, чувствительных к вибрации конструкции. Поскольку винтовые сваи и винтовые анкеры имеют небольшую рабочую площадь, они также вызывают минимальное повреждение прилегающих конструкций. В случае переоборудования или восстановления существующие конструкции часто все еще можно использовать при установке винтовых свай или винтовых анкеров. Поскольку они не производят почвенные обрезки, их также можно эффективно использовать на участках, где могут встречаться загрязненные почвы, поскольку почвы не выходят на поверхность земли.

A.4 Мониторинг установки и проверка допустимой нагрузки во время установки

Одной из важнейших характеристик винтовых свай и винтовых анкеров является проверка несущей способности во время установки. В некоторых отношениях это похоже на мониторинг установки забивных свай с помощью анализатора забивки свай во время установки. Это возможно за счет использования линейного устройства для измерения крутящего момента, которое измеряет крутящий момент при установке сваи / анкера в землю.Многие исследования показали, что существует взаимосвязь между крутящим моментом установки и допустимой нагрузкой, а это означает, что инженеры могут сразу проверить производительность. В большинстве проектов соотношение крутящего момента к мощности подтверждается испытаниями под нагрузкой на месте.

Контроль крутящего момента установки также означает, что можно проверить состояние почвы в каждом месте установки и оценить подземную изменчивость. Контролируя крутящий момент установки, можно увеличить требуемую грузоподъемность, углубившись в более качественный грунт или используя другую геометрию сваи / анкера.Крутящий момент при установке часто используется как часть допустимых критериев прекращения, указанных в спецификациях проекта.

А5. Установка в удаленных местах или на сайтах с ограниченным доступом

Винтовые сваи и винтовые анкеры хорошо подходят для проектов, расположенных в отдаленных районах, где затраты на мобилизацию обычно высоки, а другие вспомогательные услуги строительства ограничены или могут быть недоступны. Некоторые проектные площадки перегружены или имеют ограниченный доступ для строительной техники.Проекты, предусматривающие переоборудование, могут иметь невысокие габариты для выполнения работ, например, внутри существующих конструкций. Поскольку винтовые сваи и спиральные анкеры могут изготавливаться как модульные системы, состоящие из направляющих и удлинительных секций, они идеально подходят для ситуаций с малой высотой или ограниченным доступом.

А6. Установка в условиях высоких грунтовых вод

Винтовые сваи и винтовые анкеры обычно не требуют выемки грунта для установки. В случаях, когда они используются для опоры существующей конструкции, может потребоваться неглубокая выемка грунта, чтобы обнажить существующий фундамент.Трудности, с которыми часто возникают мелкие грунтовые воды на строительных площадках, обычно практически не влияют на установку винтовых свай и спиральных анкеров. Это ускоряет строительство и устраняет необходимость в насосах или других методах обработки грунтовых вод и снижает затраты.

А7. Простая установка на тесто

Хотя обычно винтовые сваи и винтовые анкеры устанавливают вертикально, на самом деле их можно установить практически в любом положении в соответствии с потребностями проекта.Установка на тесто, например, для обеспечения дополнительного сопротивления боковой нагрузке, проста. В проектах по удержанию грунта даже установка спиральных анкеров по горизонтали может быть выполнена без особых трудностей.

А8. Простые полевые модификации для увеличения грузоподъемности

Еще одна уникальная особенность винтовых свай и спиральных анкеров, которая делает их очень универсальными, — это способность быстро изменять конфигурацию винтовых элементов для увеличения грузоподъемности.Частично это достигается за счет модульной природы технологии. Добавление дополнительных секций с дополнительными спиральными пластинами и / или спиральными пластинами большего диаметра легко и означает, что инженер может быстро разработать решение, не требуя изготовления совершенно нового фундамента или анкера. Это еще раз показывает универсальность технологии.

А9. Широкий спектр применения в почвах и нагрузках

Винтовые сваи и спиральные анкеры могут быть установлены в широком диапазоне подземных условий, от очень мягких до очень жестких глин, от рыхлых до очень плотных песков.Расчетные нагрузки имеют очень широкий диапазон в зависимости от требований проекта и могут достигать 650 тысяч фунтов!

А10. Низкий углеродный след — устойчивые технологии

Многие производители винтовых свай и спиральных анкеров используют при производстве высококачественную переработанную сталь. Это сохраняет природные ресурсы и энергию и снижает общий углеродный след. Винтовые сваи и винтовые анкеры особенно полезны для поддержки временных конструкций, поскольку их можно снимать и повторно использовать практически без изменения структурной целостности.Это сильно отличается от забивной сваи, просверленного ствола или залитого анкера, которые часто просто бросают. Некоторые винтовые сваи стояли на месте несколько лет, были сняты и повторно использованы на другом объекте.

А11. Модульная конструкция

Винтовые сваи и винтовые анкеры

изготавливаются секциями, что дает модульную конструкцию. Это означает, что можно легко увеличить или уменьшить длину установки, если это необходимо, в соответствии с условиями площадки и требованиями проекта.

Возможные ограничения использования винтовых свай и винтовых анкеров

Винтовые сваи и спиральные анкеры предоставляют инженеру еще один инструмент в их инструментарии для разработки альтернативных решений для решения проблем, и, как и любая другая доступная технология, они не лишены некоторых ограничений.

L1. Предельные почвенные условия

Винтовые сваи и спиральные анкеры обычно ограничиваются установкой в ​​почвах с максимальным размером зерна менее 60% шага спиралей.Для типичного шага 3 дюйма это означает максимальный размер зерна около 1 3⁄4 дюйма или средний гравий. Винтовые сваи и спиральные анкеры обычно не продвигаются правильно в гравийных и булыжных отложениях; их просто нельзя использовать. Они также не подходят для горных пород, хотя в некоторых случаях может оказаться возможным продвинуть свинцовую спиральную пластину для опоры в пределах первых нескольких дюймов выветренной породы, например, в профилях остаточного грунта.

L2. Ограничения по оборудованию

Правильная установка винтовых свай и спиральных анкеров важна для производительности.Оборудование, используемое Подрядчиком, должно быть выбрано в соответствии с ожидаемыми грунтовыми условиями проекта, конкретной геометрией, выбранной для работы, и ожидаемым максимальным крутящим моментом при установке. Оборудование меньшего размера ограничивает надлежащую предварительную и окончательную установку. Общее практическое правило состоит в том, что вес машины должен составлять около 1/2 тонны на 1000 фут-фунтов. необходимого крутящего момента при установке. Таким образом, если максимальный крутящий момент, ожидаемый для проекта, составляет 6500 фунт-футов, машина должна иметь минимальный вес около 3 1⁄4 тонны.

L3. Структурные ограничения

У каждого винтового и спирального анкера есть конструктивные ограничения, указанные производителем. Иногда это называют «номинальным крутящим моментом». Это означает, что существует предел крутящего момента, который должен быть приложен к винтовой свае или спиральному анкеру, прежде чем структурная целостность будет нарушена. Во время установки этот предел не должен превышаться, даже если оборудование, используемое для установки, может иметь гораздо более высокий крутящий момент.В случае, если во время установки достигается повторяющийся предельный крутящий момент и не соблюдаются требования по установке, необходимо использовать другую конфигурацию винтового или винтового анкера.

(PDF) Механизм передачи нагрузки винтовых свай в песчаных грунтах

Кривая отклика

сжимается, а линейная часть немного расширяется.

Реакция сваи и ее несущая способность не зависят от коэффициента Пуассона грунта

. Нелинейная часть отклика сваи на

больше влияет на несущую способность винтовой сваи в

по сравнению с линейной частью при изменении диаметра спирали.

Изменение длины сваи влияет только на нелинейную часть

отклика сваи.

Благодарности Это исследование было поддержано научно-исследовательским предприятием «Омран

Теджарат Марпич Арас». Авторы

благодарят свои власти за помощь в этом исследовании. В ходе этого исследования

не получали какого-либо специального гранта от финансирующих агентств в государственном,

коммерческих или некоммерческих секторах.

Соблюдение этических стандартов

Конфликт интересов От имени всех авторов соответствующий

автор заявляет, что конфликта интересов нет.

Ссылки

1. Адамс Дж. И., Клим Т. В. (1972) Исследование креплений для фундаментов трансмиссионных башен

. Can Geotech J 9 (1): 89–104

2. Хойт Р.М., Клеменс С.П. (1989) Подъемная способность спиральных анкеров

в грунте. В: Документ, представленный в материалах 12-й международной

национальной конференции по механике грунтов и инженеру-фундаменту-

, Рио-де-Жанейро, Бразилия, стр. 1019–1022

3. Митч М.П., ​​Клеменс С.П. грузоподъемность якоря спирали

в песках.В: Поведение анкерных фундаментов в грунте при подъеме.

Протоколы заседания, организованного инженерно-геологическим отделом

Американского общества инженеров-строителей в

в связи с конвенцией ASCE, Детройт, штат Мичиган, ASCE,

Нью-Йорк, стр. 26–47

4 Чжан Д. (1999) Прогнозирование несущей способности винтовых свай в грунтах

Альберты. M.Sc. Диссертация, Университет Альберты, Эдмонтон,

Альберта, Канада

5.Donal J, Calyton PE (2005) Базовая конструкция винтовой сваи. ECP

анкер динамометрический марка винтовых винтовых свай. Earth Contact Prod-

ucts Company, pp 1–28

6. Главный офис и канадские офисы (2010) Европейские офисы.

Справочник по проектированию винтовых свай. HPS 7thedition, pp 20–28

7. Нарасимха Р.С., Прасад Й. (1993) Оценка подъемной способности

винтовых свай в глинах

. J Geotech Eng 119 (2): 352–357

8. Мейерхоф Г.Г., Адамс Дж.И. (1968) Максимальная подъемная способность

фундамента.Can Geotech J 4 (5): 225–244

9. Bella A (1961) Устойчивость к вырыванию грибов

Фундамент для пилонов. В: Доклад, представленный на заседании

5-й международной конференции по механике грунтов и фундаментной инженерии

, Париж, Франция

10. Sakr M (2011) Монтажные и эксплуатационные характеристики

винтовых свай большой емкости в несвязные почвы. Deep Found

Instit J 5 (1): 39–57

11.Lanyi-Bennett SA, Deng L (2018) Испытания на осевую нагрузку спиральных групп свай

в ледниково-озерной глине. Can Geotech J

56 (2): 187–197

12. Wada M, Tokimatsu K, Maruyama S, Sawaishi M (2017) Влияние

циклической вертикальной нагрузки на несущую способность и выносливость

свай с непрерывной спиралью крыло. Обнаруженные грунты J 57 (1): 141–153

13. Уиллер Л.Н., Хендри М.Т., Так, В.А., Холт Н.А. (2018) Поле

— эксплуатационные характеристики торфяного железнодорожного полотна, укрепленного винтовыми сваями

.Can Geotech J 57 (12): 1888–1899

14. Chen Y, Deng A, Wang A, Sun H (2018) Характеристики винтовой сваи

в песке: модельное испытание и моделирование DEM. Comput

Geotech J 104: 118–130

15. Салхи Л., Наит-Рабах О., Дейрат С., Роос С. (2013) Численное моделирование

поведения одинарной винтовой сваи при сжимающей нагрузке

в песке. Electron J Geotech Eng 18: 4319–4338

16. Brinkgrevee RBJ, Broere W., Waterman D (2002) Plaxis V8,

Справочное руководство.Технологический университет Делфта и PLAXIS,

Делфт

17. Мохаджерани А., Босняк Д., Бромвич Д. (2016) Анализ и

методы проектирования винтовых свай: обзор. Soils Found J

56 (1): 115–128

Примечание издателя Springer Nature остается нейтральным в отношении

претензий юрисдикции в опубликованных картах и ​​институциональных филиалах.

Indian Geotech J

123

Механизм передачи нагрузки винтовых свай в песчаных грунтах

  • 1.

    Адамс Дж. И., Клим Т. В. (1972) Исследование анкеров для фундаментов опор электропередачи. Can Geotech J 9 (1): 89–104

    Статья

    Google ученый

  • 2.

    Хойт Р.М., Клеменс С.П. (1989) Подъемная способность спиральных анкеров в грунте. В: Доклад, представленный в материалах 12-й международной конференции по механике грунтов и проектированию фундаментов, Рио-де-Жанейро, Бразилия, стр. 1019–1022

  • 3.

    Митч М.П., ​​Клеменс С.П. (1985) Подъемная способность спиральных анкеров в песок.В: Поведение анкерных фундаментов в грунте при подъеме. Материалы сессии, спонсируемой отделом геотехнической инженерии Американского общества инженеров-строителей в связи с конвенцией ASCE, Детройт, штат Мичиган, ASCE, Нью-Йорк, стр. 26–47

  • 4.

    Zhang D (1999) Возможности прогнозирования винтовых свай в почвах Альберты. M.Sc. кандидатская диссертация, Университет Альберты, Эдмонтон, Альберта, Канада

  • 5.

    Донал Дж., Кэлитон П.Е. (2005) Проектирование основной винтовой сваи.Марка анкера крутящего момента ВЦП винтовых винтовых. Earth Contact Products Company, стр. 1–28

  • 6.

    Головной офис и офисы в Канаде (2010 г.) Европейские офисы. Справочник по проектированию винтовых свай. HPS 7thedition, pp. 20–28

  • 7.

    Narasimha RS, Prasad Y (1993) Оценка подъемной способности винтовых свай в глинах. J Geotech Eng 119 (2): 352–357

    Статья

    Google ученый

  • 8.

    Мейерхоф Г.Г., Адамс Д.И. (1968) Максимальная подъемная способность фундаментов.Can Geotech J 4 (5): 225–244

    Артикул

    Google ученый

  • 9.

    Bella A (1961) Устойчивость к разрушению грибовидных оснований пилонов. В: Доклад, представленный на заседании 5-й международной конференции по механике грунтов и проектированию фундаментов, Париж, Франция

  • 10.

    Sakr M (2011) Установка и эксплуатационные характеристики винтовых свай большой грузоподъемности в несвязных грунтах. Deep Found Instit J 5 (1): 39–57

    Статья

    Google ученый

  • 11.

    Lanyi-Bennett SA, Deng L (2018) Испытания на осевую нагрузку спиральных групп свай в ледниково-озерной глине. Can Geotech J 56 (2): 187–197

    Артикул

    Google ученый

  • 12.

    Вада М., Токимацу К., Маруяма С., Савайши М. (2017) Влияние циклической вертикальной нагрузки на несущую способность и выносливость свай с крылом со сплошной спиралью. Найденные почвы J 57 (1): 141–153

    Статья

    Google ученый

  • 13.

    Wheeler LN, Hendry MT, Take WA, Hoult NA (2018) Полевые характеристики земляного полотна торфяной железной дороги, усиленного винтовыми сваями. Can Geotech J 57 (12): 1888–1899

    Артикул

    Google ученый

  • 14.

    Чен Ю., Дэн А., Ван А., Сун Х. (2018) Характеристики винтовой сваи в песке: испытание модели и моделирование ЦМР. Comput Geotech J 104: 118–130

    Статья

    Google ученый

  • 15.

    Салхи Л., Наит-Рабах О., Дейрат К., Роос С. (2013) Численное моделирование поведения одинарной винтовой сваи при сжимающей нагрузке в песке. Электронный журнал Geotech Eng 18: 4319–4338

    Google ученый

  • 16.

    Brinkgrevee RBJ, Broere W, Waterman D (2002) Plaxis V8, Справочное руководство. Делфтский технологический университет и PLAXIS, Делфт

    Google ученый

  • 17.

    Мохаджерани А., Босняк Д., Бромвич Д. (2016) Методы анализа и проектирования винтовых свай: обзор.Найденные почвы J 56 (1): 115–128

    Статья

    Google ученый

  • Таблица выбора винтовых и винтовых свай в зависимости от нагрузки на фундамент.

    Модель Тип проекта Максимально допустимая несущая способность 1234 Допустимая боковая нагрузка 5 Максимальный момент установки Допустимое сопротивление изгибу 7
    Компрессия (фунты) Натяжение (фунты) фунтов фут-фунт фут-фунт
    P1
    Ø 1.9 из
    Легкий жилой
    (палуба без крыши, лестницы и т. Д.)
    6700 3,350
    до 4,450
    250 1,336 8 785
    P2
    Ø 2,4 дюйма
    Средние жилые и легкие коммерческие
    (палуба, навес, солярий, одноэтажная жилая пристройка и т. Д.)
    11 200 5,600
    до 7,450
    550 2,242 8 1,360
    P3
    Ø 3.5 из
    Тяжелые жилые, легкие и средние коммерческие и промышленные
    (двухэтажная жилая пристройка, коттедж, вывеска, навес, солнечная панель, новое строительство, фундамент, дощатый настил, подъезд и т. Д.)

    29 800
    до 33 000
    15000
    до 19850
    1,200 8,509 8 4,571
    P4 6
    Ø 4 дюйма
    Тяжелые жилые, легкие и средние коммерческие и промышленные
    (коттедж, вывеска, световой столб, солнечная панель, новое строительство, дощатый настил, тумбочка, столбик и т. Д.)
    36 000
    до 45 000
    18 000
    до 30 000
    1,500 11 000 6,371
    P3-HD 6
    Ø 3,5 дюйма
    Тяжелые жилые, легкие и тяжелые коммерческие и промышленные
    (новое строительство, опора, стяжка и т. Д.)
    38 000 90 451 до 45 000 19 000
    до 30 000
    1,400 11 000 6,428
    P4-HD 6
    Ø 4 дюйма
    Тяжелые жилые, легкие и тяжелые коммерческие и промышленные
    (новое строительство, подпорная стена, анкерная крепь и т. Д.)
    44 000
    до 50 000
    22 000
    до 33 000
    1,500 14 500 8 944 90 419
    P5 6
    Ø 5,6 дюйма
    Тяжелые жилые, легкие и тяжелые коммерческие и промышленные
    (коттедж, вывеска, световой столб, новое строительство, дощатый настил, солнечная панель, столбик, подпорная стена и т. Д.)
    30 000
    до 50 000
    15 000
    до 33 000
    2,750 14 500 9 14 713 90 419
    P6 6
    Ø 6.6 из
    Тяжелые жилые, легкие и тяжелые коммерческие и промышленные
    (знак, световой столб, новое строительство, солнечная панель, столбик, подпорная стена и т. Д.)
    30 000
    до 50 000
    15 000
    до 33 000
    3,700 14 500 9 23 142

    Банкноты

    1. Максимальная несущая способность при сжатии (допустимая нагрузка) включает коэффициент безопасности 2.
    2. Максимальная несущая способность (допустимая нагрузка) определяется максимальным крутящим моментом, прилагаемым монтажным оборудованием.
    3. Если спиральный фундамент не имеет боковой опоры (грунт очень рыхлый / мягкий, разжижаемый грунт, течение воды и ветер), структурная прочность спирального фундамента должна быть одобрена инженерным отделом TMP.
    4. Для приложений с натяжением винтовой фундамент должен быть установлен таким образом, чтобы минимальная глубина от поверхности земли до спирали составляла 12D, где D — диаметр спирали.Свяжитесь с техническим отделом TMP для приложений, связанных с натяжением, если 12D невозможно обслуживать.
    5. Боковая нагрузка основана на почвах средней плотности со свободным напором, с максимальным расстоянием 6 дюймов в воздухе или жидких почвах и глубиной заложения 7 футов. По поводу других условий обращайтесь в технический отдел TMP.
    6. TMP модели P4, P3-HD, P4-HD, P5 и P6 подлежат проектированию на конкретном объекте. Для использования верхних значений производительности, указанных в таблице, требуется разрешение технического отдела TMP.
    7. Допустимое сопротивление изгибу основано на расчетах, предполагающих, что сталь без покрытия, 50 лет коррозии согласно AC358 и коэффициент запаса прочности 1,67.
    8. Максимальный монтажный момент для P1, P2 и P3 основан на отчете об оценке IAPMO-UES No. 481.
    9. Максимальный монтажный крутящий момент для P5 и P6 ограничен максимальным крутящим моментом монтажного оборудования ЕТ1.

    Комментарии

    • По любым техническим вопросам обращайтесь в технический отдел TMP.
    • Более крупные стойки из техно-металла

    • могут использоваться в тех случаях, когда требуется более высокое поперечное сопротивление или сопротивление изгибу, чем указано в таблице выбора.

    ПРОЕКТИРОВАНИЕ СПИРАЛЬНЫХ СВАЙ ДЛЯ ТЯЖЕНОНАГРУЖЕННЫХ КОНСТРУКЦИЙ

    За последние 20 лет массивная стальная винтовая винтовая свая с квадратным валом получила широкое распространение в качестве постоянного элемента глубокого фундамента при новом строительстве высоконагруженных конструкций, то есть с нагрузкой на колонны, превышающей 445 кН (100000 фунтов).Это более широкое использование, наряду с признанием всеми национальными строительными нормативами США, по крайней мере, одного производителя винтовых свай, подчеркивает важность технологии винтовых свай в новом строительстве. В данной статье представлена ​​вводная информация о методологии проектирования тяжело нагруженных винтовых свай в новой конструкции, общей для всех производителей винтовых свай, рассматривается допустимая нагрузка сваи, крутящий момент при установке в зависимости от грузоподъемности, винтовая свая обсуждается как элемент с осевой нагрузкой, требующий особого внимания дается размещение сваи для передачи поперечной нагрузки, такой как сейсмические и ветровые нагрузки, обсуждается группировка свай и конструкция сваи, оборудование для передачи нагрузки от бетона к стволу сваи, оседание, длительная ползучесть, коррозия, гибкость, коробление ствола сваи, миграция воды вдоль вала в расширяющихся глинах, обсуждает условия отказа, охватывает экономику технологии винтовых свай, особенно в сложных почвах, труднодоступных и экологически уязвимых областях, или там, где требуется улучшение графика, и перечисляет производителей винтовых свай и способы с ними можно связаться.В заключение он приводит историю проекта, в котором винтовые винтовые сваи были спроектированы и установлены для нового строительства под сильно нагруженной конструкцией. Винтовая свая является жизнеспособным и приемлемым глубоким фундаментом для строительства, если новые тяжелые конструкции должны рассматриваться каждый раз, когда предполагается создание глубокого фундамента.

    Язык

    Информация для СМИ

    Предмет / указатель терминов

    Информация для подачи

    • Регистрационный номер: 00812218
    • Тип записи:
      Публикация
    • ISBN: 0784405115
    • Файлы: TRIS
    • Дата создания:
      29 июня 2001 г., 00:00

    Преимущества винтовых свай — винтовые сваи, плюс преимущества винтовых свай

    Быстрая установка

    Одним из самых больших преимуществ винтовых свай является то, что они очень легко устанавливаются с помощью обычного строительного оборудования.Для их установки не требуется специального оборудования. Поскольку для их установки не требуется никакого специального оборудования, это также недорого. Обычно требуется только оператор и один рабочий.

    Способность выдерживать немедленную нагрузку

    Одно из преимуществ винтовых свай заключается в том, что в отличие от большинства других анкерных систем они могут быть загружены сразу после установки. Вам не нужно ждать, пока бетон осядет, чтобы использовать его.

    Минимальное нарушение рабочего места

    Одно из преимуществ винтовых свай по отношению к факторам окружающей среды заключается в том, что установка винтовых свай практически не вызывает нарушения рабочего места.Он также не производит срезания почвы. Благодаря этому сайт остается чистым, и после установки требуется минимальная очистка. Кроме того, уровень шума, связанный с установкой, очень низкий.

    Простота установки в удаленных местах или на площадках с ограниченным доступом

    С точки зрения мобильности и местоположения одним из преимуществ винтовых свай является то, что они хорошо подходят для проектов, расположенных в удаленных районах. Поскольку они требуют ограниченного пространства и оборудования, они лучше всего подходят для перегруженных участков и не имеют доступа к современному модному оборудованию.

    Установка в условиях высоких грунтовых вод

    Винтовые сваи обычно не требуют выемки грунта для установки. Трудности, с которыми часто возникают мелкие грунтовые воды на строительных площадках, обычно практически не влияют на установку винтовых свай и, следовательно, увеличивают скорость процесса установки.

    Простая установка на тесто

    Обычно винтовые сваи устанавливаются вертикально, но их можно устанавливать в любом положении в соответствии с потребностями проекта.Их можно установить в любой ориентации. При необходимости их можно без проблем установить горизонтально.

    Простые полевые модификации для увеличения грузоподъемности

    Одно из уникальных преимуществ винтовых свай заключается в том, что мы можем увеличить грузоподъемность в любое время, внеся лишь небольшие изменения.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    *

    *

    *