Высота столба для электричества: Как установить столб для электричества на участке?

Содержание

Деревянные опоры ЛЭП пропитанные — характеристики, срок службы деревянных столбов ЛЭП | СтройМонтажБур

Деревянные пропитанные опоры воздушных линий электропередач имеют широкое применение при строительстве ВЛ 0.4 кВ. Прочно занимают свою нишу благодаря своей легкости и простоте в установке.

Преимущества деревянных опор ЛЭП

Деревянные опоры изготавливаются из сосны I, II, III сорта или лиственницы и обладают следующими достоинствами:

  • ⇒ Высокая степень изоляции;
  • ⇒ Отличные диэлектрические показатели;
  • ⇒ Огнеупорные свойства, благодаря использованию специальных пропиток;
  • ⇒ Простота обслуживания;
  • ⇒ Дерево обладает хорошим показателями на сжатие и изгиб, а также сопротивлением разрыву;
  • ⇒Установка деревянного столба позволяет не бояться при строительстве электрических линий передачи сильного ветра или наледи;
  • ⇒ Высокие электроизоляционные свойства древесины позволяют использовать меньшее количество изоляторов.

Деревянные столбы, пропитанные антисептиком, способны выдерживать ураганный ветер, обледенение, высокую температуру и обильные атмосферные осадки.

При соответствующей обработке (обработка особыми пропитками на основе креозота) стойки из дерева для ЛЭП могут прослужить 40-45 лет без потери эксплуатационных качеств и свойств (без соответствующей обработки сосновые опоры могут прослужить всего 7-9 лет, а лиственничные опоры 20-25 лет).

Очень важным преимуществом является тот факт, что при эксплуатации деревянных опор отсутствует «эффект домино». Благодаря своей легкости и природной гибкости материала при поломке деревянный электрический столб не затрагивает рядом стоящие, а ложится на провода.

Они могут использоваться при температуре ниже -50 градусов, не теряя своих свойств, а также в районах с повышенной сейсмичностью (до 9 баллов).

Характеристики деревянных столбов ЛЭП

При производстве деревянных пропитанных опор учитываются следующие факторы:

  • ⇒ Минимальный диаметр бревен составляет 16-22 см;
  • ⇒ От номинальной длины отклонение бревен не превышает 0,3-0,1 м.;
  • ⇒ Бревна не содержат сучков и не подвержены табачной гнили;
  • ⇒ В древесине первого сорта не допускаются червоточины, а при использовании 2-го сорта червоточина составляет не более 5 шт. на 1 метр длины в среднем.

Деревянные стойки опор ЛЭП могут отличаться диаметром комля, диаметром вершины, кривизной и длиной. Стандартная длина опор — 9,5, 11 и 13 м.

Изготавливая их, используют только комлевую часть ствола; производятся по ГОСТ 9363-88, а основными габаритными размерами являются верхний и нижний диаметры торцов, которые соотносятся с типом опоры и номинальной длиной.

Деревянные столбы электрические иногда комплектуются пластиковой крышкой, предназначенной для защиты торцов изделий от атмосферных осадков.

Похожие статьи:

Расстояние от опоры ЛЭП до забора: безопасная норма СанПин

При строительстве важны любые нормативы, касающиеся физического позиционирования новых построек. И одна из таких норм СНиП указывает на расположение строений и находящихся рядом линий электропередачи, а именно на расстояние от ЛЭП до забора частного дома. Ключевым моментом в этом вопросе является безопасность собственников жилья, постоянно находящихся на территории, соседствующей с опасными объектами электроэнергетики, и гостей, приезжающих хорошо провести время на свежем воздухе.

Металлическая опора

На что обратить внимание

Люди привыкли к спокойному и комфортному использованию электричества, подаваемого в наши дома, – настолько обыденным и проверенным стало это дело. Однако мало кто задумывается над тем, что источники электричества (и, следовательно, линии электропередачи) являются достаточно опасными объектами:

  • вредны электромагнитные поля, генерируемые электроприборами и источниками электричества;
  • повышенной опасностью обладают нефункциональные, выходящие из строя электрические приборы или источники электроэнергии;
  • электромагнитные поля действуют на мозговую деятельность человека. Их длительное воздействие связывают с повышением артериального давления, повышением числа лейкоцитов в крови, изменением ритма биения сердца, поражения тканей организма на клеточном уровне.

На закате

По этим причинам разработан ряд правил для того, чтобы свести к минимуму риск получения травм и повреждений от потенциально опасных источников электричества.

Побудительными причинами, из-за которых необходимо относиться с повышенной осторожностью при ограждении участка забором, соседствующим с ЛЭП, являются:

  • охрана здоровья домовладельцев;
  • защита от невидимых электромагнитных полей, распространяющихся по воздуху и имеющих негативное влияние на мозговую деятельность человека;
  • поскольку ЛЭП дает наиболее опасное напряжение для здоровья человека, специалистами рассматривается вопрос о полном запрете на постройку в этом районе чего-либо или хотя бы об установке ограждающего линию забора. Во втором случае поднимаются нормы СНиП, согласно которым проводится возведение забора, регламентирующееся параметрами безопасности в его официальных документах;
  • линия электропередачи должна быть размещена в удалении от забора, поскольку при авариях возможно возгорание изгороди, которое является огромным риском для жизни и здоровья проживающих рядом людей.

Разновидности опор

Именно по этим причинам были разработаны правила и нормы (СНиП), которые продолжают совершенствоваться.

Читайте здесь про расстояние от столба до дома.

Нормы и безопасное расстояние

В санитарных нормах четко и однозначно указывается, какое расстояние от опоры электропередачи должно быть. Это расстояние напрямую зависит от напряжения, генерируемого линией, а в местах, где напряжение максимально высоко, размещаются санитарные зоны, вблизи которых вообще не разрешено строительство объектов любого вида.

Ниже изображена схема размеров охранной зоны линии электропередачи согласно нормам.

Границы охранной зоны

Регламентирующим фактором является мощность напряжения линий ЛЭП. В прямой зависимости от него находится расстояние, на котором может быть возведен дачный забор. Нормы безопасных расстояний санитарно-защитной зоны для жилых строений от опоры зависит от напряжения в линии:

  1. 10 кВ – 10 м.
  2. 110 кВ – 20 м.
  3. 500 кВ – 30 м.
  4. 750 кВ – 40 м.
  5. 1150 кВ – 55 м.

В лесополосе

Некоторые специалисты рекомендуют прибавлять к этим параметрам еще 10 метров от опоры ВЛ, чтобы максимально обезопасить себя и своих близких. Высоковольтные линии накапливают сильнейший разряд, который в плохих погодных условиях может разрядиться в атмосферу облаком ионов противоположного заряда, вызвав катастрофические последствия созданным электрическим полем большой мощности, распространяющимся на значительные территории.

Схема санитарно-защитной зоны

Расстояние от ЛЭП к столбу забора считается по проекции крайних проводов, перпендикулярно направлению воздушной линии. Под самой линией проводов категорически не рекомендуется:

  1. Возводить забор.
  2. Сажать деревья.
  3. Организовывать какую-либо жилую или нежилую постройку.

Минимальная высота ЛЭП над землей для населенной местности составляет 7 метров согласно ПУЭ и СанПиН 2971-84.

Варианты использования линий электропередачи

Определение напряжения в проводах ЛЭП

Если нет возможности получить информацию о напряжении в линиях проводов, соседствующих с участком, можно обратиться в органы местного самоуправления и получить эти данные, на основании которых допускается планировать этапы строительства.

Существует метод определения напряжения в проводах самостоятельно, однако важно заметить, чтобы не стать невольным нарушителем принятых нормативов относительно потенциально опасных электрических объектов, лучше добыть информацию из проверенных источников.

Чтобы определить напряжение самостоятельно и понять, сколько метров нужно отступать, можно, во-первых, подсчитывать количество связанных в пучок проводов, которую несет опора ЛЭП.

Рядом с дорогой

Зависимость напряжения от количества проводов:

  • 2 провода – 330 кВ;
  • 3 провода – 500 кВ;
  • 4 провода – 750 кВ.

Небольшие значения напряжения рассчитываются путем суммирования количества изоляторов.

Зависимость напряжения от количества изоляторов:

  • 3–5 изоляторов – 35 кВ;
  • 6–8 изоляторов – 110 кВ;
  • 15 изоляторов – 220 кВ.

Диаграмма распространения электромагнитного поля

Если расчеты будут соответствовать этим данным, то можно максимально обезопасить себя и гостей жилого дома, коттеджа или дачного участка от электромагнитного излучения, а также и от других возможных опаснейших рисков.

По ссылке можно узнать расстояние от ЛЭП до жилого дома.

Подземные ЛЭП

Некоторые устроители рассматривают возможность укладки линий электропередачи под землю. Тогда появляется возможность строить на этой площадке все что угодно. Однако при строительстве стоит помнить о том, что в любом случае будет необходимо оставить какое-то пространство для ремонтных работ, которые придется проводить в случае аварийных ситуаций на линии. Нормативное расстояние от забора до ЛЭП в «подземном» варианте равняется всего лишь одному метру.

Подземное подключение дома

Существенное различие воздушных и подземных линий передачи электричества – в их стоимости. Подземные линии гораздо дороже (в несколько раз) и широко используются в городах, производственных предприятиях.

Кабели укладываются в короба, туннели и траншеи на глубине до одного метра. Наиболее эргономичным решением станет укладка шести кабелей на расстоянии 30 сантиметров в одну траншею.

Здесь можно узнать расстояние от дома до деревьев.

Дополнительные меры повышения безопасности

Приняв меры по расчету и анализу потенциальных рисков и опасностей, а также рассчитав необходимое расстояние от столбов ЛЭП, следует приступать к дополнительному укреплению собственно строительных конструкций, из которых состоят жилые строения.

Нормативы по СНиП и СанПиН

Особенно важными являются следующие мероприятия:

  1. Подбор крыши с заземлением. В качестве заземления хорошо подходит металлочерепица и профнастил.
  2. Армирование внутренней структуры ограждающих конструкций. Это решение станет дополнительной защитой от электромагнитных лучей, распространяющихся работой ЛЭП.
  3. Посадка плодовых деревьев на расстоянии минимум 2 метра от линии ЛЭП. Это также принесет аналогичный эффект, как упреждающая мера выше, то есть защитит от вредного электромагнитного излучения. Правила расположения деревьев устанавливаются документом «Правила устройства электроустановок».

Не стоит пренебрегать рассмотренными рекомендациями, а также информацией, содержащейся в СНиП.

Она создана на основе предшествующего опыта и призвана увеличить безопасность эксплуатации линий электропередачи и обезопасить жителей в охранной зоне ЛЭП, волею судеб проживающих рядом с ними.

На фото изображен пейзаж рядом с деревней.

В поле

Особенно внимательно следует отнестись к установке ограждающих конструкций, забора, потому что именно он является главнейшей защитой от воздействия настолько нам полезного, но также и опаснейшего вида энергии – электричества.

Высота бетонного столба под электричество

Опоры СКЦ с воздушной подводкой

НаименованиеДлина, LВысота, hШирина, BМасса, кг
СКЦ-9-2,5-1К9000170335700
СКЦ-10-2,5-1К10000170335820
СКЦ-11-2,5-1К11000170335940

Заключение

При выборе ЖБ стоек для монтажа уличных светильников следует учитывать несущую способность, которая зависит от материалов и технологии изготовления изделий. Если опоры предназначены для эксплуатации в сложных условиях, необходимо обратить внимание на показатели морозостойкости и проницаемость бетона.

Рекомендуется покупать железобетонные опоры освещения у зарекомендовавших себя производителей – долговечность изделий может быть гарантирована только при строгом соблюдении технологии производства и использовании качественного сырья.

Электрические столбы

Многие городские жители хотят обосноваться за городом. Жизнь в тишине и покое, в экологически чистом месте — отличная альтернатива пыльному мегаполису. Но загородная романтика может быстро надоесть, если в доме нет электричества и водоснабжения. Чтобы иметь электричество на участке, потребуется установить электрический столб – металлический, деревянный или железобетонный. Сделать это без подготовки не получится. Нужно знать: где его можно монтировать, как правильно подключить, какие провода могут быть использованы, и кто должен заниматься монтажом. Нюансов много и разбирать домовладельцам приходится самостоятельно.

Виды электрических столбов

Столбы линий электропередач удерживают провода и оптоволоконные линии. Они – важный элемент доставки электричества до конечного потребителя.

Есть много различных типов электрических столбов и их классификаций. Чтобы выбрать подходящее изделие нужно сопоставить недоставки и достоинства всех видов.

Различают виды столбов по назначению:

  • Промежуточные (используются только для поддержки проводов и тросов).
  • Анкерные (несут основную нагрузку в натяжении проводов).
  • Угловые (применяются на углах поворота трасс линий электропередач).
  • Специальные (необходимы для решения нестандартных ситуаций).

Также принята характеристика столбов по способу закрепления в грунте. Они могут быть установлены прямо в грунт или на фундамент.

Электрические столбы различают по материалу: железобетонные, металлические, деревянные и композитные. Последний вид редко встречается в нашей стране. Пока, что это новый и относительно дорогой материал, который применяют в США, Китае и ряде европейских стран. Остальные изделия используют в России одинаково активно.

Бетонные столбы под электричество

Бетонные электрические столбы не боятся коррозии и гниения, устойчивы к возгоранию. Сделанные с соблюдением технологии, они могут использоваться не один десяток лет. Такие столбы стоят недорого, поэтому их чаще всего выбирают для загородных участков.

Главные недостатки таких изделий – большой вес и плохая устойчивость. Масса столба, которая может превышать 700 кг, создает сложности при перевозке и монтаже. К ним прибавляются и трудности при последующем сносе. Плохое сопротивление механическим воздействиям достаточно опасно и может привести к наклону бетонного столба и обрыву линии электропередач. Но при правильном укреплении этого недостатка легко можно избежать.

Деревянные электрические столбы

Многие владельцы домов стараются не выбирать установку деревянных столбов под электричество на участке, опасаясь их недолговечности. Качественная пропитка антисептиком помогает исправить этот возможный недостаток. Это может быть креозотовое или сланцевое масло, а также специальные смеси. Антисептическую пропитку делают после сушки на глубину не менее, чем 22 мм. Она не только защищает от влаги, но и делает древесину устойчивой к возгоранию.

Пропитка обеспечивает более долгий срок службы столбов – несколько десятилетий, но не решает проблему полностью. Изделия все равно со временем начнут гнить из-за воздействия влаги и потребуют замены.

В качестве сырья для производства деревянных столбов чаще всего используют сосну и ель. Они меньше всего подвержена гниению и воздействию насекомых, в отличие от других видов древесины. Их легче обрабатывать из-за правильной геометрии и хорошей высоты.

Главный плюс столбов из дерева – низкая цена. Они стоят даже дешевле, чем бетонные опоры ЛЭП. Их небольшой вес не создаст трудностей при транспортировке, но для установки изделий на участке все равно будет нужна специальная техника.

Металлические столбы под электричество

Столбы из металла – это решение для высоковольтных линий, потому что высокая прочность и устойчивость дают им возможность выдерживать большие нагрузки. Они редко используются на территориях частных домов и дач и обычно устанавливаются на производственных или технических объектах. В том числе и по причине высокой стоимости.

Несмотря на способность выдерживать большие нагрузки, у металлических столбов есть проблема – коррозия, которая со временем приводит к разрушению материала и всей конструкции.

Установка опор ЛЭП

Когда вы определились с выбором материала для опор, пора заняться вопросом установки электрических столбов. Для начала важно ознакомиться с требованиями законодательства и получить технические условия. После этого можно приступать к монтажным работам.

Для них потребуется специальная техника, поэтому нужно позаботиться о свободном месте на участке. Обычно все эти вопросы помогает решить компания, которая занимается установкой. К ее выбору нужно подходить внимательно, поскольку у нее должна быть не только квалифицированная команда, но и все необходимые допуски на проведение работ.

Требования

Установку опор ЛЭП регулирует СанПиН и ПУЭ (Правила устройства электроустановок). В них можно найти требования, которые предъявляются к монтажу столбов:

  • расстояние от незащищенного провода на опоре до балконов и окон должно быть не менее 1,5 м;
  • высота линий электропередач над дорогой должна быть не меньше 6 м, а над пешеходной частью не меньше 3,5 м;
  • дистанция от столба до дома не должно превышать 25 метров, если это расстояние больше – необходимо установить дополнительный столб;
  • расстояние от опоры ЛЭП до забора не менее, чем 1 метр, такое требование дает возможность обеспечить доступ к нему специалистов;
  • трубопровод любого вида не должен быть расположен ближе 1 метра к опоре, если на ней размещены неизолированные провода;
  • интервал между проводами при пролете до 6 метров нужен не менее 10 см, а свыше 6 метров – не менее 15 см;
  • ввод проводов в здание должен выполняться на высоте не менее 2,75 метров.

Есть ряд требований и к самим столбам. Они должны быть сделаны из негорючих материалов или пропитаны специальным защитным составом. Лимит их огнестойкости должен быть не менее 15 минут. Изоляторы проводов тоже нужны несгораемые. Самые популярные материалы для них – фарфор и стекло.

Кроме обязательных нормативных документов, строители должны придерживаться плана или проектной документации.

Получение техусловий (ТУ)

Начинать монтаж столбов под электричество нужно с получения ТУ (Технических условий). Выдает этот документ местная электросетевая организация. Чтобы заключить с ней договор на подключение в будущем, необходимо сделать заявку на получение к сетям. Здесь от домовладельца потребуется паспорт, свидетельство на земельный участок и свидетельство на дом.

Если мощность, выделяемая на подключение дома не больше 15 кВт, то проект электроснабжения организация требовать ее не должна. Для загородного дома, даже с большим количеством электроприборов, такой мощности будет достаточно.

После подачи заявки в течение 30 дней организация должна выдать вам ТУ. После этого вы можете начинать электромонтажные работы.

Этапы установки

Первый этап установки электрических столбов – планирование. Во время него выбирают материал столбов, их местоположение, рассчитывают мощность, которая будет на них приходиться.

На втором этапе монтажа делают разметку местности и подготовку грунта. Специалисты обозначают места установки столбов и просчитывают расстояние между ними. Сам грунт тоже нужно подготовить к установке, разровнять площадку, удалить корни деревьев и дерн.

Третий этап включает бурение ям для опор. Универсальное решение для этого – бурильные установки, которые размещают на платформе или автомобильном шасси. Бурение можно делать и с помощью ручного инструмента, например, если подъезд техники на участок сложно организовать.

Следующий этап – монтаж деревянных или бетонных опор ЛЭП, которые лучше всего подходят для загородных участков. Столбы устанавливают с помощью манипулятора и закрепляют в грунте. Перед этим обязательно нужно провести выравнивание опор по вертикали. Для более надежной фиксации можно использовать бетонирование. После установки самих опор на них крепят траверсы, которые покрывают антикоррозийной защитой. На завершающем этапе монтируют электрические провода.

Все работы по установке могут проводить только организации, имеющие допуск. В их штате должны состоять квалифицированные специалисты с соответствующим уровнем подготовки.

Монтаж проводки в дом

После подготовки и установки столба на участке, необходимо заняться вопросом подключения электричества к частному дому. Это можно делать, как с питающей опоры, если она расположена на участке, так и через промежуточный столб. Для их соединения используются следующие методы:

  • голый алюминиевый провод;
  • медный или алюминиевый кабель;
  • СИП (самонесущий изолированный провод).

Кабели могут быть проложены от промежуточного или питающего столба к дому не только воздушным путем, но и под землей. Такой способ используется гораздо реже, чем стальные тросы, протянутые по воздуху.

Железобетонные опоры линий электропередачи

Вступление

Железобетонные опоры линий электропередачи используются в монтаже воздушных линий электропередачи (ВЛ и ВЛИ) в населенных пунктах и на не населенной местности. Делаются железобетонные опоры на основе стандартных бетонных столбов: СВ 95-2В, СВ 95-3В, СВ110-1А, СВ 110-3,5А, СВ110-5А.

Железобетонные опоры ЛЭП – классификация по назначению

Классификация железобетонных опор по назначению, не выходит за рамки видов опор стандартизированных в ГОСТ и СНиП. Подробно читать: Виды опор по назначению, а здесь напомню кратко.

Промежуточные бетонные опоры нужны для поддержания тросов и проводов. На них не оказывается нагрузка продольного или углового натяжения. (маркировка П10-3, П10-4)

Анкерные бетонные опоры обеспечивают удержание проводов при их продольном тяжении. Анкерные опоры обязательно ставятся в местах пересечения ЛЭП с железными дорогами и другими естественными и инженерными преградами.

Угловые опоры ставятся на поворотах трассы ЛЭП. На малых углах (до 30°), где нагрузка от натяжения не велика и если нет смены сечения проводов, ставятся угловые промежуточные опоры (УП). При больших углах поворота (более 30°) ставятся угловые анкерные опоры (УА). На конце ЛЭП ставятся анкерные они же концевые опоры (А). Для ответвлений к абонентам, ставятся ответвительные анкерные опоры (ОА).

Маркировка опор из бетона

Стоит остановиться на маркировке опор. В предыдущем параграфе я использовал маркировку для опор 10-2. Поясню, как читать маркировку опор. Маркируются железобетонные опоры следующим образом.

  • Первые две буквы указывают назначение опоры: П (промежуточные) УП (угловые промежуточные), УА (угловые анкерные), А (анкерные-концевые), ОА (опора ответвления), УОА (угловые ответвительные анкерные).
  • Вторая цифра, означает для какой линии электропередачи, опора предназначена: цифра «10» это ЛЭП 10 кВ.
  • Третья цифра, после тире это типоразмер опоры. Цифра «1» это опора 10,5 метров, на основе столба СВ-105. Цифра «2» – опора на основе столба СВ-110. Подробные типоразмеры в таблицах внизу статьи.

Конструкции железобетонных опор

Конструкции опор из железобетона, тоже не выходят за рамки стандартных опорных конструкций.

  • Портальные опоры с оттяжками – две параллельные опоры держатся на тросах оттяжках;
  • Свободностоящие портальные опоры с поперечинами;
  • Свободностоящие опоры;
  • Опоры с оттяжками.

Применение опор должно соответствовать проектных расчетам. Для расчетов используются различные нормативные таблицы, объем которых занимает несколько томов.

Бетонные опоры по количеству удерживаемых цепей

Если ригели опоры позволяют цеплять только одну линию ЭП, она называется одноцепной (ригель с одной стороны). Если ригель с двух сторон, то опора двухцепная. Если можно навесить много линий проводов, то это многоцепная опора.

Установка бетонных опор

Расчет опор производится СНиП 2.02.01-83 и «Руководство по проектированию ЛЭП и фундаментов ЛЭП…». Расчет идет по деформации и по несущей способности.

Чтобы закрепить промежуточную опору типа П10-3(4) нужно просверлить цилиндрический котлован диаметром 35-40 см, на глубину 2000 -25000 мм. Установочный ригель на такую опору не нужен.

Анкерные угловые и анкерные ответвительные опоры, обычно монтируются с установочными ригелями. Обращу внимание, что ригеля могут ставиться на нижний край опоры и подкоса, закапываемого в землю и/или на верхний край опоры, по верху котлована. Ригеля обеспечивают дополнительную устойчивость опоры. Глубина закапывания опоры зависит от промерзания грунта. Обычно 2000-2500 мм.

Заземление бетонных опор

Благодаря конструкции стоек опоры, заземление опор делать очень удобно. В стойках СВ опор, в заводских условиях при их изготовлении, сверху и снизу стойки выводится металлическая арматура 10 мм в диаметре. Эта арматура неразрывно идет по всей длине стойки. Именно эта арматура и служит для заземления железобетонных опор.

Оценка статьи:

Сохранить себе в:

Высота бетонного столба под электричество
Ссылка на основную публикацию

Глубина установки опор ЛЭП 👷

Монтаж опор для прокладывания электричества происходит между домом потребителя и подстанцией. Выполняя эту работу самостоятельно необходимо выполнять рекомендации, указанные в ПУЭ и современные строительные нормы. Также важна правильная подготовка ямы для закапывания конструкции.

Нормативы по подготовке ямы для ЛЭП

Опоры ЛЭП, которые используется для подачи электроэнергии за городом могут производиться из:

  • железобетона;
  • деревянными;
  • изредка железными.

Согласно нормативам, чтобы подготовить яму для закапывания такой конструкции, необходимо задействовать машины для бурения, кроме некоторых редких случаев (небольшой объем работ или стесненные условия). В нормативах указан именно этот тип бурения, поскольку он обеспечивает высокую прочность. Но вырыть яму для установки одиночной опоры, которая подводит электросеть к дому, разрешается.

Размеры ямы для строительства опоры

Размер ямы зависит от длины конструкции и типа грунта. Также необходимо придать ей форму, которая упростит процесс установки опоры. Глубина должна быть такой, чтобы исключить опрокидывание, вывертывание почвы, и защитить от негативного воздействия ветра. Средний показатель глубины закапывания составляет 1,5-2 метра.

Для столбов промежуточного типа, что устанавливаются в цилиндрическую яму, применяется бурильная машина. В труднодоступном для работы техники месте, используют лопаты и готовят место вручную. Дистанция между опорами составляет минимум 2,5 метра в месте, к которому трудно попасть. На непроезжей части улицы и дорожки для прогулок его можно увеличить до 3,5 метров.

Выделяют несколько групп плотности. Первая включает супесь, влажный суглинок, песчаный, торфяной грунт и почву растительного слоя. Требования к глубине и размеру ямы будут такими:

  • длина до 8,5 метров – глубина не менее 1,8 метров;
  • длина 11-12 метров – глубина 2,15 м.
  • Грунты второй группы плотности – это влажная глина, суглинок, мелкий и средний гравий. Габариты ямы при этом составляют:
  • опора высотой до 8,5 метров – глубина 1,5 м;
  • опора в пределах11, 12 метров – глубина 1,8 м.
  • Грунты третьей группы включают среднетяжелую глину и суглинок. Нормативы для выкапывания ямы:
  • длина опоры составляет 8,5 метров – глубина не менее 1,35 м;
  • опора длиной от 11-12 метров – глубина минимум 1,6 м.

Грунты из четвертой группы по показателям плотности, предусматривают выкапывание резервуара 1,1 м для опоры длиной до 9,5 м. Но при выкапывании ямы учитывают расстояние между столбами. С его увеличением возрастает глубина резервуара.

Форма ямы для строительства

Метод создания ямы зависит на ее форму. Если задействуется бурильная техника, она будет цилиндрической. При ручной работе должен получиться ступенчатый профиль.

Яма, в которую будет проводиться установка подкоса для увеличения устойчивости опоры, имеет форму ступенек или длинной траншеи. Это важно, поскольку данная часть сети электропередачи обеспечивает поддержку главной опоре и устанавливается под небольшим углом. В некоторых случаях эти части закапываются и скрепляются ригелем под землей.

Подкос устанавливают на угловой опоре, угол составляет меньше 90°, но больше 20°. На концевой опоре могут дополнительно применяться оттяжки.

Процесс установки опор для абонентского подключения электросети

Состав работ по установке опоры ЛЭП включает транспортировку ее элементов, подготовку места, сборку и монтаж конструкции. При этом важно следить за тем, чтобы не повредить столбы. Они не должны подвергаться ударам. Запрещается разгружать путем сбрасывания и волочить по грунту.

Установка конструкции для ввода электричества в дом, проводится с правильной подготовкой скважины. Она должна быть глубже уровня промерзания грунта. Бурить яму можно вручную ямобуром или использовать БКМ. Сейчас для использования доступен бензобур, который упрощает задачу и помогает сэкономить время. При необходимости на дно высыпают щебень. После столб кладут на ступеньки так, чтобы торец упирался в выкопанную яму.

Канаты крепят на 2/3 опоры и с их помощью начинают поднимать изделие. Необходимо тянуть в соответствии с линией укладки. Чтобы зафиксировать подъем канаты растягивают в сторону. В вертикальном положении столб закрепляется с помощью распор. После можно закапывать яму, тщательно утрамбовывая грунт. Возле столба нужно насыпать почвы, чтобы получился небольшой холм высотой до 200 мм. Теперь опора считается установленной.

Звоните 8 863 268-16-02 и наши менеджеры ответят на все Ваши вопросы.

Какая высота электрического столба — MOREREMONTA

Высота опор зависит от стрелы провеса провода, расстояния от провода до поверхности земли, типа опоры и т. п. Высоту опоры при горизонтальном расположении проводов на линиях без защитных тросов (рис. 1) определяют следующие величины:

1. Требуемое расстояние hг провода от земли (габарит приближения провода к земле).

Провода «воздушных линий должны быть подвешены на такой высоте, чтобы от низших их точек до поверхности земли оставалось расстояние, обеспечивающее безопасность движения. Под проводами могут не только проходить люди, но и проезжать автомобили, груженные громоздкими предметами, высокие сельскохозяйственные машины, краны и т. п. На них не должно произойти электрического разряда с провода линии.

Рис. 1. Высота опоры

Наименьшие допускаемые расстояния от проводов до земли и некоторых инженерных сооружений приведены в табл. 1.

Таблица 1. Габариты приближения проводов к земле и инженерным сооружениям

Характеристики местностей и пересеченийНапряжения линий, кВ
ниже 1 кВ1 — 2035 — 110220
Ненаселенная местность, часто посещаемая людьми и доступная для транспорта и сельскохозяйственных машин. Расстояние до земли, м5667
Населенные местности и территории промышленных предприятий. Расстояния до земли, м6778
При пересечениях железных дорог постоянного пользования. Расстояние до головки рельсов, м7,57,57,58,5
При пересечениях автогужевых дорог. Расстояние до полотна дороги, м6778

Приведенные расстояния должны быть выдержаны при нормальных режимах работы линий. В некоторых случаях для линий с подвесными изоляторами нужно произвести проверку расстояний, получающихся при обрыве одного из проводов.

2. Запас в расстоянии от провода до земли Δ h.

При трассировке воздушных линий поперечные профили снимаются только в пересеченных местностях. Продольные профили трассы линий, по которым производится проектная расстановка опор, вычерчиваются в масштабе по вертикали 1 : 200 — 1 : 500. Неточности съемки и чертежей могут привести к расстояниям проводов над землей при сооружении линий, меньшим предписываемых «Правилами устройства электроустановк».

Чтобы избежать недоразумений, высота опоры определяется с небольшим запасом Δ h, принимаемым 0,2 — 0,4 м. Меньшая цифра берется для пролетов длиной до 200 — 250 м, а большая — при пролетах 400 — 500 м. Для пролетов 200 м и менее при спокойном профиле местности запаса Δ h можно не принимать.

3. Габаритная стрела провеса провода f г, при которой расстояние от провода до земли или инженерного сооружения получается наименьшим.

Габаритная стрела провеса провода при определении высоты опоры может быть при:

1) высшей температуре окружающего воздуха и нагрузке провода только собственным весом, отсутствии ветра;

2) гололеде, температуре θ г, отсутствии ветра.

Большая из этих стрел провеса провода и берется при определении высоты опоры.

При проверке приближения провода к земле и инженерным сооружениям в аварийном режиме работы линии, принимается обрыв провода в том пролете, который в контрольном пролете дает наибольшую стрелу провеса провода. Например, при пересечении линии связи воздушной линией с промежуточными опорами обрыв принимается происшедшим в пролете соседнем с пересекающим.

В аварийных режимах работы линий электропередачи допускаемые расстояния от проводов до земли и некоторых инженерных сооружений установлены меньшими, чем при нормальных режимах работы линий.

Когда пересекаемый объект — автострада, линия связи и т. д. — находится не в середине пролета (рис. 2), а расположена ближе к одной из опор, при определении (высоты опоры следует принять во внимание не только наибольшую стрелу провеса провода f нб, но и стрелы провеса f1 и f2 над пересекаемыми объектами.

Стрела провеса провода на расстоянии х от точки его подвеса находится по формуле f = γ х( l -х) /2

Рис. 2 . Высота опоры с треугольным расположением проводов.

4. Длина гирлянды изоляторов λ1 , включая арматуру, необходимую для крепления гирлянды изоляторов на опоре. Для определения λ1 нужно к длинам гирлянд, приведенным в табл. 1, прибавить при деревянных опорах 100 мм, а при металлических и железобетонных —

5. Размер b — расстояние от нижнего обреза траверсы до ее оси, зависящее от конструкции опоры.

6. Размер а — расстояние от оси траверсы до вершины опоры, определяемое конструкцией опоры.

Высота опоры до оси траверсы определится, следовательно, равной: h 1 = h г + Δh + f г + λ 1 + b

Полная высота опоры Н = h2 +а.

Рис. 3. Высота опоры с треугольным расположением проводов

При расположении проводов, например, в вершинах треугольника (рис. 3 ) высота h 1 оси нижней траверсы над землей определяется так же, как было указана выше. Положение верхней траверсы находится увеличением h 1 на расстояние D, (принятое между проводами разных фаз.

Наличие защитных тросов увеличивает высоту опор. Добавляется необходимое расстояние от верхнего провода до троса.

Во многих частных домах есть необходимость провести электричество от соседского разрушенного дома либо поменять имеющуюся опору ЛЭП, кабель, возникает множество вопросов. Рассмотрим, что же делать, какие существуют нормативы для бетонного столба и возможно ли его установить своими силами?

Какие существуют нормативы для установки бетонного столба на своем участке?

Вначале следует учесть, что глубина закапывания опоры в земле должна быть ниже уровня промерзания, то есть около 1,5–2 метров. Самостоятельно установить бетонный столб не получится. Потому что:

  • Высота достигает минимум 5 метров, установить его строго в вертикальное положение без помощи машины невозможно.
  • Необходимость в изоляторах, и специальном надежном металлическом креплении на столбе, которое должно надежно выдерживать все порывы ветра и лед зимой.
  • Необходимость обесточить линию, которое окончательно разбивает все надежды отчаянных электриков–самоучек.

Возможно ли альтернативные методы установки ЛЭП своими силами?

Существует много вариантов самодельных столбов со специальным фундаментом снизу, с четырьмя металлическими опорами, изоляторами, и т.д. но используют их зачастую в селах. Самым доступным способом быстро и качественно сделать опору ЛЭП является установка бетонного столба.

Высота столба, как гласит правила устройства электроустановок (ПУЭ) должна быть минимум 5 м, и максимум 12, на практике применяются 7-метровые бетонные опоры. Расстояние в труднодоступных местах должно быть не менее 2,5 м, в недоступных (горы, утесы, скалы) – не менее 1 м. При пересечении не проезжей части улиц, на тротуарах, пешеходных дорожках расстояние можно уменьшить до 3,5 м. При установке вводного щитка его высота должна быть не менее 160 см от земли.

В деревнях высоту зачастую делают около 4м, чтобы грузовая машина могла спокойно проехать, и поскольку по конструкции ПУЭ никаких ограничений не ставит, то в ход идут все подручные материалы, металлические самодельные фермы, балки, что крайне не рекомендуется.

Для установки бетонной опоры понадобятся:

  • Бурильная машина;
  • Кран, который установит в вертикальное положение столб;
  • Грузовая машина для перевозки столба;
  • Бригада электриков, со специальной подъемной машиной с выдвижной клеткой для монтажа линии.

Данная команда способна за считаные часы надежно установить опору на многие десятилетия, и гарантировать нам бесперебойную подачу тока на протяжении многих лет.

Стандартный электрический столб СВ 9.5-2.0 имеет следующие размеры: длина 9500 (мм), ширина 220 (мм), толщина 165 (мм).

Размеры электрических столбов:

— длина (L): от 9500 (мм) до 13500 (мм) ;
— высота (H): 650 (мм) , 700 (мм) ;
— ширина (B): 220 (мм) .

Стойки опор контактной сети:

— длина (L): 13600 (мм) ;
— высота (H): от 200 (мм) до 600 (мм) ;
— ширина (B): 290 (мм) .

Стойки опор контактной сети для транспорта:

— длина (L): 10500 (мм) , 13500 (мм) ;
— высота (H): 412 (мм) ;
— ширина (B): 220 (мм) .

Трубостойка для ввода СИП — 7 этапов работы, чертеж, размеры

Для подключения жилого дома к линии электропередач выполненной изолированными проводами СИП, чаще всего возможны 3 варианта:

  • подземный кабельный ввод непосредственно с опоры
  • монтаж СИП до фасада дома по воздуху
  • монтаж трубостойки под СИП в непосредственной близости от участка и действующей ВЛ

В первых двух случаях приходится размещать шкаф учета со счетчиком и всеми коммутационными аппаратами непосредственно на стене дома.

Редко какая из электросетевых компаний разрешает разместить учет внутри помещения, мотивируя это отсутствием свободного доступа для снятия показаний и проверки схемы соединения. Поэтому, если вы не хотите уродовать свой фасад дома громоздкими шкафами, то трубостойка под СИП со счетчиком лучший вариант.

Можно конечно разместить и непосредственно на опоре электросетевой компании, но это должно быть указано в технических условиях. Да и обслуживание ЛЭП на такой опоре в этом случае затрудняется. Более того, если какой-то электрик при подъеме, случайно когтем или лазом повредит ваш щит, никаких компенсаций вы не добьетесь.

А еще, если столб находится далеко от дома, всегда есть риск повреждения учета посторонними лицами. Металлическая же стойка будет находится на вашем участке, под охраной и никому не будет мешать.

Ну и самый распространенный вариант — когда дом еще не построен, только голый участок, а напряжение для его строительства уже нужно. Вот тут как раз таки, трубостойка это единственный выход для безопасного подключения электричества.

Монтаж трубостойки проходит в несколько этапов:

  • сборка и изготовление самой конструкции
  • непосредственный монтаж в яму и закрепление в ней
  • сборка распределительного шкафа со счетчиком и автоматами
  • закрепление шкафа учета на установленную стойку
  • подсоединение к линии СИП
  • подключение жилого дома от шкафа

Изготовление трубостойки

Строго говоря, трубостойка на сегодняшний день не имеет никакого официального технического определения и сертификации. Поэтому и изготавливают ее кто во что горазд.
Лучший материал для сборки металлической стойки это квадратная труба 80*80*3. Она обеспечит достаточную прочность конструкции при натяжении СИП с опоры. Хотя типовыми техническими решениями допускается диаметр не менее 40мм.

Некоторые, основание стойки изготавливают, используя винтовую сваю диаметром 108мм. Закручивают ее в землю кусками труб d-40мм и длиной по 2-3м. После чего во внутрь вставляется труба или квадрат требуемой высоты.

Какой должна быть высота трубостойки? Согласно правил, минимальное расстояние от провода СИП до земли может быть не менее 2,5м. Это если он не пересекает дорогу. При прохождении над дорогой габарит увеличивается до 5м!

Однако изобретать самодельные конструкции такой высоты могут и не позволить, написав мотивированный отказ об отсутствии у вас сертифицированной стойки для пересечения дороги.
В этом случае нужно поднимать все правовые документы и доказывать, что устанавливать дополнительную опору через дорогу уже обязанность сетевой организации, а не ваша.

Анализ положений правил технологического присоединения (взято с forumhouse.ru) — скачать

Но у некоторых принимают такой учет без проблем и все подключается. Так что каждый случай индивидуален и зависит от местной конторы.

Отталкиваясь от минимальных габаритов над землей (без пересечения с дорогой) и с учетом заглубления в 1,5м, получаем оптимальную высоту трубостойки 4-5 метров. Это может быть как цельный вариант, так и составные части по два с лишним метра.

Лучше выбирайте составное изделие, так как самостоятельно привезти на участок трубу длиной 5м уже проблематично. Придется нанимать спецтранспорт, а это лишние расходы.
Метод стыковки отдельных кусков — сварка или болтовое соединение.

При соединении отдельных труб, лучше выбирать профиля разных размеров. Так, чтобы диаметр наружной верхней части, плотно входил в диаметр внутренней нижней.

Вариант посложнее, но более устойчивый и без применения сварочных работ:

  • берете три куска квадратных профиля по 3 метра. Размерами минимум 60*60*3.
  • 2 профиля закапываете в землю на 1,5м с расстоянием между ними в 60мм. Над землей остается еще 1,5м.
  • между двумя торчащими из под земли кусками помещаете третий, тем самым как бы наращивая высоту трубостойки.
  • просверливаете в двух местах стыки профилей и стягиваете все это дело болтами или шпильками.

Итоговый результат будет выглядеть примерно таким образом. 

Верхнее отверстие любой трубостойки необходимо заварить. Делается это для того, чтобы во внутрь не поступала и не скапливалась влага, из-за чего металл начнет активно ржаветь.
Снаружи вся конструкция окрашивается. Нижнюю часть, которая будет в земле, лучше обработать битумом, или если позволяют финансы найти нужного диаметра и усадить термоусаживаемую трубку. Такое основание никогда не подвергнется коррозии и не сломается с течением времени.

На самой макушке приваривается петля для крепления натяжного зажима СИП.

Если нет сварки, то можно просверлить отверстие d=12-16мм и смонтировать под гайку специальный крюк. 

На высоте 1,7м от земли закрепляются две поперечины из стальной полосы, под крепеж шкафа учета. Расстояния между полосами измеряйте по отверстиям на шкафу.

Можно конечно применить специальные заводские комплекты для металлических шкафов с использованием бандажной ленты и обойтись без сварочных работ. 

Но это если у вас есть в наличии необходимый инструмент (бандажная машинка) и материалы (лента и скрепы). 

Подготовка ямы

На каком расстоянии и где копать яму? Смотрите в первую очередь техусловия! Там может быть вообще прописан запрет на размещение трубостойки в глубине участка, а только на его границе. Такое требование может быть оспорено.

Как правило, допускается размещать стойку не далее 25 метров ВГЛУБЬ от границы вашего участка. При этом расстояние от опоры ВЛ до трубостойки, должно быть не более этих самых 25м. По закону, вы не можете ничего копать и ставить вне своих границ, это не ваша территория.

Это в первую очередь касается требования СО разместить учет возле ее опоры, далеко за забором, через дорогу. Сделаете так, и все дальнейшие действия по подключению света, монтажу кабеля или СИП до дома, обслуживанию распредшкафа, его сохранности будут только вашей головной болью.

Поэтому самый главный совет здесь — ничего не копайте, пока не имеете на руках согласованные и устраивающие вас технические условия. Иначе может все придется переделывать.

С помощью лома, лопаты и воды выкапываете вручную ямку. Глубина ямки от 1,5м до 2м, в зависимости от высоты трубы и грунта. Для того, чтобы яма получилась ровной и аккуратной, первые 0,5-0,7м можно пройти лопатой, а оставшееся расстояние простым садовым буром. При наличии переходников и не каменистого грунта, можно ускорить это дело перфоратором.

Ну а если есть мотобур, то вся глубина проходится в легкую с помощью него.

Когда неудобно или тяжело пройти последние десятки сантиметров, можно стойку просто вбить в землю. Навариваете на нее сбоку дополнительные куски уголков и ударами кувалды вгоняете оставшееся расстояние. После чего, не нужный более уголок срезается, а место сварки аккуратно закрашивается.

Установка стойки

В подготовленную яму вставляется ранее изготовленная стойка. Если засыпаете землей, то не забывайте каждые 15-20см трамбовать. Можно использовать щебень и забетонировать все основание. Тогда никакие наклоны вам будут не страшны, да и коррозия не будет оказывать такого сильного влияния.

Бетону дайте время 1-2 дня чтобы окончательно застыть, только после этого можно вешать шкаф.

Конечно бетонирование значительно увеличивает время всего монтажа. Без него, простым утрамбовыванием всю работу можно сделать за 2-3 часа. Кроме того, без бетона значительно улучшается заземление самой стойки, за счет лучшего контакта с землей (если вы конечно полностью не изолировали термотрубкой или битумом низ). Поэтому здесь нужно будет делать выбор — надежная устойчивость и долговечность или лучшее заземление.

Сборка шкафа осуществляется отдельно и зависит опять же от выданных технических условий и количества электрооборудования у вас дома. Чаще всего там размещают вводной и отходящий автомат или УЗО, плюс электросчетчик. Вся остальная сборка автоматики уже происходит внутри щитовой дома.

Вообще здесь лучше придерживаться минимализма. Потому что шкаф находится на улице и подвергается постоянным колебаниям температуры и влажности. Поэтому монтировать туда всякие дорогостоящие релюшки не желательно.

Сам шкаф учета можно закрепить 4 способами:

  • на саморезы через заднюю стенку. Делать этого не стоит, так как нарушается герметичность шкафа и его требования по IP54.
  • на болты с гайками через боковые ушки
  • при помощи бандажной ленты
  • или попросту приварить к металлическим уголкам, но в таком случае это уже будет не съемный вариант

Места соединения шкафа и трубостойки необходимо зачистить от краски для обеспечения полного контакта и заземления всей конструкции.

Как размещать шкаф наружу или во внутрь участка?
Для удобства снятия показаний проверяющими, если стойка не огорожена забором, размещайте так, чтобы дверца смотрела наружу. Для удобства вашего обслуживания — дверцой во внутрь. Но тогда на участок каждый раз придется запускать контролеров.

Сопротивление контура заземления здесь должно быть не более 10 Ом. Сможете ли вы его обеспечить одним 3 метровым уголком или штырем, вбитым рядом с трубостойкой, зависит от состава грунта.

Чтобы обойтись в качестве заземления самой металлической стойкой, глубина ее заглубления должна быть не менее 3 метров.

Опять же проверяющие из СО при подключении, могут замерить заземление и требовать соблюдения его параметров. А могут и удовлетвориться простым его наличием. Все индивидуально. Но для собственной безопасности сделайте его по правилам.

Подключение к линии СИП

Подключение к линии электропередач выполненной проводом СИП можно сделать с помощью кабеля подвешенного на тросике, а лучше всего использовать другой СИП 4*16 или СИП 2*16.
Для этого вам понадобится:

  • дополнительный крюк на опору

Кронштейны EnstoКронштейны IEKКронштейны КВТКронштейны SicamКронштейны Niled

  • 2 анкерных зажима

Анкер EnstoАнкер IEKАнкер КВТАнкер SicamАнкер Niled

  • 4 или 2 прокалывающих зажима

Подробнее о методах подключения можно ознакомиться в статье «Как соединить провода СИП между собой и с медным кабелем». 

Как лучше сделать опуск СИП по трубостойке до шкафа учета? Не нужно вырезать отверстие сбоку трубы, чтобы запустить туда провод.

Прорезая такие отверстия входа (сверху) и выхода (снизу), вы тем самым ослабляете всю конструкцию, а также открываете доступ влаги во внутрь. Если грубо взять скорость коррозии в 0,1мм в год, плюс учесть толщину стенок в 3мм, то лет через десять ваша стойка просто упадет.

Кроме того, такой способ может не понравиться сетевикам, так как ввод будет скрытым, и внутри теоретически можно сделать незаметное подключение до счетчика.

Скорее всего учет не примут и заставят переделывать.

Поэтому СИП должен спускаться снаружи, защищенный трубой, либо атмосферостойкой гофрой ПНД (черная).

Для СИП 4*16 используйте гофру диаметром минимум 32мм. Будет удобнее заводить. Использовать ПВХ материал нельзя. В мороз все это полопается и прослужит на улице не более одного двух сезонов.

Еще один из вариантов — использование специальных дистанционных зажимов или бандажей. Вот их марки и характеристики с размерами под СИП:

EnstoSicamNiled

Дистанционный бандаж Ensto SO75.100 и SO79

Дистанционный бандаж Sicam Bic
Дистанционный бандаж Niled Bic

СИП такой материал, который позволяет не прятать его в гофру. Однако по требованиям техники безопасности, любой провод или кабель (даже бронированный), должен быть защищен на уровне до 2м от земли. А шкаф у вас висит на расстоянии максимум 1,7м. Поэтому хотите вы или нет, а прятать его в трубы или гофру все равно придется.

Для крепления труб не желательно использовать простые сантехнические хомуты. Они не атмосферостойкие и все резники со временем рассохнуться и выпадут.

Гофру притягивайте к стойке опять же специальными хомутами для СИП. Иначе от мороза и солнца ПВХ материал хомутов полопается и весь ваш ввод будет болтаться как не понятно что. Для того, чтобы вода не попала внутрь шкафа, СИП опускают и заводят только снизу.

Окончательный ввод от трубостойки до дома лучше выполнить подземным способом, при помощи бронированного кабеля. Хотя каким образом вы будете заводить электричество после точки учета уже ваше личное дело. В технических условиях этого не прописывают.

Только помните, что провод СИП закапывать в землю нельзя! 
Если подземный вариант не доступен (есть пересечение с газовой трубой, асфальт), то СИП опять нужно поднимать вверх и тянуть на фасад дома.
Когда данный шкаф у вас был в качестве времянки на момент строительства дома, а потом все таки пришлось выходить кабелем на одну из стен, оптимально в конце строительства будет полностью убрать трубостойку и сделать полноценный ввод в дом напрямую — от столба до фасада.

Статьи по теме

21 плотина в мире, производящая наибольшее количество электроэнергии

Мы использовали плотины для выработки гидроэлектроэнергии на протяжении десятилетий. Со временем возможности гидроэлектростанций продолжали расти и улучшаться, что привело к весьма впечатляющим уровням выработки электроэнергии.

Естественно, не все плотины созданы равными, и некоторые плотины намного более эффективны, чем другие, когда дело касается выработки электроэнергии. Вот некоторые из самых впечатляющих плотин в мире, которые производят наибольшее количество электроэнергии.

1. Плотина «Три ущелья»: становится плотиной номер один в мире

Еще в 2012 году плотина «Три ущелья» в провинции Хубэй, Китай, стала крупнейшей гидроэлектростанцией в мире с точки зрения производства электроэнергии. Огромный объект может генерировать до 22 500 мегаватт.

Стоимость строительства этой плотины оценивается примерно в 37 миллиардов долларов, и она может генерировать в 11 раз больше энергии, чем плотина Гувера. Самое удивительное, что плотина действительно способна замедлить вращение Земли благодаря огромной массе своего резервуара.

Источник: Рехман / Wikimedia Commons

2. Плотина Итайпу: второе место по выработке электроэнергии

До открытия плотины «Три ущелья» плотина Итайпу занимала первое место в мире. Расположенный на границе Бразилии и Парагвая, этот объект имеет мощность 14 000 мегаватт.

Плотина официально открылась в 1984 году и с тех пор побила множество мировых рекордов. Наиболее заметным из них стал 2016 год, когда предприятие выработало 103098366 мегаватт-часов, что остается текущим мировым рекордом.

Источник: Ogwen / Wikimedia Commons

3. Плотина Ксилуоду: занимает второе место в Китае

Плотина Ксилуоду — вторая по величине гидроэлектростанция в Китае после плотины Трех ущелий. Плотина, расположенная на реке Цзиньша в провинции Юньнань, может генерировать 13860 мегаватт.

Это третий по величине гидроузел в мире по производству электроэнергии. Это также четвертая по высоте плотина в мире, ее высота составляет 937 футов (285 футов).5 метров).

4. Плотина Гури: экологически чистая энергия в Венесуэле

Плотина Гури, также известная как плотина Симона Боливара, расположена в штате Боливар, Венесуэла. Строительство началось в 1963 году, а его первоначальная мощность составляла 1750 мегаватт. К 1978 году плотина была модернизирована, чтобы обеспечить ее мощность в 2065 мегаватт.

Сегодня плотина может генерировать до 10 300 мегаватт. Водохранилище Гури является крупнейшим водоемом с пресной водой в Венесуэле, и оно обеспечивает до 73% электроэнергии страны.

Источник: Warairarepano & Guaicaipuro / Wikimedia Commons

5. Плотина Тукуруи: строительство первой гидроэлектростанции в Амазонке

Бразильская плотина Тукуруи была первым крупномасштабным гидроэлектрическим проектом, построенным в лесах Амазонки. Строительство началось в 1975 году, и плотина была официально объявлена ​​завершенной в 2012 году.

Плотина может вырабатывать до 8,370 мегаватт электроэнергии и обеспечивать электроэнергией 13 миллионов человек. Это крупнейшая гидроэлектростанция страны, полностью принадлежащая Бразилии.

Источник: Repórter de Futuro / Wikimedia Commons

6. Плотина Сянцзяба: становится третьей по мощности плотиной в Китае

За плотиной Трех ущелий и плотиной Ксилуду идет Сянцзяба, третья по мощности плотина Китая и одна из самые мощные плотины в мире. Расположенная между провинциями Юньнань и Сычуань, плотина может генерировать до 6448 мегаватт.

Станция Xiangjiaba подключена к HVDC станции Xiangjiaba-Shanghai, которая обеспечивает Шанхай большей частью электроэнергии.Строительство началось в 2006 году и было официально открыто в 2012 году.

7. Плотина Гранд-Кули: создание одного из семи чудес гражданского строительства США

Плотина Гранд-Кули, расположенная в штате Вашингтон , является не только одной из самых мощных плотин Северной Америки, но и одним из семи чудес гражданского строительства Соединенных Штатов. Огромная конструкция состоит из 12 миллионов кубических ярдов бетона.

Построенная в 1942 году плотина может генерировать 6 809 мегаватт, что делает ее самой мощной плотиной в Соединенных Штатах.Его создание позволило производить электричество, необходимое для производства алюминия во время Второй мировой войны.

Источник: Грегг М. Эриксон / Wikimedia Commons

8. Плотина Лонгтан: улучшение навигации в Китае

У Китая явно есть что-то вроде монополии на сверхмощные плотины. Плотина Longtan в Гуанси-Чжуанском автономном районе мощностью 6 426 мегаватт входит в десятку самых мощных плотин в мире.

Но производство электроэнергии — не единственное, что отличает его от других.Плотина Longtam также призвана улучшить навигацию и торговые пути по всему Китаю благодаря судоподъемнику Longtam, который, похоже, станет

Семь основных источников электроэнергии, о которых вы должны знать

Сама мысль о мире без электричества кажется невозможно. Это один из величайших даров, которые наука дала человечеству. Почти все в нашем мире сегодня зависит от электроэнергии.

Ожидается, что электрическая зависимость со временем будет только расти.Оценки показывают, что в 2018 году мировой спрос на электроэнергию вырос до 23000 ТВтч, и это число, вероятно, будет увеличиваться с каждым годом. Этот стремительно растущий спрос отвечает за половину роста потребностей в энергии и составляет 20%, долю от общего потребления энергии во всем мире.

СВЯЗАННЫЕ: 3+ РАЗЛИЧНЫХ ТИПА ЭЛЕКТРОСТАНЦИЙ, ГЕНЕРИРУЮЩИХ ЭЛЕКТРОЭНЕРГИЮ ДЛЯ США

Эти статистические данные ясно показывают, что электричество — это генератор будущего.Тем не менее, как мы можем генерировать такое ошеломляющее количество электроэнергии для удовлетворения постоянно растущих потребностей? Давайте узнаем!

Определение электричества

Электричество можно определить как форму энергии, которая вырабатывается в результате потока электронов из положительных и отрицательных точек внутри проводника. Мы рассматриваем электричество как вторичный источник энергии.

Это связано с тем, что он не поставляется в виде готового продукта, а должен быть получен из первичных источников, таких как ветер, солнечный свет, уголь, природный газ, реакции ядерного деления и гидроэнергетика.

Вот несколько основных способов, с помощью которых мы можем производить электричество, и как это можно сделать!

1. Электричество через трение

Первые наблюдения электрических явлений были сделаны в Древней Греции. Это произошло, когда философ Фалес Милетский (640–546 гг. До н.э.) обнаружил, что когда янтарные бруски натирают о загорелую кожу, они приобретают привлекательные характеристики, которыми раньше не обладали.

Это тот же эксперимент, который теперь можно провести, протерев пластиковый стержень тканью.Поднося его ближе к маленьким кусочкам бумаги, он привлекает их, как это характерно для наэлектризованных тел.

Все мы знакомы с эффектами статического электричества. Некоторые люди более подвержены влиянию статического электричества, чем другие. Некоторые пользователи автомобилей ощущают его воздействие при нажатии на ключ или прикосновении к пластине автомобиля.

Мы создаем статическое электричество, когда протираем ручку одеждой. То же самое происходит, когда мы натираем стекло о шелк или янтарь с шерсти.

Следовательно, понятия заряда и подвижности необходимы при изучении электричества, и без них электрический ток не мог бы существовать.

2. Электроэнергия за счет химического воздействия

Все батареи состоят из электролита (который может быть жидким, твердым или полутвердым), положительного электрода и отрицательного электрода. Электролит — это ионный проводник.

Один из электродов производит электроны, а другой электрод их принимает.Когда электроды подключены к питаемой цепи, они производят электрический ток.

Батареи, в которых химическое вещество не может вернуться в свою первоначальную форму после преобразования химической энергии в электрическую, называются первичными или гальваническими батареями.

Батареи или аккумуляторы двусторонние. В этих типах батарей химическое вещество, которое реагирует в электродах с образованием электрической энергии, может быть восстановлено путем пропускания через него электрического тока в направлении, противоположном нормальному режиму работы батареи.

3. Электричество под действием света

По мере того, как солнечный свет становится более интенсивным, напряжение, генерируемое между двумя слоями фотоэлемента, увеличивается. Но как работает фотоэлемент?

При отсутствии света система не вырабатывает энергию. Когда солнечный свет попадает на пластину, клетка начинает функционировать. Фотоны солнечного света взаимодействуют с доступными электронами и увеличивают их энергетические уровни.

Таким образом, электричество вырабатывается за счет солнечной энергии.

4. Тепловое электричество за счет теплового воздействия

Тепловая генерирующая установка — это тип установки, в которой турбина, приводимая в действие паром под давлением, используется для перемещения оси электрогенераторов. Обычные тепловые электростанции и атомные тепловые электростанции используют энергию, содержащуюся в сжатом паре.

Самый простой пример — подключить чайник, полный кипятка, к лопастному колесу, которое, в свою очередь, связано с генератором. Струя пара из котла приводит в движение ротор.

Следовательно, мы можем получать пар разными способами, например, сжигая уголь, нефть, газ, городские отходы или используя большое количество тепла, выделяемого реакциями ядерного деления. Вы даже можете производить пар, концентрируя энергию солнца.

Не будет ошибкой сказать, что тепловая энергия — один из самых распространенных способов производства электроэнергии.

5. Электричество за счет магнетизма

В 1819 году датский физик Ганс Кристиан Эрстед сделал необычайное открытие, обнаружив, что можно отклонить магнитную стрелку с помощью электрического тока.Это открытие, которое показало связь между электричеством и магнетизмом, было разработано французским ученым Андре Мари Ампером.

Ампер изучил силы между проводами, по которым циркулируют электрические токи. В том же духе французский физик Доминик Франсуа Араго, как известно, намагничивал железо, помещая его рядом с кабелем, по которому проходит ток.

После этого, в 1831 году, британский ученый Майкл Фарадей обнаружил, что движение магнита вблизи кабеля индуцирует в нем электрический ток.Этот эффект был противоположен обнаруженному Эрстедом.

Таким образом, Эрстед продемонстрировал, что электрический ток может создавать магнитное поле. С другой стороны, Фарадей продемонстрировал, что мы можем использовать магнитное поле для создания электрического тока. Оба открытия являются новаторскими.

В этом контексте полное смешение теорий магнетизма и электричества произошло благодаря британскому физику Джеймсу Клерку Максвеллу. Максвелл предсказал существование электромагнитных волн и определил свет как электромагнитное явление.

Очевидно, потребовалось много ученых и исследователей, чтобы сделать вывод, что электричество также может быть произведено с помощью магнетизма.

6. Электроэнергия, вырабатываемая за счет давления

Давление, оказываемое подземными водными потоками, — это процесс, используемый на больших судах в качестве альтернативной энергии основной системы. В плотинах электричество вырабатывается путем выпуска контролируемого потока воды под высоким давлением через принудительный трубопровод.

Вода приводит в движение турбины, которые приводят в движение генераторы и, таким образом, вырабатывают электрический ток.Затем этот высокий ток низкого напряжения проходит через усилитель напряжения, который преобразует его в электричество.

7. Гидравлическое электричество за счет действия воды

Из всех перечисленных выше способов генерации энергии магнитная энергия чаще всего используется для производства электроэнергии в больших количествах. Его производство основано на том, что при перемещении проводника в присутствии магнита в проводнике происходит упорядоченное движение электронов.

Это происходит в результате сил притяжения и отталкивания, вызванных магнитным полем.Работа генераторов переменного тока, двигателей и динамо-машин основана на этой форме производства электроэнергии.

Примечательно, что гидроэлектроэнергия вырабатывает около 9% электроэнергии в США. Более того, он является возобновляемым и может производиться с очень небольшим количеством выбросов.

СВЯЗАННЫЕ С: 21 ТОП-ПЛОТИНЫ В МИРЕ, КОТОРЫЕ ДЕЛАЮТ НАИБОЛЬШОЕ КОЛИЧЕСТВО ЭЛЕКТРОЭНЕРГИИ

Производство электроэнергии имеет богатую историю и еще более светлое будущее. Согласно прогнозам Института энергетических исследований, ископаемое топливо продолжит сохранять свой статус ведущего источника производства электроэнергии в США до 2040 года.

Физика 9702 Сомнения | Страница справки 213

Вопрос 1020: [Электрический ток> Сопротивление провода]

Планируется установка электрического душа.
встроен в дом. Мощность душа — 10,5 кВт, 230 В. Душевая кабина
подключенный к сети 230 В кабелем длиной 16 м, как показано на рис.
6.1.

(а) Покажите, что при нормальной работе душевой кабины ток
приблизительно 46 A.

(b) Сопротивление двух проводов кабеля приводит к возникновению потенциала
разница в диаметре душевой кабины должна быть уменьшена.Разница потенциалов
поперек душевой кабины должно быть не менее 225 В.

Провода в кабеле сделаны из
медь с удельным сопротивлением 1,8 × 10 –8 Ом · м.

Предполагая, что ток в
проводов 46 А, рассчитать

(i) максимальное сопротивление
кабель,

(ii) минимальная площадь
сечение каждого провода в кабеле.

(c) Подключение душевой кабины к электросети с помощью кабеля
наличие проводов со слишком малой площадью поперечного сечения значительно уменьшит
мощность душевой кабины.

(i) Предполагая, что душ
работает при 210 В, а не 230 В, и что его сопротивление не меняется,
определить коэффициент

мощность, рассеиваемая душевой кабиной при 210 В / мощность, рассеиваемая
душевая кабина на 230 В

(ii) Предложите и объясните еще одно
Недостаток использования в кабеле проводов малого сечения.

Ссылка: Отчет о прошедшем экзамене — Отчет за ноябрь 2007 г. 2 Q6

Решение 1020:

(а)

Мощность = VI

Ток, I = (10.5 × 10 3 )
/ 230 = 45,7 А

(б)

(i)

Разница потенциалов на кабеле =
(230 — 225 =) 5,0 В

Сопротивление, R = (V / I =) 5,0 / 46

Сопротивление, R = 0,11 Ом

(ii)

R = ρL
/ A

0,11 = [(1,8 × 10 -8 ) × (16 × 2)]
/ A

Минимальная площадь поперечного сечения
каждый провод, A = 5,3 × 10 -6 м 2

(в)

(i)

ЛИБО мощность = В 2 / R ИЛИ мощность α
В 2

Итак, соотношение = (210/230) 2
= 0.83

{В этом вопросе мы
сравнивая рассеиваемую мощность при напряжении блока 210 В и 230 В. Дано
что сопротивление не изменилось. Итак, мы должны использовать формулу, которая связывает мощность
рассеиваемый P на сопротивление R и напряжение V. Мы не можем включать другие
количества, которые также будут меняться при изменении V. Эта формула P = V 2
/ Р.

Например, мы не можем использовать
формула P = VI, потому что ток I также изменится при изменении V.
Так что сравнение рассеиваемой мощности в зависимости от V не будет актуальным.
потому что я тоже меняюсь.}

(ii) Сопротивление кабеля равно
больше. Значит, потеря мощности больше / опасность пожара / изоляция может расплавиться /
провод может плавиться / кабель нагревается

Вопрос 1021: [Электромагнетизм
> Токоведущий провод]

Течение по длинной прямой
вертикальный провод проходит в направлении XY, как показано на рис. 6.1.

(a) На рис. 6.1 нарисуйте картину магнитного потока в
горизонтальная плоскость ABCD за счет токоведущего провода.Нарисуйте не менее четырех потоков
линий.

(b) Токоведущий провод находится в магнитном поле Земли. В качестве
в результате узор, изображенный на рис. 6.1, накладывается на горизонтальный
составляющая магнитного поля Земли.

На рис. 6.2 показан вид сверху
плоскость ABCD с током в проводе, выходящем из плоскости.

Горизонтальная составляющая
Также показано магнитное поле Земли.

(i) На Рис. 6.2 отметьте
буква P — точка, где возникает магнитное поле из-за токоведущего провода
может быть равным и противоположным земному.

(ii) Для длинного прямого провода
ток I, плотность магнитного потока B на расстоянии r от центра
провода определяется выражением

B = μ 0 I / 2πr

где μ 0
проницаемость свободного пространства.

Точка P в (i) оказывается
1,9 см от центра провода на ток 1,7 А.

Рассчитайте значение по горизонтали
составляющая плотности магнитного потока Земли.

(c) Ток в проводе в (b) (ii) увеличивается.Точка P находится
теперь оказалось 2,8 см от провода.

Определите новый ток в
провод.

Ссылка: Отчет о прошедшем экзамене — Отчет за ноябрь 2009 г. 41 Q6

Решение 1021:

(a) Линии потока должны быть концентрическими окружностями с увеличением
разделение и правильное направление (против часовой стрелки) очистить

(б)

(i) правильное положение слева от провода

(ii)

Плотность магнитного потока B = (4π × 10 -7
× 1.7) / (2π × 1.9 × 10 -2 )

Плотность магнитного потока B = 1,8 × 10 -5
Т

(в)

{B = μ 0 I / 2πr.
Итак, B × 2π r = μ 0 I . Расстояние r пропорционально
к текущему I.}

расстояние ∝
текущий

{При токе = 1,7 А,
расстояние P от центра = 1,9 см

Когда расстояние P от
центр = 2,8 см, ток = (2,8 / 1,9) × 1,7}

текущий = (2.8 / 1,9) × 1,7

ток = 2,5 А

Вопрос 1022: [Измерение> Неопределенность]

Объем V жидкости, текущей за время t по трубе радиуса r, равен
задается уравнением

V / t = πPr 4 / 8Cl

где P — перепад давления между концами трубы
длина l, а C зависит от фрикционного воздействия жидкости.

Для определения C проводится эксперимент. Выполненные измерения
показано на рис.1.1.

(a) Рассчитайте значение C.

(b) Рассчитайте погрешность в C.

(c) Укажите значение C и его неопределенность для соответствующего числа
значимые фигуры.

Ссылка: Документ о прошедшем экзамене — Отчет за июнь 2012 г., 1 квартал

Решение 1022:

(а)

V / t = πPr 4 / 8Cl

C = πPr 4 т / 8Vl

С = [π × 2.5 × 10 3 × (0,75 × 10 -3 ) 4 ] / (8 ×
1,2 × 10 -6 × 0,25)

C = 1,04 × 10 -3 Нсм -2

(б)

ΔC / C = ΔP / P + 4 (Δr / r) + Δ (V / t) / (V / t) + Δl / l

Погрешность в процентах в C,% C = ΔC / C × 100%

% C =% P + 4 (% r) +% V / t +% l

% C = 2% + 5,3% + 0,83% + 0,4% = 8,6%

ΔC = (8,6 / 100) × 1,04 × 10 -3 = ± 0,089 × 10 -3 Нсм -2

Представление о единицах и масштабе для производства и потребления электроэнергии

Цифры о дневной выработке из различных источников электроэнергии были получены одним из двух способов:

  • Где конкретные отчетные данные о годовой выработке энергии завода или объекта были опубликованы, мы преобразовали это в среднесуточную выработку в ватт-часах или мегаватт-часах.
  • Если конкретные данные об электрической мощности недоступны, мы рассчитали это на основе максимальной номинальной мощности установки и среднего коэффициента мощности для установки этого типа на основе данных о коэффициенте мощности, опубликованных Управлением энергетической информации США (EIA) 1 (описано ниже).

Выработку объектов электроэнергетики часто описывают как максимальную мощность; это показатель мощности (не энергии), измеряемый в ваттах (Вт).Чтобы получить среднюю дневную выработку электроэнергии, нам необходимо выполнить два преобразования этого показателя. Во-первых, мы должны преобразовать мощность в энергию. Энергия — это мера выходной мощности во времени (энергия = мощность x время). Таким образом, чтобы рассчитать выработку энергии в ватт-часах, нам нужно умножить нашу номинальную мощность на количество часов, в течение которых работает наша установка. Например, если у нас есть установка мощностью 1000 МВт, ее максимальная выработка энергии в день будет 24 000 МВт · ч (1000 МВт x 24 часа).

Однако это предполагает, что установка непрерывно работает с максимальной производительностью, чего в большинстве случаев (если не у всех) нет.Второе исправление, которое мы должны сделать, — это умножить этот выпуск на его коэффициент мощности. Коэффициент мощности определяется как фактическая выработка электроэнергии в процентах или соотношении максимально возможной мощности за данный период времени. Например, если наша установка работает только на 80% (из-за комбинации эпизодов останова и периодов работы ниже максимальной мощности), наша ежедневная выработка энергии будет только 19 200 МВтч в день (24 000 МВтч x 80%).

Сколько электроэнергии вырабатывает гидроэлектростанция в день?

Гидроэнергетика уникальна тем, что охватывает самый большой диапазон выработки электроэнергии; начиная от крупнейших производственных мощностей в мире и заканчивая так называемыми «пикогидро» схемами — простыми водяными турбинами, которые часто устанавливаются для отдельного домохозяйства или группы домохозяйств.x Они обычно имеют номинальную мощность менее 5 кВт, производя менее одного МВтч в день (всего около 22 МВтч в год).

Здесь собрана коллекция крупнейших в мире гидроэлектростанций. Бразильская плотина Итайпу и китайская плотина Три ущелья — два крупнейших производителя электроэнергии в мире — являются ключевыми выбросами по объему производства, производя почти вдвое больше, чем третье по величине гидроузлы. Эти два участка представлены в виде звезд: плотина Итайпу производит в среднем 282000 МВтч в день (103 ТВтч в год / 365 дней), а плотина Три ущелья вырабатывает в среднем 270,000 МВтч в день в 2014 г. (98.8 ТВтч / 365). Другой единственный гидроузел, показанный на этом графике, — это плотина Гувера в США, которая в 2014 г. производила в среднем 11 000 МВтч в сутки (4 ТВтч / 365). 2

Помимо гидроузлов Итайпу и плотины Три ущелья, группа крупнейших гидроэнергетических объектов обеспечивает годовую выработку 50-55 ТВтч. В среднем за день (хотя сезонная изменчивость неизбежно влияет на суточную выработку в течение года) крупные гидроэнергетические объекты производят приблизительно 150 000 МВтч в день.

Сколько электроэнергии вырабатывает атомная станция в день?

Выходная мощность атомных электростанций обычно более стабильна во времени, чем мощность гидроэнергетики или других возобновляемых ресурсов, поскольку они меньше подвержены влиянию сезонных колебаний или изменений окружающей среды. Чтобы оценить диапазон типичных суточных выходов ядерных станций, мы использовали заявленную максимальную мощность конкретных станций, перечисленных здесь, со средним коэффициентом мощности ядерной энергетики, который составляет примерно 90%. 3

Например, крупнейшей в мире действующей атомной станцией является канадская станция Брюс с максимальной мощностью 6 384 МВт. Таким образом, расчетная среднесуточная мощность рассчитана как 6 384 МВт x 90% x 24 часа, что дает нам примерно 138 000 МВт-ч в сутки. Среднесуточная мощность других выделенных здесь атомных станций была рассчитана с использованием точно такой же методологии.

Малые атомные станции имеют максимальную мощность около 400 МВт, но могут быть и 200–250 МВт.Например, реакторы на индийской атомной электростанции Кайга имеют максимальную мощность 220 МВт. В результате атомная электростанция Кайга производит в среднем 6100 МВтч в сутки.

Сколько электроэнергии вырабатывает угольная электростанция в день?

Как и на атомной электростанции, наши оценки суточной выработки электроэнергии угольными электростанциями были рассчитаны на основе заявленных значений максимальной мощности, указанных здесь, и среднего коэффициента мощности 64%. 4 Крупнейшая действующая угольная электростанция в мире — Тиачунская электростанция на Тайване; при максимальной мощности 5500 МВт среднесуточная мощность составит примерно 85 000 МВтч (5 500 МВт * 64% * 24 часа).

Подобно ядерному производству, небольшие угольные электростанции могут иметь максимальную мощность до сотен МВт. Например, тепловая электростанция Кахоне в Сенегале имеет мощность всего 102 МВт. Если предположить, что средний коэффициент использования мощности составляет около 64%, суточная выработка угля может составить всего 1600 МВтч в сутки.

Сколько электроэнергии вырабатывает геотермальная станция в день?

Мощность и производство геотермальной энергии обычно ниже, чем у гидро-, атомных и угольных станций.Крупнейший производитель геотермальной энергии в мире — это Гейзеры в США; с мощностью 1517 МВт и заявленным коэффициентом мощности 63%, по нашим расчетам, суточная выработка составит примерно 23 000 МВтч. 5

Однако, если мы посмотрим на спектр геотермальных электростанций по всему миру, площадка Гейзеров сильно отличается от потенциальной производительности. Вторая по величине геотермальная электростанция имеет примерно половину установленной мощности, чем «Гейзеры». Если мы возьмем ее установленную мощность в 820 МВт и предположим, что глобальный средний коэффициент использования геотермальной энергии Bloomberg New Energy Finance составляет 73%, мы приблизим типичную большую геотермальную электростанцию ​​к выработке примерно 14 000-15 000 МВтч в день.Подобно гидроэнергетике, геотермальные участки могут существовать в очень малых масштабах; Геотермальный участок Сан-Мартино в Италии имеет мощность всего 40 МВт; если мы предположим, что средний коэффициент использования геотермальной энергии составляет 73%, среднесуточная выработка составит около 700 МВтч.

Сколько электроэнергии вырабатывает береговая ветряная электростанция в день?

В то время как большинство береговых ветряных электростанций в среднем производят менее 10 000 МВтч в день, ветряная электростанция Ганьсу в Китае является заметным исключением. Установленной мощностью 7965 МВт и средним коэффициентом мощности 12.4% для ветроэнергетики в регионе Ганьсу, по нашим оценкам, суточная выработка составит около 24 000 МВтч. 6

Следующие по величине ветряные электростанции значительно меньше, чем ветряные электростанции Ганьсу. Ветряные электростанции Маппандал в Индии и Центр ветроэнергетики Альта в США имеют максимальную мощность 1500 МВт и 1320 МВт соответственно. При коэффициенте мощности 30% по сравнению со средним фактором в Индии, равным 15%, Центр ветроэнергетики Альта производит в среднем 7 342 МВтч в день по сравнению с 5400 МВтч на Муппандале. 7

Ветряные электростанции могут быть очень маленькими по размеру и мощности, вплоть до десятков мегаватт.Например, с максимальной мощностью всего 11 МВт ветряная электростанция Утгрунден в Швеции, вероятно, будет производить в среднем около 80 МВтч в день.

Сколько электроэнергии вырабатывает офшорная ветряная электростанция в день?

Хотя морские ветряные электростанции часто могут иметь более высокий коэффициент мощности, чем наземные эквиваленты, их общая установленная мощность еще не достигла масштаба крупнейших наземных ферм. На сегодняшний день крупнейшая оффшорная ветряная электростанция — London Array в Великобритании. При мощности 630 МВт и коэффициенте мощности в 2015 году 45.3%, среднесуточная выработка составляет около 6800 МВтч.

Подобно наземным ветровым электростанциям, морские ветряные электростанции могут быть небольшими по размеру — некоторые менее 10 МВт установленной мощности. Например, ветряная ферма Маунт Стюарт в Новой Зеландии производит в среднем всего 70 МВтч в день.

Сколько электроэнергии производит солнечная фотоэлектрическая (PV) ферма в день?

Как обсуждал Дэвид Маккей в своей книге «Устойчивая энергия — без горячего воздуха» (бесплатно), производство электроэнергии на единицу площади панелей солнечных батарей почти прямо пропорционально количеству солнечного света, падающего на нее. 8 В результате оптимальные места для солнечной энергии, особенно в низких широтах, могут обеспечить выход энергии в 2-3 раза выше, чем в очень высоких широтах. Однако, как показывает этот список крупнейших солнечных фотоэлектрических ферм, солнечная энергия может обеспечивать приемлемую мощность в большинстве стран, независимо от географической широты.

На сегодняшний день крупнейшей солнечной электростанцией является китайский парк солнечных батарей Tengger Desert Solar Park с установленной мощностью 1 500 МВт. Если мы предположим, что коэффициент мощности составляет 20% (что является высоким показателем для солнечной энергии, но не лишним), то суточная выработка составит примерно 7200 МВтч.Калифорнийская солнечная ферма Topaz имеет установленную мощность около одной трети китайской Tengger, но с высоким коэффициентом мощности 24,4% обеспечивает среднесуточную выработку 3 466 МВтч.

Подобно наземным и оффшорным ветровым электростанциям, солнечные фотоэлектрические фермы могут быть всего лишь десятками мегаватт-часов в день. Крупнейший фотоэлектрический парк Ирана, Джаркави, имеет мощность всего 10 МВт и производит в среднем 48 МВтч (при 20% коэффициенте мощности) ежедневно.

Наиболее полное, но простое руководство по статическому электричеству

Статическое электричество — большое дело для танкеров.Если вы думаете, что это всего лишь гипотетический термин, вы ошибаетесь.

История судоходства знала множество инцидентов, связанных со статическим электричеством.

Например, грузовой танк судна «Фиона» взорвался, когда сюрвейер вручную измерял температуру груза. В ходе расследования NTSB причиной взрыва было установлено статическое электричество.

Есть много других подобных инцидентов.

Так что же такое статическое электричество и почему это так важно?

Давайте обсудим.Но прежде чем мы это сделаем, нам нужно освежить некоторые основы науки.

Некоторые фундаментальные науки

Чтобы понять статическое электричество, нам нужно обновить некоторые основы науки. Знание фундаментальной науки поможет, когда мы будем говорить об относительно больших терминах.

Но не волнуйтесь, это будет просто фундаментальная наука, и я не буду утомлять вас большой дозой науки.

Что такое атомы?

Все вещества в этом мире состоят из атомов. Атом состоит из трех вещей.Отрицательно заряженный электрон, положительно заряженные протоны и нейтральные нейтроны.

Атом имеет равное количество протонов и электронов и, следовательно, по своей природе электрически нейтрален. Нейтроны и протоны вместе составляют ядро ​​атома, а электроны присутствуют во внешних оболочках атома. Электроны очень-очень легкие (1: 1800) по сравнению с протоном и нейтроном.

Атом никогда не теряет своих протонов и нейтронов, поэтому состав его ядра никогда не меняется.

Но атом может терять или получать электроны к другим материалам или от них.

Поскольку электроны очень легкие, они легко выделяются с небольшим количеством энергии. Трение — самый распространенный способ высвобождения электронов из атома.

Что делает объект проводником или изолятором

Я только что сказал, что электроны легко высвобождаются из атома. Но это не относится к атомам всех элементов.

Некоторые атомы имеют тенденцию легко выделять электроны, в то время как другие имеют тенденцию легко принимать электроны.

Проводник электричества имеет слабосвязанные электроны на внешней оболочке своего атома. Эти электроны стремятся покинуть атом. Таким образом, проводники имеют свойство легко выпускать электроны.

Непроводники (изоляторы), такие как пластик, имеют плотно связанные электроны, которые нелегко высвободить. Однако изоляторы могут принимать электроны.

Вы хотите знать, почему одни материалы имеют тенденцию отдавать свои электроны, а другие — получать электроны? Тогда вы должны знать такие термины, как электронная конфигурация атома и валентность.

Если вас интересуют эти термины, вы можете прочитать об этом подробно, но пока давайте остановимся на нашей теме.

Итак, если мы потрим проводник и индуктор вместе, часть электронов переместится от проводника к индуктору.

Итак, давайте резюмируем то, что я сказал до сих пор по этим трем пунктам.

Что такое электричество

Электроэнергия перетоковая. Электрон является носителем заряда, потому что он несет отрицательный заряд.Если мы можем освободить электрон от атома и заставить его двигаться, мы создали электричество.

Когда два разнородных материала трутся друг о друга, один может отдать свои электроны, а другой может получить эти электроны.

Материал, который отдает электроны, становится положительно заряженным. И тот, кто получает электроны, становится отрицательно заряженным.

Так что же произойдет, если два объекта, один положительно, а другой отрицательно заряженный, объединятся? Дополнительные электроны от отрицательно заряженной частицы переместятся в положительно заряженный материал.Это из-за природы равновесия. Этот поток электронов (заряд) называется статическим электричеством.

Это форма электричества, потому что, как я уже сказал, электричество — это поток заряда.

Еще не понятно, что такое статическое электричество, посмотрите это замечательное видео.

Три ступени статического электричества

Давайте теперь упростим процесс генерации статического электричества

  • Разделение заряда
  • Накопление заряда
  • Электростатический разряд

Разделение заряда

Когда два разных материала вступают в контакт, электрон может переходить из одного материала в другой.

Этот процесс называется разделением зарядов и является первым шагом к производству статического электричества.

Но для того, чтобы один материал отдавал свой электрон, а другой мог принимать электрон, один материал должен быть проводником, а другой — изолятором.

На борту танкеров может произойти разделение заряда из-за

  • Трение между грузом и трубопроводом во время движения груза. В этом случае трубопровод теряет электрон, а груз набирает электрон и становится отрицательно заряженным.
  • Трение между грузом и крышкой цистерны из-за разбрызгивания на начальном этапе загрузки. Опять же, во время разбрызгивания верхняя часть резервуара отдает электроны, а груз получает электроны.
  • Обработка паром: Пар — изолятор. Когда пар проходит через паропровод, он приобретает отрицательный заряд (надеюсь, к этому времени вы уже знаете, почему?)
  • смешивание двух несмешивающихся жидкостей: Когда две несмешивающиеся жидкости смешиваются вместе, может происходить разделение заряда.

Вы заметите, что во всех этих ситуациях разделения зарядов один материал является проводником, а другой — изолятором.

Накопление заряда

Я сказал, что для разделения заряда нужен один изолятор и один проводник. Дело не в том, что разделение зарядов не может происходить в двух проводниках.

Но в двух проводниках разделенные заряды рекомбинируют и нейтрализуют почти сразу.

Когда изолятор достиг отрицательного заряда, ему требуется время, чтобы высвободить его из-за свойств изолятора.Это время называется временем релаксации.

Если материал (или груз) не может удерживать заряд в течение более длительного периода, это не будет нас беспокоить. Это потому, что для образования искры должен быть накоплен достаточный заряд.

Так заряд может накапливаться только на индукторах. Любой заряд, накопленный на проводниках, снимается при первой возможности.

Электростатический разряд

Когда два материала с противоположным зарядом вступают в контакт, электроны переходят с одного материала на другой.Этот процесс называется электростатическим разрядом.

Для возникновения этого электростатического разряда между двумя зарядами должно быть минимальное расстояние. Если два заряда разделены большим расстоянием, они не встретятся.

Это расстояние зависит от того, насколько сильно материалы заряжены. Или, говоря более техническими словами, насколько велика разница напряжений между двумя объектами. Чем больше разница напряжений, тем меньше расстояние требуется для электростатического разряда.

Электростатический разряд — это одно.Другое дело — электростатический разряд, вызывающий искру.

Для того чтобы электростатический разряд вызвал искру, должна быть определенная разница напряжений между двумя зарядами.

Это еще раз подчеркивает важность наличия индуктора в этом процессе. Катушки индуктивности способны сохранять заряд и, таким образом, создавать разницу напряжений.

Источники статического электричества на борту

Хотя статическое электричество присутствует повсюду, вызывает беспокойство то, где могут присутствовать легковоспламеняющиеся пары.В грузовых танках танкеров будут находиться легковоспламеняющиеся пары, поэтому статическое электричество представляет серьезную опасность для танкеров.

Давайте обсудим, каковы источники статического электричества на танкерах.

i) Статические аккумуляторные грузы

Теперь, если бы я был ясен в том, что сказал до сих пор, вы бы знали две вещи.

Во-первых, только изоляторы могут накапливать электрический заряд.

Во-вторых, для возникновения искры во время электростатического разряда необходимо накопление заряда.Проводники не могут удерживать заряд и, следовательно, не будут основной причиной возникновения искры.

Изолятор

имеет свойство удерживать заряд и является причиной искры при электростатическом разряде.

Теперь грузы, не являющиеся хорошими проводниками электричества, смогут дольше удерживать заряд. Эти грузы обладают опасностью статического электричества.

Эти грузы называются статическими аккумуляторами.

ISGOTT присвоил номер для определения статических аккумуляторных грузов.Согласно ISGOTT, это грузы с проводимостью менее 50 пикосименс / метр (пСм / м).

ii) Свободное падение в бак

Если груз или балласт загружается сверху таким образом, чтобы свободно падать в танк, груз (или балласт) будет разбрызгиваться. При этом в незаполненном пространстве резервуара образуется туман из электрически заряженных капель.

Во избежание взрыва ISGOTT не допускает погрузки сверху статических аккумуляторов.

iii) Водяной туман

Подобно свободному падению в резервуар, водная струя из машин для очистки резервуаров во время очистки резервуара также создает туман из электрически заряженных капель.

iv) Инертный газ

Инертный газ может уносить с собой электрически заряженные мелкие частицы. Эти частицы могут попадать в резервуар вместе с инертным газом в резервуар.

v) Другие источники

На борту может быть ряд других источников для генерации статических зарядов. И невозможно проверить, существует ли статический заряд или нет. Наилучший из возможных способов — предполагать, что статический заряд существует.

Меры предосторожности от статического электричества

Какой бы ни была причина образования статического электричества, важнее не допустить взрыва.

Даже если электростатический разряд приводит к образованию искры, для возникновения взрыва необходимо наличие еще двух вещей.

Стоимость электроэнергии по странам

Джессика Диллинджер, 28 сентября 2018, Экономика

Стоимость электроэнергии зависит от метода и местоположения.

Тип используемой электроэнергии варьируется от страны к стране. Хотя некоторые страны в значительной степени полагаются на возобновляемые источники энергии, такие как гидроэнергия, энергия ветра или солнечная энергия, некоторые страны по-прежнему используют большое количество энергии угля. Стоимость электроэнергии для потребителей зависит от множества факторов, включая доступ к источникам энергии, местные тарифы и приватизацию ресурсов.У тихоокеанского островного государства Соломоновы Острова самая высокая стоимость электроэнергии в мире — 99 центов США за киловатт-час. Другие страны с высокими ценами на энергоносители — это в основном тропические острова, такие как Вануату, Виргинские острова США, Острова Кука и Тонга. В некоторых европейских странах, таких как Германия, Дания и Бельгия, также наблюдается высокая стоимость электроэнергии.

Высокие расходы на тропических островах

Соломанские острова относительно уединены в Тихом океане, примерно в 1000 км от их ближайшего соседа Вануату.Население страны, насчитывающее около 599 000 человек, страдает от частых отключений электроэнергии и очень дорогих расходов на электроэнергию. Дизельная энергия — это наиболее используемый в стране вид энергии, в результате чего затраты достигают одного доллара США за киловатт-час.

В далеком соседстве с Соломановыми островами Вануату дела обстоят не намного лучше. В Вануату почти 3/4 всех домов не имеют доступа к электричеству. Хотя Вануату имеет сетевую систему электроснабжения, государственные налоги делают стоимость электроэнергии чрезмерно высокой.Многим жителям часто не остается иного выбора, кроме как прибегать к пожарам, таким как керосиновые лампы.

На другой стороне земного шара в Карибском море Виргинские острова США страдают от высокой стоимости электроэнергии. На острове, где цены на электроэнергию могут достигать 0,51 цента США за киловатт-час, всегда существует дополнительный риск стихийного бедствия, такого как ураган, который выйдет из строя.В настоящее время существуют планы построить на острове более функциональную энергосистему.

Европейские цены на электроэнергию

В Германии самые высокие затраты на электроэнергию в Европе: около 35 центов США за киловатт-час. Из-за этих высоких затрат в стране разработана программа увеличения доли электроэнергии, получаемой из возобновляемых источников, до более чем 80% к 2050 календарному году.В течение первого квартала 2014 года страна произвела рекордные 27% электроэнергии из возобновляемых источников, что стало результатом как благоприятных погодных условий, так и увеличения возможностей использования возобновляемых источников энергии внутри страны.

Современная программа Германии по возобновляемым источникам энергии имеет разветвления, включая нестабильную электрическую сеть, бремя, которое ложится на немецкие домохозяйства из-за увеличения затрат на электроэнергию, а также потребность в безопасном резервном энергоснабжении, которое является доступным и надежным.В настоящее время коммунальные предприятия в стране получают платежи из сети в качестве меры по стабилизации сети, которая была нарушена из-за скачков и падений взносов от солнечных и ветровых источников энергии. Уголь используется более мощным способом, чтобы поддержать возобновляемые технологии (и их непостоянный характер), обеспечивая при этом надежную базовую нагрузку электроэнергии, хотя и с риском увеличения выбросов углекислого газа. В результате жители Германии были вынуждены платить льготные тарифы в дополнение к высоким расходам на коммунальные услуги в качестве меры субсидирования технологий использования возобновляемых источников энергии.

Электричество в других странах

К другим странам с высокими затратами на электроэнергию относятся Ямайка, Ниуэ, Маршалловы острова и Нидерланды, которые имеют ставки соответственно 44,7, 44,3, 41,6 и 28,89 цента. Для сравнения: стоимость электроэнергии в США обычно составляет от 8 до 43 центов за киловатт-час.В Соединенном Королевстве стоимость составляет около 22 центов. В Канаде он составляет от 6 до 11 центов.

Стоимость электроэнергии по странам

Кирибати

Рейтинг Страна Доллар США центов за киловатт-час
1 Соломоновы Острова 99.0
2 Вануату 60,0
3 Виргинские острова США 51,9
4 Острова Кука 50,2
6 Ямайка 44,7
7 Ниуэ 44,3
8 Маршалловы Острова 41.6
9 Тувалу 36,6
10 Германия 35,0
11 Дания 33,0
Бельгия 29,1
14 Нидерланды 28,9
15 Италия 28,4

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*

*

*